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a b s t r a c t

Elastomers and gels can often deformmultiple times their original length. The stretchability is insensitive
to small cuts in the samples, but reduces markedly when the cuts are large. We show that this transition
occurs when the depth of cut exceeds a material-specific length, defined by the ratio of the fracture
energy measured in the large-cut limit and the work to rupture measured in the small-cut limit. This
conclusion generalizes a result in the fracture mechanics of hard materials. For an acrylic elastomer
and a polyurethane, we measure the stretch to rupture as a function of the depth of cut, and show
that the experimental data agree well with the prediction of the nonlinear elastic fracture mechanics.
In a space of material properties we compare many materials (elastomers, gels, ceramics, glassy
polymers, biomaterials, and metals), and find that the material-specific length varies from nanometers
to centimeters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Stretchable materials, such as elastomers and gels, have long
been used in tires, seals, gloves, and contact lenses. Under de-
velopment are new fields of applications, including tissue regen-
eration [1], drug delivery [2], artificial muscles [3–5], stretchable
electronics [5–9], and soft robots [10,11]. Stretchable, transparent,
ionic conductors (e.g., hydrogels and ionogels) enable devices of
unusual functions, such as transparent loudspeakers [12], artificial
skins [13], artificial axons [14,15], and electroluminescence of giant
stretchability [16–18]. The interest in themechanics of stretchable
materials has surged [19–32].

This paper focuses on a specific issue in the mechanics of
stretchable materials: the reduction of stretchability by cuts. A
cut can be introduced either intentionally using a razor blade,
or unintentionally during fabrication. In the latter case, the cut
is commonly called a flaw. The reduction of stretchability by
cuts and flaws is called flaw sensitivity. For example, an acrylic
elastomer, VHBTM, commonly used in the development of artificial
muscles [3], can deform beyond ten times its original length [33];
however, a VHB sample containing a cut of a few millimeters
ruptures when deforming 3–5 times its original length [34]. As
another example, a recent tough hydrogel can deform more than

∗ Corresponding author.
E-mail address: suo@seas.harvard.edu (Z. Suo).

twenty times its original length, and a centimeter-long cut reduces
the stretchability to seventeen times [26].

Two approaches exist to predict the rupture of a stretchable
device. In one approach, the designer assumes a flawless device,
calculates the field of deformation using the nonlinear theory
of elasticity, and predicts rupture if any material point in the
device reaches a critical state of deformation [35–43]. In the other
approach, the designer identifies a flaw in the device, calculates
the energy release rate using the nonlinear theory of elasticity,
and predicts rupture if the energy release rate reaches the fracture
energy [44–47].

The two approaches work well in two limits. The first approach
requires no knowledge of flaws, and is applicable in the limit of
small flaws. The second approach requires the knowledge of flaws,
and is applicable in the limit of large flaws. The transition from
flaw-insensitive to flaw-sensitive rupture has been discussed in
the literature [48–50], but the size of the flaws over which the
transition occurs is vague for stretchable materials.

Here we study the transition from flaw-insensitive rupture
to flaw-sensitive rupture of highly stretchable materials. For an
uncut sample, we measure the work to rupture,W∗, which has the
dimension of energy per unit volume. For a sample with a large
cut, we measure the fracture energy, Γ , which has the dimension
of energy per unit area. The ratio of these two parameters, Γ /W∗,
defines a material-specific length, which we call the length of flaw
sensitivity. Using a combination of experiment and calculation, we
show that this material length marks the transition from flaw-
insensitive to flaw-sensitive rupture. When the depth of cut c
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is small compared to Γ /W∗, the stretchability is insensitive to
the cut. When c is large compared to Γ /W∗, the stretchability
reduces markedly as the depth of the cut increases. Furthermore,
we show that flaw sensitivity depends on the stretch-stiffening
behavior of elastomers, and that the experimental data agree well
with the prediction of nonlinear elastic fracture mechanics. The
concept of flaw sensitivity is applicable to all materials, including
metals, ceramics, biomaterials, and polymers. We represent the
lengths of flaw sensitivity of variousmaterials in a space ofmaterial
properties, withW∗ and Γ as axes.

