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Abstract

This research deals with the optimization of shortrfbdistribution in continuum
structures made of Fiber Reinforced Composite (FRC) by edpah efficient gradient
based optimization approach. Motivated by lack of non-héuiastd mesh independent
optimization algorithm to obtain the optimum distributiminshort fibers through a design
domain, Non-Uniform Rational B-spline (NURBS) basis fiowws have been
implemented to define continuous and smooth mesh indeperigent distribution
function as well as domain discretization. Thanks to drigbrder (here quadratic)
NURBS basis functions along with their compact support,rastid reduction in
computational time has been obtained by increasing meshvbile the accuracy of the
model is maintained. Moreover combination of NURBS witms#&vity based
optimization method allows a fast convergence to optinfiber distribution layout.
Minimization of elastic strain energy and maximizationfufdamental frequency have
been considered as objective functions for static and frbeation problems,
respectively; to get the maximum fiber exploitation in theictural element. Nodal
volume fraction of fiber was defined as the optimizatidesign variable while a
homogenization approach based on the random orientdtishoat fibers in the matrix
has been adopted. Some numerical examples relatec tstrikctural response under
static loading as well as the free vibration behavioffiaedly conducted to demonstrate

the capability and reliability of the model.
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Elastic tensor of the fiber and of the matrix material, respsygtiv
Homogenizd elastic tensor of the composite

Elasticity matrix of a structure discretized with finite element
Young's modulus of the fiber phase and of the matrix, respectiv
System force vector

Unit vector parallel to the generic fiber axis

System stiffness matrix

System mass matrix

Matrix of shape functions

NURBS and B-spline basis functions

Second-order tensor related to the fiber lying alondetb@ection
NURBS surface

System displacement vector

Total strain energy and elastic strain energyifér load case
Volume of the composite, volume of the matrix phase and volu
of the fiber fraction present in the RVE, respectively
Composite work rate

it" weight

Initial and total fiber weight at every iteration

Generic position vector

Strain and virtual strain rate tensors, respectively

Fiber strain, virtual strain and virtual strain rate, respectively

Point function denoting the presence of the matrix at the locatic
Point function denoting the presence of the fiber at the location
Nodal fiber volume fraction

Associated weight for strain energy

RVE matrix volume fraction

RVE fiber volume fraction of the fiber phase

Fiber distribution function

Matrix, fiber and equivalent density at every point in the design
domain

Upper and lower bounds Lagrange multipliers

it"eigenvalue and fundamental frequency

Eigenvector associated witH'eigenvalue

Stress in composite, axial stress in a fiber and in the aiquiv
material

1. Introduction

Fiber Reinforced Composite (FRC) materials have beanilgenvestigated in the last

decades and are widely used in advanced applications such e®spaxe, structural,
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military and transportation industries due to their elevatedhanical properties values
to weight (or cost) ratio. Thanks to their excellenuctural qualities like high strength,
fracture toughness, fatigue resistance, light weight, @mosnd corrosion resistance, a
particular interest has been born not only in engséar the use of FRCs in advanced
industrial applications, but also in researchers to develdpogatimize their particular
and useful characteristics.

The general behavior of a FRC depends on the characteristi the composite
constituents such as fiber reinforcements, resin andiagkjieach of these constituents
has an important role in the composite characteristidssach aspects have driven some
researchers to combine them differently for obtaining ecetamaterials. In the present
work we have focused specifically on fibers distribution whings a critical role in
enhancing structural load bearing capacity.

The mechanical properties of composites depend on many fiber’s variables such as
fiber’s material, volume fraction, size and mesostructure. This latter aspect deals with
fiber configuration, orientation, layout and dispersionaiable literatures aimed at the
optimization of composite’s performance with respect to the above mentioned fiber
related variables, have been focused on improving specifiorp@mce of a classical
laminated or Functionally Graded (FG) composites by changing the fiber’s layout (ply
orientation) or fiber volume fraction, by using heudsiptimization methods, especially
the so-called Genetic Algorithm (GA) [1-7]. Salzar [8] triedoptimize a pressurized
cylindrical pressure vessel by functionally grading the fimdume fraction through the
thickness of vessel. The work of Nadeau and Ferrari [9] askelde microstructural
optimization of a FG layer subjected to thermal gradiassuming that its parameters
vary through the thickness of the layer; in their wotle tmicrostructure was
characterized by fiber volume fraction, aspect ratio amentation distribution. Honda
and Narita [10] optimized vibration characteristics oamihated structure by changing
the orientation of fibers and intentionally providing loealsotropy; in their work fiber
orientation angle and GA were implemented as desigrablariand optimization
methodology respectively. Murugan and coworkers [11] perforimetimization to
minimize the in-plane stiffness and maximize the out lahg bending stiffness of a
morphing skin used in aircraft wing made of laminate posite, by spatially varying the

