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  The Griffith Paper 
 
 Required reading.  A.A. Griffith, The phenomena of rupture and flow 
in solids.  Philosophical Transactions of the Royal Society of London, A 221, 163-
198 (1921).  This paper initiated the theory of fracture, and has foreshadowed 
much of the subsequent development.  Start reading the paper today, and return 
to it for illumination later in your career. 
 
  Qualitative Content of the Griffith Paper 
 
 The age of atomic picture for everything.  After the atomic nature 
of matter was confirmed by many experimental observations, about a century 
ago, it became fashionable and useful to use atomic processes to understand 
macroscopic phenomena.  In 1921 the British engineer A.A. Griffith published a 
paper on one such macroscopic phenomenon:  fracture of a glass.  The main 
puzzle had been that the glass usually breaks under a stress several orders of 
magnitude below the strength of atomic cohesion.   
 Griffith took up the notion that a body of glass is never perfect:  flaws pre-
exist in the body.  A flaw with a sharp tip greatly concentrates stress.  The intense 
stress at the tip of the flaw breaks atomic bonds one by one, like opening a zipper.  
The flaw turns into an advancing crack, and the body breaks into two halves.  
 This notion is easy to picture, but difficult to quantify.  The essential 
difficulty is that the material behavior at the tip of the flaw is nonlinear.  It is 
unclear what permitted Inglis (1913) to use the linear elastic theory to calculate 
the stress at the tip of the flaw.  A direct approach to resolve this difficulty would 
be to use a nonlinear material model.  For example, one may invoke atomistic 
simulations.  Atomistic simulations of fracture have been pursued since the time 
of Inglis, but have not been widely used in engineering practice to this day. 
       
 The Griffith approach.  Griffith took a less direct approach.  Consider a 
pre-existing crack in a body subject to an external force.  Regard the body and the 
external force together as a thermodynamic system.  Characterize the system by 
two thermodynamic variables:  the area of the crack and the displacement of the 
loading grips.  To focus on essential ideas, suppose that, after a certain amount of 
displacement, the loading grips are held fixed, but the crack is allowed to 
advance.  Because the loading grips are held fixed, the external force does no 
work.  The energy of the system is the sum of the elastic energy in the body, and 
the surface energy in the faces of the crack.  The energy of the system is a function 
of a single thermodynamic variable:  the area of the crack.  When the crack 
advances, the stress in the sample is partially relieved, so that the elastic energy is 
reduced.  At the same time, the advancing crack creates more surface area, so 
that the surface energy increases.  Thermodynamics dictates that the process 
should go in the direction that reduces the total free energy.  If the decrease in 
elastic energy prevails, the crack grows.  If the increase in surface energy prevails, 
the crack heals.  
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 The nonlinear zone, localized around the tip of the crack, remains 
invariant as the crack advances.  Consequently, the presence of the nonlinearity 
does not affect the accounting of the change in energy associated with the 
advance of the crack. The Griffith approach circumvents the nonlinear crack-tip 
behavior by invoking one quantity:  the surface energy.  The science of fracture 
was born.   
 To sum up, the qualitative content of the Griffith theory is 

• In a body of a glass cracks pre-exist. 
• The tip of such a crack concentrates stress. 
• The intense stress breaks atomic bonds one by one, like opening a zipper. 
• As the crack advances, fresh surfaces are created.  The surface energy 

increases, but the elastic energy decreases. 
• The crack advances if the advance reduces the sum of the surface energy 

and elastic energy. 
 
I’ll do two things in class. In formulating his theory, Griffith used this quantity 
surface energy.  For some of us, the last time we encountered the surface energy 
was in kindergarten, when we blew soap bubbles.  So I’ll first outline aspects of 
the surface energy.  I’ll then describe the content of the Griffith paper. 
 