The length Γ /W∗ has been used to characterize the intrinsic
diameter of the crack tip in elastomers [51,52], but has not been
used to characterize flaw sensitivity. We next compare Γ /W∗ to
other material lengths commonly used in fracture mechanics. A
length, Γ /


σ 2

∗
/E


, appears in the crack-bridging model, where

σ∗ is the maximum stress in the traction–separation curve [53–
58]. In the crack-bridging model, the region outside bridging
zone is linearly elastic with Young’s modulus E. The work to
rupture near the crack tip is given by the W∗ = σ 2

∗
/2E. For

highly stretchable materials, however, the material outside the
bridging zone is nonlinearly elastic. The material length Γ /W∗

generalizes Γ /

σ 2

∗
/E


when linear elasticity does not apply.

(We have dropped any numerical factor.) Another frequently
discussed material length is the ratio of fracture energy and elastic
modulus, Γ /E [32,59]. This length overestimates the length of
flaw sensitivity by orders of magnitude. For a highly stretchable
material, the stretchability λ∗ is on the order of ten, so that W∗ ≫

E. Consequently, the length of flaw sensitivity Γ /W∗ is much
smaller than Γ /E.

2. Transition from flaw-insensitive to flaw-sensitive rupture

Flaw-insensitive rupture
To focus on essentials, we consider the stretchability of a thin

sheet of a material under a uniaxial force. The length and the
width of the sheet are much larger than the thickness of the sheet
and the depth of the cut. Using an uncut sample, we measure the
applied force as a function of the associated displacement. The
area under the force–displacement curve divided by the volume
of the material defines the energy density,W . Let λ be the stretch,
namely, the length of the deformed sheet (in the direction of the
applied force) divided by the length before stretch. The energy
density is a function of stretch,W (λ).

For an uncut sample, let λ∗ be the stretch to rupture and W∗

be the work to rupture. The two parameters are related by the
function W (λ):

W∗ = W (λ∗) . (1)

The stress to rupture σ∗ is defined by the applied force at rupture
divided by the deformed cross-sectional area (perpendicular to the
applied force). Criterion (1) also applies to samples containing cuts
small compared to a material length (to be specified).

The stretchability of elastomers is insensitive to small flaws.
Table 1 summarizes the experimental data from the literature
and from this work. The reported stretch, stress, and work to
rupture are within variations 5%–20% of their means. These data
were measured using uncut samples. Yet flaws exist inevitably,
either as small cracks or as heterogeneities of materials [50]. The
small scatter in the data indicates that the stretchability of these
materials is insensitive to the small flaws. This observation on
elastomers differs from that on brittle hard materials, e.g., silica
glass, in which a micron-sized flaw reduces the strength by orders
of magnitude [44].
Flaw-sensitive rupture

Flaw-sensitive rupture is predicted by fracture mechanics [47].
Consider a sheet containing a cut. The elastic energy of the sample

is a function U (∆, c), where c is the depth of the cut in the
undeformed state, and ∆ is the displacement associated with
the applied force. The reduction in the elastic energy when the
cut extends a unit area defines the energy release rate, G =

−∂U (∆, c) / (t∂c), where t is the thickness of the sheet in the
undeformed state. The energy release rate can be determined by
solving the boundary-value problem of nonlinear elasticity. When
other sizes of the specimen aremuch larger than the cut, the depth
of cut c is the only length scale in the boundary-value problem.
Dimensional considerations dictate that the energy release rate
should take the form, G (λ, c) = k (λ)W (λ) c , where k (λ) is a
dimensionless function determined by solving the boundary-value
problem. The function k (λ) depends on the model of nonlinear
elasticity [47,60]. The sample ruptures at stretch λR when the
energy release rate reaches the fracture energy, G (λR, c) = Γ .
When the cut is large and the sample ruptures at a small applied
strain, λ → 1, linear elasticity applies, and the small-deformation
limit for an edge cut is known, k (1) ≈ 2 (1.1215)2 π ≈ 7.9 [61].
The criterion of rupture becomes

W (λR) =
Γ

k (1) c
. (2)

This result is the Griffith limit [44]. Thus, we characterize the flaw-
sensitive rupture by the fracture energy Γ in the limit of large
flaws.