volume fraction of the fibers in the different layers; garticular the laminate was
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discretized through its thickness and equivalent mater@gerties in each element were
obtained based on homogenization technique using multi-smaistitutive model.
Smooth particle hydrodynamics was implemented in KulasegarahKarihaloo works
[12,13] in order to model and optimize short steel fibergidigion and orientation in
self compacting concrete flow. Huang and Haftk4] tried to optimize fibers orientation
(not their distribution) near a hole in a single lagémultilayer composite laminates in
order to increase the load caring capacity by using GeA@garithm (GA). Brighenti
[15-17] used GA in his series of works ondflaistribution and patch repair optimization
for cracked plates (to get the maximum exploitation ofvergiavailable patch element
area by determining its best conformation around the cdantee). The presence of the
patch in a point of the structure is accounted for by ptppeodifying (i.e. increasing)
the elastic modulus, similarly to what has been done wir filistribution optimization
in FRC materia[18]. In particular the optimum distribution of the short fibén a FRC,
obtained by using GA, has been usually addressed in the Uitesaby assuming a
constant value of the total fiber content, the optimlagout for fiber distribution has
been determined in order to fulfill some given objectivections.

Computational cost is a very important aspect in optinoagbroblem, particularly in
industrial applications. Basically, the use of evolutioralgorithms, such as GA i8],
often leads to some limitations; in fact it is well-knowsn @A is problematic in some
issues. Among them, its heuristic nature, high computdticost and sometimes the
tendency to converge towards local optima instead of gtgiiaha— if proper so-called
mutation strategies are not considered in the methoah be counted. In contrary with
GA, gradient based methods which use gradient of the olgefcnction evaluated with
respect to design variables to find next direction inckaéiag process (tending toward the
optimum point), shows lots of merit particularly fovraplex geometries such as those
often used in industrial applications.

There are also some limitations in using FE mapping dfililee content{18] due to the
element wise poor representation of the fiber layow:fitst one is the possibilitpf
mesh dependency for the results, since the final fibeegement resulting from the
optimization is commonly determined based on fiber contentagh finite element.
Secondly, it could be easily understood that in orddraiee good layout representation,

fine mesh and consequently costly computation should be; dooreover further post
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processing technique such as filtering or smoothing becomessaegevhen this method
is implemented. Thirdly, it must be also considered thafore economical and
technological evaluations are performed, to fabricagmeht-wise variation of fiber
content in a discretized continuum structure is swlhanting step with present available
technologies. Fig. 1 schematically shows such limitation®lved in FE mapping

representation.

a) Coarse mesh b) Fine mesh

Fig.1. Schematic illustration of mesh dependency in element-baggeksentation of fiber

volume fraction

In this work instead of using element-based fiber volumetinaalescription, as has
been already done in other literatures, the idea of ugjizjuadratic NURBS basis
functions in order to smoothly and continuously approxingaten set of nodal points,
has been developed. Promising characteristics of NURB& basctions - such as
compact support and higher order elements - not only provitkesh independent
distribution results but also makes it possible to usarseo mesks to decrease
computational time, while maintaining the accuracy of #muks. The presented novel
computational approach combines NURBS-based and gradiemt-b@st@mization
methodologies to get an efficient optimization algoritiwhjch has been verified to be
enough accurate, computationally fast and convenient fomaatrial applications.

The paper is organized as follows: firstly homogenizatiechnique for obtaining
equivalent material property and then NURBS basis funstioerivatives, curve and
surface representation are described in Sections 2 anSe@&jon 4 defines the
optimization problem while Sections 5 and 6 include some noatezxamples with
interpretation of the obtained results and summarizes#tie concepts developed in this

research, respectively.



