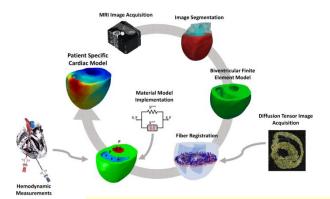


Computational Cardiovascular Bioengineering Lab (C²BL)

Director: Dr. Reza Avaz (rezaavaz@tamu.edu)

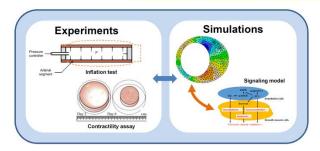

Overview— Structural heart diseases (SHDs) are the leading cause of death worldwide. Cardiovascular modeling and simulation are emerging tools that promise to

- i) Advance our understanding of remodeling mechanisms that underlie SHDs, and
- (ii) Assist in the optimal design of existing and novel regenerative interventions.

<u>The goal of C²BL is to</u> integrate computational cardiovascular models with biomechanical data collected at cellular, tissue and organ levels, to develop and provide clinicians with advanced simulation tools that enable optimal *patient-specific* treatments of SHDs.

Three ongoing projects at C²BL

Project 1: Computational Cardiac Modeling of Myocardial Infarction (MI)


- Developing finite element (FE) heart model to simulate MI
- Collecting and using rodent data to calibrate the model
- Using the model to individualize and optimize novel therapies for MI

Project 2: Biomechanical Characterization of Infarcted and Treated Myocardium

- Building and customizing a biaxial mechanical testing device
- Performing biaxial tests and histology of rodent myocardial tissues
- Using computational model to quantify remodeling in infarcted & treated tissues

Project 3: Arterial Mechanobiology in Pulmonary Hypertension

- Mechanical testing of pulmonary arterial tissues
- Characterizing contractile behavior of arterial smooth muscle cells
- Using computational model to couple arterial remodeling to ventricular function