The transition from flaw-insensitive rupture to flaw-sensitive rupture
We have characterized the rupture of an uncut sample by the

work to rupture, W∗, which has the dimension of energy per unit
volume. For a sample containing a cut, the stateW∗ prevails ahead
the front of the cut when the sample is near rupture. We have also
characterized the rupture in the limit of large cuts by the fracture
energy, Γ , which has the dimension of energy per unit area. The
ratio of these two material parameters defines a material-specific
length, Γ /W∗.

We argue that the material length Γ /W∗ marks the transition
from flaw-insensitive to flaw-sensitive rupture. When a sample of
a small cut ruptures, except for the unstrained region behind the
front of the cut, the entire sample reaches the state ofW∗ (Fig. 1(a)).
When a sample of a large cut ruptures, only a small zone around the
front of the cut reaches the state ofW∗ (Fig. 1(b)). Inside this zone,
fracture process occurs. Outside this zone, the field of deformation
is well characterized by the nonlinear theory of elasticity. The
length scale of the fracture process zone is estimated as follows. A
dimensional consideration dictates that energy density W should
scale with the energy release rate G, and inversely scale with the
distance to crack tip r , namely, W ∼ G/r . This scaling appears in
the analytical solutions of the nonlinear elastic field around the
front of cut [25]. When the sample ruptures, the energy release
rate G reaches Γ , and the energy densityW in the fracture process
zone attainsW∗. Consequently, the size of the fracture process zone
scales with the material length Γ /W∗.

A flaw-sensitivity diagram displays the stretch to rupture λR as
a function of the depth of cut c (Fig. 1(c)). The transition occurs
when thedepth of cut c is comparable to thematerial lengthΓ /W∗.
When the depth of the cut c is small compared toΓ /W∗, the stretch
to rupture is insensitive of the depth of the cut, and the small-cut
limit (1) applies. When the depth of cut is large compared to the
material length, the stretch to rupture decreases as the depth of
the cut increases, and approaches the large-cut limit (2).

The material length Γ /W∗, together with the depth of the cut
c , defines a dimensionless number:

χ =
c

Γ /W∗

, (3)



C. Chen et al. / Extreme Mechanics Letters ( ) – 3

Table 1
Flaw-insensitive rupture of various elastomers.

Source Material Stretch Stress (MPa) Work (MJ/m3) Loading rate

Sharma, 1965 [36] Hycar Aluminum 1.035 0.01%/s

Sharma, 1966 [37] Hycar Aluminum 1.179 0.76 ± 0.14a 345 Pa/s
Cellulose Acetate Butyrate 1.096 30.2 6.9 kPa/s

Hamdi, 2006 [40]

Filled Natural Rubber 7.12 ± 0.35a 174.56 ± 20a 64.55 ± 12a

100%/minFilled Styrene–butadiene Rubber 6.88 ± 0.25a 169.88 ± 15a 72.07 ± 18a

Unfilled Polyurethane 8.38 ± 0.6a

Thermoplastic Elastomer 6.26 ± 0.5a

Schmidt, 2012 [33] VHB 9.27 ± 0.23 3.01 ± 0.47 0.73 ± 0.07 0.43%/s

This work VHB 11.93 ± 0.35 56.8 ± 16.8b 5.58 ± 1.22b
100%/min

Polyurethane 6.08 ± 0.13 271 ± 47b 144 ± 20b

a The standard deviation estimated through data points in graphs of the source.
b Data calculated through extrapolating stress–stretch curves to the stretch to rupture based on the Gent model (Fig. 6).

Fig. 1. The transition from flaw-insensitive to flaw-sensitive rupture. (a) When a
sample of a small cut ruptures, except for the region behind the front of the cut, the
entire sample reaches the state of W∗ . (b) When a sample of a large cut ruptures,
only a small zone around the front of the cut reaches the state ofW∗ . The size of this
zone scales with the material length Γ /W∗ . (c) A flaw-sensitivity diagram sketches
the stretch to rupture as a function of the depth of cut. The diagram shows the small-
cut limit, the large-cut limit, and the transition between the two limits.

which we call the number of flaw sensitivity. We write the relation
between the stretch to rupture λR and the depth of the cut c in the
form:

W (λR) = W∗f (χ) . (4)

The function f (χ) approaches the two limits: the small-cut limit
f → 1 as χ → 0, and the large-cut limit f → (χk (1))−1 as
χ → ∞. The transition occurs at χ ∼ 1. Many functions satisfy
these requirements. As an illustration, we propose a function,

W (λR) =
W∗

1 + k (1) cW∗/Γ
, (5)

which conforms to the form of (4), matches the two limits (1) and
(2), and marks the transition at c ∼ Γ /W∗. However, to predict
the exact flaw-sensitivity diagram, we need to model the fracture
process and the nonlinear elastic deformation.