2. FRC homogenization methodology

Basically the aim of homogenization techniques is to deterrequivalent material
characteristics in a Representative Volume ElenlRWE) of composite material. There
are some classical approaches in order to model the atgissperties of composites;
among which the Rule of Mixture, Hashin-Shtrikman type bsufl9, 2(, Variational
Bounding Techniques [21Self Consistency Method [22] and Mori-Tanaka Method [23]
can be mentioned. The homogenization approach used inrgbearch work is a
simplified version of recently developed mechanical modellibysecond author of this
work [24]), to get the FRC constitutive behavior basedhenshear stress distribution
along the fiber-matrix interface during the loading proc&ee adopted model for fiber
homogenization can be considered to be mechanically-basee,tse fiber contribution
to the FRC mechanical properties are determined fromeffeetive stress transfer
between matrix and fibers; moreover the possibility bérfimatrix debonding can be
easily taken into account. Since the goal of this papty fecus on fiber distribution
through the structure rather than developing micromechamicadel, for sake of
simplicity we neglect this issue in the present work. Muee it can be declared that for
not too high stressed composite elements (as followed innoomerical examples)
leading to shear fiber-matrix interface stresses welbw the allowable limit shear
bimaterial stress, the debonding phenomenon can reascesdiyned not to occur as
well as fiber breakingThis approach is briefly summarized below; however intedest
reader can refer to [24-26] for more detalils.

The equivalent elastic properties of a fiber reinforoeehmosite materiat for which the
hypotheses of short, homogeneously and randomly dispdatssd &re made can be
obtained by equating the virtual work rate of constituentaf&®E (it is assumed that
the RVE characteristic lengtt is much more lower that the structure characteristic

lengthD) of the composite material (Fig.2) with equivalentriogenized one:

composite's work rate homogenized material’s work rate
—t
w’=f k(x)?s:adV+f x(x) & :0pdV = f E:0edV @Y
14 14 |4

where&;, o; are the virtual strain rate and the stress in a fimpectively, while the

scalar functionsc(x), x(x) assume the following meaning:



1 if(x)e V,
0if (x) & V,

and allow us to identify the location of the material paireither in the matrix or in the

and

) ={ ) = {1 if (x) € V;

0if (X) ¢V, @

reinforcing phase.
The constitutive relationships of the fibers and of thulk material can be simply
expressed through the following linear relations:

or=E -(i®i):¢ and Oeq(x) = Ceq(x): € 3)

in which Ef is the fibes’ Young's modulusg is the fiker strain, C,, is the composite

eq
equivalent elastic tensor while is the actual matrix strain tensor. .H) has been
written by taking into account that the matrix strainameed in the fier direction is
given bye; = (i ® i): € where i = (sinfcos¢ sinfsing cosf) is the unit vector
identifying the generic fiber direction, (Fig.2) and analo@oier the virtualg and the
virtual strain rate,

& =(Q®i):E and F=(>1QIi):E (4)
By substituting the above expressions in the virtual wat& equality (Eg. (1)) we can

finally identify the composite equivalent elastic tensor
1
Ceg@ =5 | @) o+ 2(E; - [Q® QY =
14

=/,L-Cm+anf-fVQ®QdV (5)
where the second-order tengpe= (i ® i) has been introduced and the matrix and fiber
volume fractionsu = % fV k(x)dV = V7m andn,, = % fV x(x)dv = % have been used.

It can be easily deduced as the equivalent material isos@apically homogeneous at
least at the scale of the RVE with volurvie- i.e. the equivalent elastic tensG,(x)
does not depend on the position vector, €g,(x) = C,.

The calculation of the equivalent elastic ten€gy through Eq. (5), requires to evaluate
the below integral over a sufficiently large volumepnesentative of the macroscopic
characteristics of the composite. The above integasl be suitably assessed on a
hemisphere volume which allows considering all possibberfiorientations in the

composite:



Fig.2. Fiber reinforced composite material: definition of theERWvith a characteristic length d,

while the composite has a characteristic length D>>d) aritleofiber orientation angles, 8,

ref. [25]
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In the above expression the case oébrandomly distributed in the 3D space has been

considered, but the generic case of preferentially @tkfibers can be also treated in a

similar way [27].