3. Experimental determination of flaw-sensitivity diagrams

We measure the flaw-sensitivity diagrams of two elastomers:
an acrylic elastomer VHB 4905 (3MTM) and a polyurethane

(PU, 90A Durometer), both purchased from McMASTER-CARR. In
experiment, we pull a dogbone-shaped sample with a cut to
rupture by a uniaxial force. We measure the stretch to rupture λR
as a function of the depth of cut c.

To prevent rupture at the loading fixture, we prepare samples
in the shape of a dogbone, so that the stress is high in the narrow
region of the sample, away from the loading fixture (Fig. 2(a)). We
use a razor blade to cut the sample to a depth c ranging from∼0.05
to 50 mm. We mark two lines close to the ends of narrow region
with distance L. The thickness of the sheet t = 0.5 mm. The width
of the dogbone w is at least 5 times the depth of cut c , and the
distance L is at least twice the widthw, varying case by case.When
the cut is small, we take a photo to measure its depth (Fig. 2(f)).
The sticky VHB sample is rolled to two steel rods. We also roll the
rods during pulling to further alleviate stress concentration at the
installation region (Fig. 2(c)). The PU samples are knotted to the
steel rods (Fig. 2(d)). Then we pull the specimen at a strain rate of
100% per minute (Fig. 2(b)). The stretch of ligament to rupture is
λR. During stretching, the initial sharp cut (Fig. 2(f)) blunts with a
visible growth of millimeters before rupture (Fig. 2(g)). This stable
growth of cut gives rise to the fracture resistance curve.

We plot the measured stretch to rupture λR as a function of the
depth of cut c (Fig. 3). The error bars for ruptures with c ≥ 0.2mm
are the standard deviations of at least three measurements with
the same depth. When the depth c is smaller than 0.2 mm, we are
unable to control the depth of cut precisely. We show the scatters
directly.

Also included in Fig. 3 are the stretches to rupture determined
using uncut samples. The experimental setup is similar to that
described previously, but no cut is introduced before stretching.
The statistics of stretch to rupture involves ten tests. The vertical
error bar indicates the standard deviation of these measurements.
Since there is no intentional cut in the specimens, the flaws exist
in microscale, smaller than the minimum depth of intentional cut.
As an illustration, the horizontal error bar shows the range of flaw
size.

We include the limits of small flaws and large flaws in Fig. 3.
In the small-flaw limit, the work to rupture, W∗, characterizes
rupture of specimens without an intentional cut. To obtain W∗,
we measure stress–stretch curves, fit them to the Gent model (9)
(Fig. 6, described later), and estimate W∗ = W (λ∗). The work
to rupture is 5.58 MJ/m3 for VHB, and 144.3 MJ/m3 for PU. In
the large-flaw limit, we fit the measured stretch to rupture to the
Griffith theory (2) to determine the fracture energy. The fracture
energy is 2.1 kJ/m2 for VHB and 13.5 kJ/m2 for PU. The ratio
Γ /W∗ gives the lengths of flaw sensitivity: 0.37 mm for VHB, and
0.093 mm of PU. We label the values of Γ /W∗ on the horizontal
axes in Fig. 3, showing Γ /W∗ agrees with the transition of flaw
sensitivity in the experiment.
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Fig. 2. The experiment to determine the flaw-sensitivity diagrams of a VHB and a PU. (a) In the undeformed state, a dogbone-shaped sample is cut to depth c. Two red lines
mark the region of uniform width w and length L. (b) When the sample is stretched by a uniaxial force, the distance between the marked lines becomes λL. (c) The sticky
VHB is rolled to steel rods. (d) The PU with slippery surface is knotted to the steel rods. (e) A photo of a cut PU sample before stretching. (f) A photo of a submillimeter cut
before stretching. (g) A photo of the stretched PU sample. The cut blunts, and the growth of the cut before rupture is visible. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Flaw sensitivity is evident through comparison between
experimental data and the two limits (Fig. 3). When the depth
of cut c is large compared to Γ /W∗, the cut significantly reduces
the stretch to rupture λR. In the large-flaw limit, when rupture
occurs at a small applied strain, the stretch to rupture reduces
to the Griffith limit (2). When the stretch of rupture is beyond
small strain, the flaw-sensitive rupturing stretches deviate from
(2).Wewill elaborate this effect in the next section using nonlinear
elastic fracture mechanics. In the small-flaws limit, the stretch to
ruptures approaches a constant λ∗ with small variations; rupture
is flaw insensitive, and (1) is applicable. The interpolation of the
two limits, Eq. (5), of course works well in the two limits, but
underestimates the stretches to rupture for samples containing
cuts of intermediate depths.