3. NURBS functions and surfaces
3.1 NURBS basis functions and derivatives

NURBS basis is given by

Ni,p(f)Wi _ Ni,p(f)Wi
W&  Xh_ Ni,(Owy

R} (§) = (7a)
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where N;,,(¢) are B-spline basis functions recursively defined by using-d@Boor

formula and starting with piecewise constapts=(0) [28]

_ (1 if §S§< &y
Nio(§) = {O otherwise ' (7b)
and forp = 1,2,3, ...
i (6) = e Ny () +£x—1_;ilzvi+1,p_1<e> 70)

w; is also referred to as thé* weight while W (&) is weighting function defined as

follows:

W = D Nip(©w, (7d)

Simply applying the quotient rule to Eq. (7a) yields:
W(E)N{,p (&) =W (N9

d_ER?(f) W2 (8a)
where,
N{p(©) = Ny () = ————Nip1 s () (8b)
$ivp — S $ivpr1 — Sitt
and
W) =) N'ip@w, (8¢)

Among NURBS basis functions characteristics, the rnmogbrtant ones are partition of
unity property, compact support of each basis function anenegative values. It can be
also noted that if the weights are all equal, tRG¢) = N, ,(£); so, B-spline is the

special case of NURBS. Detalils related to higher order desdgaformulations can be
found in[28].

3.2. NURBS curves and surfaces
A NURBS curve is defined as:

€)= ) RI©B, (%)
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whereB; € R% are control points and= 1,2, ..., number of control points. Similarly, for
definition of a NURBS surface, two knot vectoEs= {§;,%;, ..., §n4p+1} @Nd H =
N1, M2 -, Mm+q+1) (ONE for each direction) as well as a control Bgtare requiredA

NURBS surface is defined as:

m

SEn = RY(E,m) Byj (9b)

n
i=17j
where R}/ (¢,n) is defined according to the following equation, whig,(¢) and
M;,(n) are univariate B-spline basis functions of orgleand g corresponding to knot
vectorE andH, respectively.

N;, (OM; ;(w;
=1 2p=q Nip My (mwy o

R (§,m) = (10)

4. Definition of the optimization problem

Lots of structural characteristics or responses cadbgted as optimization objectives.
As representative examples we can mention weight, stiffmagaral frequencies or a
combination of them. Optimization aimed at obtaining strustuvéh minimum strain
energy (minimum structural compliance) which alternatively means maximum
structural stiffness- is the most common approach in this field. Neverthelessigth
combination of elastic compliance with structural volume weight constraints is
comprehensive for static problems, obtained designs ateesgentially optimum
considering dynamic behavior of the structu@ee important example is represented by
vibrating structures to be designed in such a manner to ags@hance for external
excitation loads varying with a given frequency. This galusually obtained by
maximizing the fundamental eigenfrequency or the gap betweencbmeecutive
eigenfrequencies of the structure [29].

In the context of this paper we will just optimize fibéstdbution through the structure
by definition of single objective function either for pustatic loading or free vibration,
separately. Extension of this methodology into multiectiye problems, which deals
with systematic and concurrent solution of a collectid objective functions, will be
straight forward in formulation but na concept. Typical multi-objective optimization

problem consists of a weighted sum of all objective fomsticombined to a form of
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single function. Final solution of this function is tibtadependenton the allocated
weights. On the other hand from the technological poiniest, engineers need to know
a specific volume fraction for design and manufacturinga &fRC product. Generally
there is no single global solution for multi-objectetimization problems and selection
of a set of points as a final solution among thousamgssible solutionsrequiresto
develop a comprehensive selection criteria which is bettadscope of this paper. To
review the multi-objective optimization methods in engm@g, interested readers can
refer to [30].

4.1. Objective function and optimization formulation for static problems
Strain energy can be considered as the work done by intemeds through the
deformation of the bodyn optimization problem we can consider minimization of this

energy as the objective function. For the problem with load cases we have:

m
U=Z/1iU" A, >0 1)
i=1

whereU and U! are the total strain energy and elastic strain enfengghei®” load case
respectively; whilel; is the weight associatetb the strain energy which has been
considered equal to unity unless otherwise specified

The terns U' can be defined as:

nel

. 1 .
Ul = [sz €1 Coq £.dV]! (12)
e=1 "V

in above equation formulas, is the strain vector associated with elemerind C,, is
the homogenised elastic tensor of the composite atpachaccording to Eqg. (5), while
nel is the number of elemenisthe structural component being analyzed.

Nodal fiber volume fractiorp; ; (the subscripts andj belong to counterpart control
point, B;;) on control points are defined as design variables and @stribution is
approximated by using NURBS surface (see Eg. (10) and Fig.3) bastmmulation
provided in 3.2. Every point on parametric mesh space of thigrdelomain will be
mapped to geometrical space having two distinguished identficate. geometrical

coordinates and fiber volume fraction value. Intrinsicallyen using coarse meshes,
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distribution function described through a NURBS surfacgmeoth enough to have clear
representation with no need to any further image praggsschnique.

Fiber distribution functiom, (x,y) — which indicates the fiber amount at every design
point and will be used for obtaining homogenized mass aridest#f of finite elements

is defined according to the following relationship:

@y =Y ) RIE o (13)
i=1 j=1

=1

Fig.3. Schematic illustration of fiber distribution function defingddWURBS

Once the fiber volume fraction at each point is avadlably substitution in Eq. (5), we
can define the equivalent mechanical characteristidseofidmain through the following

equations:
Ceg@9) = (1=1,) - Cu by - | Q@ Q v (18
14

p(x,¥) = (1 = 1p)om + nppp (15)
where p(x) is the equivalent density at every point in the designaionobtained by

using the rule of mixturep,, and p, are matrix material and fiber material density,

respectively. The optimization problem can be finally sunmed as follows:

Minimize : U
Subjected to : wr = [, mpprdV < wpg (16)
Ku=f 17)

—Qij <0 (19)
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wherewy is the total fiber weight in every optimization itecatiand wy, is an arbitrary
initial fiber weight which must be set at the beginninghef optimization proces, u
and f in Eq. (17) (which represent the general system of equitibequations in linear
elastic finite elements method) are the global re#§6 matrix of the system, the
displacement and the force vector, respectively.

By introducing a proper Lagrangian objective functignand by using the Lagrangian

multipliers method we have:

ncp ncp

L=U—(wp—wp ) — Z Pa(p;—1) — Z Ya(—9i)) (20)

ij=1 ij=1

wherey,, {1, are upper and lower bounds Lagrange multipliers wihife is the number
of control points. By setting the first derivative of E20) to zero we will obtain:

al ou  owg

09 ; - 0 ; - 0y ;

Eg. (21) can be solved numerically by using different approasheb as the so-called

—Y+P, =0 (21)

method of moving asymptoteBIA ) algorithm (Svanberg, 1987 [31]). In this work we
have implemented optimality criteria (OC) based optitiora(Zhou & Rozvany, 1991,
[32]) that represents a simple tool to be implement and allosesmputationally efficient
solution because updating of each design variables takesiptiependently. We ignore
to describe the updating scheme of OC which is based omivagnanalysis performed

in 4.3. However, interested readers can ref¢82p for more details.

4.2. Objective function and optimization formulation for free vibration problems
Maximization of fundamental eigenvalue, which is hereinsaBsred as objective

function for free vibration problems, can be formulateébdsws:

Maximize : Womin
Subjected to : wr = [, mpprdV < wyq (22)
(K —o;M)p; =0 i=1,..,no.of DOF (23)
ij—1<0 (24)
—;; <0 (25)

where w; stands for theé™ eigenvalue,w,,;, is the fundamental frequency of the

structure M is the system mass matrix ag is the eigenvector associated with tH
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eigenfrequencyEq. (23) represents the standard elastodynamic formulation riee f
vibration problems without damping.

4.3. Senditivity analysis

Basically, in order to update design variables toward theng@d solution OC needs
to determine how different values of the independent varigleley; ;) influence the
objective function under a given set of design con#isaiOne method to do this is to
consider the partial derivative of the objective funttand constraints with respect to

design variables.

au owg . . .
In EqQ. (21) we can calculag«(ap; and . through the following expressions:
U il Ui 26)
09y = 00,
where
aut 1 ac
=—j el —HAeqv (27)
dpi; 2 )y, 0@y
while
0C.q oy ony J‘
09, dpi; ™ Ay T )y %)
and
My P.q
Rl G (29)