4. Flaw-sensitivity determined by nonlinear elastic fracture
mechanics

When the cut in a sample is not very deep, the prediction of the
Griffith theory deviates from the experimental data (Fig. 3). This
deviation is not surprising. To predict the flaw-sensitivity diagram
accurately, we need amodel of fracture process, as well as a model
of nonlinear elasticity with large deformation. A model of fracture

process is beyond the scope of this paper. Here we focus on the
effect of nonlinear elasticity.

A stretchable material is a three-dimensional network of
crosslinked polymer chains. Each polymer chain is an entropic
spring [62]. When the elastomer is under no external forces, the
chain coils to maximize its entropy. When the elastomer is subject
to external forces, the chain uncoils, and eventually stiffens upon
approaching its contour length. Macroscopically, this behavior
yields a stiffening stress–stretch curve, and the stress becomes
unbounded at a limiting stretch. Arruda and Boyce [63] developed
an eight-chain model, which shows that the energy density W is
solely determined by one invariant of the deformation,

I = λ2
1 + λ2

2 + λ2
3 − 3, (6)

where λ1, λ2, and λ3 are the principal stretches. The shearmodulus
of a stretchable material is often orders of magnitude lower than
bulk modulus. Subject to external forces, the material distorts
much more than it dilates. Consequently, the stretchable material
is assumed to be incompressible,

λ1λ2λ3 = 1. (7)

Particularly, stretched by the uniaxial force to λ, the invariant of
deformation I = λ2

+ 2λ−1
− 3.
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Fig. 3. Flaw-sensitivity diagrams of two elastomers: (a) a VHB and (b) a PU. In
experiments, dogbone-shaped specimens are cut to a certain depth and pulled to
rupture. Each run of the experiment records a stretch to rupture λR . The error
bar shows the standard deviation of stretches to rupture with at least three
measurements. The scatter shows the stretch to rupture when the depth of cut
is smaller than 0.2 mm. The experimental data are compared to the prediction
of the nonlinear elastic fracture mechanics (marked as Gent), and to the fitting
formula (marked as Eq. (5)). The stretches to rupture of uncut samples are marked
red. The vertical error bar is the standard deviation of ten measurements, and the
horizontal error bar is an estimation of the range of flaw size. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

We adopt a functional form of the energy density proposed by
Gent [64]:

W (I) = −
EIlim
6

log

1 −

I
Ilim


. (8)

This model only involves two material parameters: Young’s
modulus E at small strain, and Ilim, the limit of the invariant I in
(6).

The material model of chosen elastomers is identified in
Section 6. For each material, we measure the stress–stretch curve
and fit it to the Gent model (Fig. 6). Both VHB and polyurethane
show significant stiffening effect when stretch approaches to limit.
The stress–stretch measurements confirm that the Gent model is
capable to describe the deformation of chosen elastomers (Fig. 6).

We use a finite element software, ABAQUS, to calculate the
energy release rate. ABAQUS does not support the Gent model
directly, andweuse theUHYPER subroutine to implement theGent
model in ABAQUS. We calculate the energy release rate using the
J-integral [65]. The geometry is a large sheet with a cut. The cut
exists at the middle of one edge with depth c , which is 1/10 of

Fig. 4. Finite element calculations of energy release rate of the Gent materials. (a)
Schematics of a sheet with a cut. In the undeformed state, the depth of the cut is
c , the width of the sheet w = 10c , and the length L = 20c. In the deformed state,
the sheet is pulled to a length λL by a uniaxial force. (b) Finite radius ρ of the tip.
The mesh of the sheet is modeled by the CPS8R element. (c) The normalized energy
release rate G/ (Ec) is plotted as a function of the applied stretch λ.