It should be declared that in order to calculate Eq. (28)v#iue

= =0 has been

ac
Pi,j

0
considered since thRoisson’s ratios for both fiber and matrix are assumed to be the

ow
same On the other hang(p—f can be also calculated as follow:
i

owr oy
a<Pi,j v a(pi,j

For the problem of free vibration, we follow the samecpgdure in order to perform

psdV (30)

sensitivity analysis; So we calculate partial derivegiof each term of Eq. (23) with

respecto ¢, ;:
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Wi 7

0py; 09y 99,

by rewriting Eq. (31) and normalizing eigenvector with respect tdithetic energy (i.e.
¢;"M ¢; = 1), we will finally have:

oK  Ow, oM
( - >¢i = (31)

a%’,j a‘Pi,j ' a‘Pi,j '
where:
oK aceq
= f BT ——BdV (33)
a(Pi,j 1% a(Pi,j

and B is the standard finite element compatibility matrix cantey the derivatives of

the shape functions whiggi% can be obtained through Eg. (28). Derivative of condisten
Lj

mass matrix with respect to design variables can belatdduas follows:

oM dp
=j NT NdV (34)
a(Pi,j v a(pi,j
while:
ap on, oy
= — + 35
a§0i,j a(pi,j Pm a(pi,jpf (35)

in Eq. (34) N is the matrix of shape functions Whﬁé% can be calculated by Eq. (29).
L]

4.4. Optimization procedure

In the present optimization procedure, after definition tbé optimum problem
according to Sections 4.1 and 4.2, once discretizedringwral element domain through
finite elemens, the obtained discrete modslanalyzed based on the considered design
parameters(i.e. geometry, loading, boundary conditions, material constraints, ...),
starting from the initial value of the design variable.(available fiber volume fraction).
Afterwards the optimizer does sensitivity analysis (adagx@d in Section 8) and then
OC updates design variables. This computational procedure @amped iteratively till
no sensible changes (limit can be set as a design parameter)in design variables.
Fig. 4 summarizes this procedure.

It is also worth noting that NURBS basis functions havd dpplication in the present

work: fiber distribution and model analysis. The latter, basn followed by quadratic
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NURBS finite elements throughn isogeometric analysis (IGA) approach. Interested
readers can refer to [28] and references therein tev knore about IGA.

O

Create optimization model

U

Create analysis model

O

A I

Model analysis

O

| |
| |
| |
" sensiityanayss |
| |
| |

O

Optimize parameters

O

Update optimization model

e

IT Yes

Fig.4. Optimization algorithm

5. Numerical examples

In this section the applicability and reliability of theodel has been investigated by
conducting some numerical examples in order to demongtmateadvantages of the
proposed optimization model.

In the present algorithm the minimum and the maximum valtiéiber content in each
design point can be set by designer before optimization ggammmencement. For the
case of random distribution of fiber in the matrixe thaximum fiber content practically
can range between 30%-60%he minimum value of the fiber content has been also

considered 0.1 % through this paper unless otherwise specified.

5.1 Three-point bending of a wall beam
The first example involves a three point bending prolddéra plane stress wall beam.

Schematic view and design parameters are as shown in Rd).badble-1, respectively.
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We considereda constant total fiber volume fraction equal to 10% and solvexd
optimization problem to find the optimum distributionfilers in the wall beam to obtain
minimum structural elastic compliance. Fig. 6 (a) showsiltresf fiber distribution
optimizationin half of the wall beam. Regions with white color standnfomimum fiber
content (which is set equal to 0.1),%hile black regions depict maximum fiber content
and gray regions have the value between minimum and maximum.
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Fig.5. Geometry (a) and FE mesh with control points indicated bg (W of a three-point

bending wall beam

Table 1. Problem definitions, wall beam under three-point bending

Ly Ly Ey E¢ v Pm Py P Vy Vfmax No. control points

5 1 20 200 0.1 1000 1450 1000 10% 60% & 30% 22 x 12 =264

k
Length: m, E:GPa, P:Applied load (N), v:Poissonratio, p:density <m—g3>,m:matrix,f: fiber

Ve : fiber volume fraction, Vimax : maximum fiber volume fraction,

a) b)

Fig.6. Optimized fiber distribution through left half of the beaai) ¢urrent methodology and (b)
ref[18]
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Fig. 6 (b) shows the benchmark resastpresented in [18]. Using the same number of
elements for both (a) and (b), although there are doo# differences which can be
mainly referred to the heuristic nature of GA and elenbased demonstration of results
used in [18], one can figure out the general conformity betweercategories of results
since in both results, fibers are more concentrated aonegnder the loal point,
regions with maximum displacements and around suppReaders should also notice
that this comparison is just for general verificationref presented method not for detail
adaptation. This is due to the fact that both categofiessalts are slightly dependent to
setting of their variables (initial populations, probabilaf cross over, probability of
mutation for results of [18] and maximum fiber volume fiat, end point of
optimization algorithm, solution tolerance for the preseork).