the width of sheet w, and 1/20 of length L (Fig. 4(a)). We assume
the thin sheet in plane stress condition. Because of the symmetry
of the geometry, we model a half of the sheet with a symmetric
boundary in crack plane. To avoid the singularity at the crack tip in
calculations, we model a blunt tip with a small radius ρ = c/1000
before stretching.We use the CPS8R element in ABAQUS (Fig. 4(b)).
The calculations choose the material parameter Ilim according to
experiments of the chosen materials, i.e., Ilim = 150 for VHB, and
39 for PU. (Fig. 6) The normalized energy release rate G/ (Ec) is
plotted as the applied stretch λ(Fig. 4(c)).

We determine the stretch to rupture by fracture mechanics.
With the prescribed fracture energy of material, Γ , we pull the
sheet to stretch λ by a uniaxial force. When the energy release
rate reaches fracture energy, G = Γ , the corresponding stretch
to rupture λR is determined.

We include the finite element results in Fig. 3. When
rupture occurs at large deformation, the nonlinear elastic fracture
mechanics predicts flaw-sensitive rupture, while the linear Griffith
prediction (2) deviates from experiment. When rupture occurs at
small strain, the nonlinear prediction reduces to Griffith limit (2).
The limiting stretch λlim of the Gent model is also marked as the
dashed horizontal lines, but is slightly higher than the stretch to
rupture λ∗ in the small-cut limit.

The discrepancy in the small-cut limit is not surprising. The
limiting stretch λlim is determined by fitting the stress–stretch
curve to the Gent model, and is a parameter to describe the
elasticity of the material. On the other hand, λ∗ is the stretch
to rupture measured using uncut samples. The rupture process
is distinct from elastic behavior. Elastic behavior represents a
homogeneous stretching of polymer chains, which share load
fairly. But when the material is stretched to its limits, short chains
carry load more. Thus rupture behavior is dominated mostly by
weaker chains, and deviates from elastic prediction.

5. Flaw sensitivity of various materials

The notion of flaw sensitivity applies to all materials.We collect
data of fracture energy Γ and work to rupture W∗ of various
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Fig. 5. A space of material properties, with the two axes being the fracture energy
Γ and the work to rupture W∗ . Also included are the slashes of constant values of
the length of flaw sensitivity Γ /W∗ . The stretchable materials in the current work
are compared with other materials, e.g., natural rubbers [47,66], polyacrylamide
hydrogels [26], alginate hydrogels [26,67], and tough hydrogels, [26,68], as well as
steels, aluminum, bone, human skin, acrylic glass, epoxy, aluminumoxide, and silica
glass [69].

materials, e.g. ceramics, polymers, biomaterials, metals, etc. The
fracture energy is the required work to propagate a crack front
by unit area. Some literature reports fracture toughness, KC . In
this case, we convert to fracture energy through Γ = K 2

C /E.
The area under the stress–stretch curve to failure defines the
work to rupture W∗. This parameter is not commonly reported
in literatures. An estimation is W∗ = ασ∗ (λ∗ − 1), where α is
a numerical factor depending on the shape of the stress–stretch
curve. When the majority of the stress–stretch curve is linear, α ∼

1/2, and W∗ ∼ σ 2
∗
/2E. When the stress–stretch curve shows a

long plateau, α → 1. Particularly, the work to rupture for brittle
hardmaterials is estimated through the theoretical bond energy of
covalent bonds.

We plot the data for various materials in a material space with
W∗ and Γ as axes (Fig. 5). The dashed slashes mark the constant
values of the length of flaw sensitivity Γ /W∗. The length of flaw
sensitivity has a large range, from nanometers for brittle materials
to centimeters for tough materials.

For brittle hard solids (e.g., a silica glass), measuring σ∗ andW∗

in the small-flaw limit is a difficult experimental task, and is rarely
done in practice, because the small-flaw limit is reached when the
flaws approach the atomic scale. In practice, brittle hard solids
nearly always operate in the large-flaw limit, where the Griffith
fracture mechanics applies. By contrast, for elastomers and gels,
the small-flaw limit is readily reached when the flaws are below
millimeters. In practice, elastomers and gels can operate in the
small-flaw limit, the large-flaw limit, and anywhere in between.
As we have commented before, the scatter of the rupture data
measured using uncut samples is large for brittle hard solids, but
is small for elastomers and gels.