Fig.7 (a) shows the obtained results for the casentaximum fiber content in each
design point is allowed to be increase up to 60%, whileHercase (b) this value is
assumed to be equal to 30%. Results provided by subsequentzaptmiterations are
shown from top to bottom; as expected, by decreasing the Uippernof local fiber
content, the obtained fiber layout occupies more areawiissible design domain while
total used fibers is the same for (a) and (b). Having as$ancenstant total fiber volume
fraction and considering different admissible valuesnfiaximum fiber content in each
element, normalized elastic compliance (using 264 controkgoversus the number of
iterations are accordingly plotted in Fig.8. High rate amboth convergence can be
appreciatedthese desirable computational characteristics have baamed thanks to
both implemented methodologies (particularly optimizatlased on sensitivity analysis
instead of heuristic method) and NURBS finite elements &lso noteworthy to point
out that, by increasing maximum admissible fiber volume acheelement, lower
compliance will be obtained. This simply can be explained cbysidering that,
increasing maximum admissible fiber volume will caukers to gather up more and
more in the most appropriate design points having the higifestnce on increasing the
structural stiffness, not in somewhere around the bestsoi

Readers should distinguish between the so calfdémbr gathering up and “fiber
agglomeratiot. The former, which stands for increase in fiber volumetioa, happens

in structural design domain (i.e at the macro scalejHautatter, basically is addressed in
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RVE scale. Moreover in contrary with agglomeration whrglduces the structural
stiffness (in comparison with uniformly distributed fibereptimum fiber distribution

always yields to an increase in structural stiffness.

i} 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45
05—f 05

0 0
VDEU 05 1 15 2 25 3 35 4 45 ] USD 05 1 15 2 25 3 35 4 45 5

0 05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5
Dﬁ—v 05 v—
o0 i

%% 05 1 15 2 25 3 35 4 45 & %% 05 1 15 2 25 3 35 4 45 5
D.S—f US—v—
0 0

.., 4 L e |
0% 05 1 15 2 25 3 35 4 45 & %% 05 1 15 2 25 3 35 4 45 &
05 05

T T—

a 0

L . 4
P8 85 1 15 2 25 3 35 4 45 5 %% a5 1 15 2 25 3 35 4 45 &

a) b)

Fig.7. Optimum fiber distribution in beam considering a constant ftiit@r volume equal to
10%; the maximum local fiber content is assumed equal)t60% and (b) 30%; iterations results
are displayed from top to bottom for each case

100% 1 m

98% - _‘ —a— MFVF=60% MFVF=30%

96% |

Abbreviation:

94% 1 | MFVF: Max.Fiber Volume Fraction

92%
90% -

88%

MNormalized Compliance

86% -

84% T T T 1

0 5 10 15 20
Iterations

Fig.8. Normalized compliance versus number of iterations foedifit values of maximum fiber

content in each element, using 264 control points (MFVF: maxinituen¥olume fraction)
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5.2 Freevibration of a beam

In the second example free vibration of a FRC beareudifferent support conditions
has been considered. As indicated in Fg@antilever beam (Fig. 9(a)) ardclamped
beam (Fig. 9(b)) have been assumed. Design parametessc@rding to Table-2 and FE

discretization is the same as in the previous example.

Lx Lx

a) b)

Fig. 9. Schematic view of problem geometry, a) cantilever beaceimped beam

Table 2. Problem definitions, free vibration of a beam

E, E; v Pm Py Vi Vimax No.control points

5 1 20 200 0.1 1000 1450 10% 60% 22x12 =264

k
Length:m, E:GPa, v:Poissonratio, p:density (m—‘i>m matrix, f: fiber

Vs : fiber volume fraction, Vimax : maximum fiber volume fraction

In this problem the adopted objective function aims to getntaximum value of the
fundamental frequency by optimizing fiber distribution throdlges beam domain. First
modal shape as well as fiber distribution optimization tesior both cantilever and

clamped beams are demonstrated in Figal0), respectively.