Additional insight into the length of flaw sensitivity is gained
by comparing two ideal models of fracture. In these ideal models,
the work to rupture W∗ is the energy per unit volume stored in
the chemical bonds in amaterial. The rupture of an ideal hard solid
(e.g., silica glass) dissipates the chemical energy of a layer of atomic
bonds, so that Γ ≈ W∗a, where a is length of the chemical bond,
corresponding to the thickness of the atomic layer. By contrast, the
rupture of an ideal elastomer dissipates the chemical energy of a
layer of polymer chains, so thatΓ ≈ W∗a

√
n, where a is the length

of a monomer, and n is the number of monomers in the chain [70].
Consequently, the length of flaw sensitivity Γ /W∗ is estimated by
the atomic size a for an ideal hard solid, and by the polymericmesh

size a
√
n for an ideal elastomer. These ideal models neglect other

mechanisms of dissipation and underestimate the fracture energy.
But these models do bring out a fundamental cause for the large
difference in the lengths of flaw sensitivity of the two types of
materials.

6. Stress–stretch curves

We measure the stress–stretch curves of the two elastomers.
The experimental setup is similar with the measurement of flaw-
sensitivity diagrams. We prepare samples in the shape of a
dogbone. The thickness of sheet is t = 0.5mm. The width of the
dogbone ligament is w = 1 mm. The area of cross-section is A =

wt . We mark two lines close to the ends of the uniform ligament
with a distance L = 10 mm. To prevent slip from the grips, the
sticky VHB sample is rolled to two steel rods, while the smooth
PU samples are knotted to steel rods. Then we pull the samples
uniaxially in an Instron machine. The pulling force F is recorded in
Instron. Simultaneously we take videos to record the distance of
between the lines l. The nominal stress is F/A, and the stretch of
the ligament λ is l/L. We plot the nominal stress as a function of
stretch in Fig. 6. The area under the curve gives the energy density
as a function of the stretch,W (λ).

Under the uniaxial tensile force, the Gent model predicts the
relation between the nominal stress and the stretch:

F
A

=
E


λ2

− λ−1


3

1 −

λ2+2λ−1−3
Ilim

 . (9)

The experimental data fit to the Gent model with E = 84 kPa
and Ilim = 150 for VHB, and E = 10.5 MPa and Ilim = 39 for
PU (Red dashed lines in Fig. 6). The fitting of PU is excellent in
the entire range of stretch. The fitting of VHB underestimates the
stress when the strain is small. Yet the sacrifice of fitting accuracy
at small strain contributes to a better overall match, and captures
the stress-stiffening effect.

7. Concluding remarks

This work analyzes the flaw sensitivity of highly stretchable
materials. We measure the work to rupture W∗ using uncut
samples, and measure the fracture energy Γ using samples
containing large cuts. We identify a length of flaw sensitivity,
Γ /W∗. A combination of experiment and calculation shows that
the stretch to rupture is nearly a constant when the depth of cut is
small compared to Γ /W∗, and reduces markedly when the depth
of cut is large compared to Γ /W∗. Furthermore, we represent
the stiffening stress–stretch curves to the Gent model, and use
the finite element method to calculate the energy release rate.
The nonlinear elastic fracture mechanics predicts the transition
from flaw-insensitive to flaw sensitive rupture. The length of flaw
sensitivity is a property of materials of various kinds, varying from
nanometers to centimeters. We display these data in a material
property space withW∗ and Γ as axes.
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Fig. 6. Stress–stretch curves of a VHB and a PU under uniaxial forces. The samples
are in the shape of a dogbone. In undeformed state, the ligament in the sample
is with uniform width w. The thickness of sample is t = 0.5 mm. The cross-
sectional area is A = wt . The distance betweenmarked lines is L = 10mm. Subject
to an uniaxial force F , the distance between lines becomes λL. The experimental
stress–stretch curves (solid curves) fit to the Gent model (dashed curves), giving
the material parameters: E and Ilim . (a) Stress–stretch relation of VHB (w = 2 mm),
(b) and of PU (w = 1mm). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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