0 0
o — oo
i} 1 0 1

2 3 4 L) B 7 8

DS—_— D.Sr :

2 3 4 5 6 7 8
a) b)

Fig. 10. First modal shapes and optimum fiber distribution for a leseati beam (a) and a

clamped beam (b)
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Fig. 11 shows the patterns of the objective function (furethtat frequency of the beam
normalized with respect to the case of uniformly reirddramaterial) versus the
optimization iterations. It can be observed as thesamingin fundamental frequencies
are around 11% for cantilever and 7% for clamped beams.

102%

100%

98%
—+— Clamped beam
96% - .
—=— Cantilever beam

94% -
92%

90% -

Normalized Fundamental Frequency

88% T T |
0 5 Iterations 10 15

Fig. 11. Normalized fundamental frequency versus iterations fambeith different supporting

conditions

5.3 Square plate with a central circular hole under tension

As the third example, a square plate with central bholger constant distributed edge
load was studied. Due to the double symmetry only one quartkisgilate is modeled.

Fig.12 (a, b) and Table-3 show analysis model, the FE doriacretization and the

design parameters, respectively. The problem of obtainimgrmam elastic compliance

(objective function) is solved by using quadratic NURBS hmaes

Table 3. Problem definitions, plate with a central circular hole unéesion

L R E, E; v Pm Pr p Vfmax No.control points

4 1 20 200 0.1 1000 1450 510 60% 180, 612,2244

k
Length: m, E:GPa, p:Load (N/m), v:Poisson ratio, p:density <m—93),m: matrix, f: fiber

Vemax : maximum fiber volume fraction
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Fig. 12. a) Schematic view of the model under uniform edges lpahd b) mesh with control

points (dots)

Fig.13 presents optimum fiber distribution through thacstire. Results represented in
Fig. 13@, b, c) correspond to meshes with 180, 612 and 2244 contraspraspectively;
as can be observed, smooth solution can be also obtaioednecessarily by

implementing fine meshes.

4 -~ 4 - 4 -
35' 35' 35.
g 3

4 35 3 25 2 A5 4 05 0 4 35 3 25 2 45 4 05 0 4 35 3 25 2 5 A 05 0

a) b) c)

Fig. 13. Optimum fiber distribution using (a) 180 control points, (b) 612 robmoints and (c)
2244 control points

Histories of objective function (normalized elastiengiance) versus the iteration steps
for different mesh sizes are plotted in Fig.14; it cambted as the deviation between
results less than 2% can be obtained by using coarses@gh respect to the finer one,
while computational cost is obviously lower by using rough diszation. On the other
words, the use of coarse NURBS mesh maintains precisfothe results while

decreasing the computational time.
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100%

—— 180 Control points
99% - \ —=— 612 Control points

2244 Control points
98% -
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96% -
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Fig. 14. Normalized compliance versus number of iterations fdeidiht mesh sizes

6. Conclusions

The efficient gradient based optimization of fiber whattion in fiber reinforced
continuum elements, has been developed in the presenttpepegh the use of NURBS
functions. The adopted computational technique has been impiedhand used for both
domain discretization and definition of fiber distributidanction. The proposed
approach allows to get a high rate and smooth convergente toptimum condition
sought while results are also mesh independent. The dhatlwavs considering generic
objective functions. In particular in the present aeslke the minimization of elastic strain
energy and maximization of fundamental frequency foicséatd free vibration problems
have been considered respectively; by varying the fibstgldition characteristics in the
body under study. Nodal volume fraction of fiber hasnbesed as the optimization
design variable, whose distribution function has beerogimpapproximated by using a
NURBS surface. The mechanical behavior of the compos#ebleen macroscopically
described through a homogenization approach based on randentation of fibers in
the matrix. Some representative numerical examples Ffinally been presented; both
optimization related to the structural response undec sb@ding and the free vibration
behavior of composite structural elements, have beasidered and demonstrated that
combining NURBS approximation and sensitivity based optinozatethod yields to

high convergence rate and mesh independent optimizasahs.e
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