 Surface Energy 
 
 Surface energy.  An atom at the surface of a body has a bonding 
environment different from that of an atom inside the body.  The free energy per 
atom at the surface is higher than the free energy per atom in the body.  The 
excess defines the surface energy.   
 The above description appeals to intuition, but is not operational.  An 
atom does not have its private energy:  the energy is in the bonds between atoms.  
What do we really mean by the phrase “free energy per atom”?  For a bulk, this 
phrase simply means “the free energy of the bulk divided by the number of atoms 
in the bulk”.  But when we wish to compare atoms in the interior of the bulk and 
those on the surface, the meaning of the phrase “free energy per atom” becomes 
unclear, because we have not specified what we mean by “free energy on the 
surface”.   
 An operational definition of the surface energy goes like this.  Imagine a 
body whose size is much larger than an individual atom.  Denote the energy of 
this body by 0U .  It includes all the energy stored in electron clouds, or even the 
nuclear energy stored in the atomic nuclei.  Next imagine that this body is split in 
two halves.  The act of splitting may cause some damage of the material, e.g., 
introducing some dislocations or some microcracks.  Let’s say we are very careful 
in the act of splitting, and anneal the samples afterwards, so that such damage is 
eliminated.  All atoms on the two surfaces relax to their equilibrium 
configurations.  The energy in the two halves will be greater than 0U .  Let’s call 

the energy in the two halves U .  The difference, 0UU − , is defined as the surface 
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energy.  Of course, this difference does not belong to a single layer of atoms on 
the surface.  It is a collective effect.  For this definition to be useful, we take 
advantage of a physical fact:  atoms a few layer beneath the surface recover the 
configuration of atoms in the bulk.     
 Let γ  be the surface energy per unit area.  The quantity γ  is called the 

surface energy density, or surface energy for brevity.  The surface energy density 
is independent of the size of the body, unless the body approaches the atomic 
dimension. 
 

• A.W. Adamson, Physical Chemistry of Surfaces.  Wiley, New York (1990).  
Chapter 1 describes many phenomena concerning the effect of surface 
energy for liquids. 

• P.G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and 
Wetting Phenomena, Springer (2004). 

 
 Magnitudes of the surface energy.  Surface energy scales with the 
cohesive energy of bonds in a substance.  Here are some representative values.     
 Metals and ceramics:  ~1 J/m2 
 Water:  0.07 J/m2.  Most other liquids have smaller values. 
 Polymers: 0.01-0.1 J/m2 
Here are interpretations of the magnitudes of surface energy in the book by de 
Gennes et al. 
 

 When segregated to the surface, a liquid molecule is in an 
unfavorable energy state.  If the cohesion energy per molecule is U 
inside the liquid, a molecule sitting at the surface finds itself short of 
roughly U/2.  The surface tension is a direct measure of this energy 

shortfall per unit surface area.  If a is the molecule’s size and a2   is its 

exposed area, the surface tension is of order γ ≅U / 2a2( )  .  For most 

oils, for which the interactions are of the van der Waals type, we have 

U ≅ kT , which is the thermal energy.  At a temperature of 25C , kT is 

equal to 1/40 eV, which gives γ ≅20mJ/m2 . 
 Because water involves hydrogen bonds, its surface tension is 

larger (γ ≈ 72mJ/m2 ).  For mercury, which is a strongly cohesive liquid 

metal, U ≈ 1 eV  and γ ≈ 500mJ/m2 .  Note that γ  can equivalently be 
expressed in units of mN/m. 

 
Note that an elastomer is similar to a liquid at the molecular level.  In the 
polymer network, each polymer chain consists of a large number of monomers.  
When the elastomer is stretched, molecules in the interior come to the surface.  
The surface tension of the elastomer should be similar to that of oil.   
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 Measuring the surface energy of a liquid.  A U-shaped rigid frame is 
fixed in space.  A liquid membrane lies in the area confined by the frame and a 
slider. The slider can move without friction.  The thickness of the membrane is 
much larger than the dimension of the individual molecule of the liquid. As the 
slider moves to the right, the membrane becomes thinner and has a larger area.  
Molecules are drawn from the interior of the membrane to the surfaces. A force F 
is applied on the slider.  What is the force needed to maintain equilibrium? 
 You can always represent a constant force F by a hanging weight.  The 
membrane and the weight together constitute a thermodynamic system.  The free 
energy of the system is 
   U =2γbx −Fx . 

Here 2γbx  is the surface energy of the two faces of the membrane, and −Fx  is 
the potential energy of the weight. 

 

 The free energy is a function of the length of the membrane, U x( ) .  When 

the slider moves by a distance xδ , the area of the membrane increases by xbδ2 , 
and the surface energy increases by xbδγ2 . When the slider moves by a distance 
xδ , the weight drops by the same distance, so that the gravitational energy 

decreases by xFδ .  The net energy change is the combination of the two effects: 

  δU = 2γb−F( )δx . 

The two terms compete.  The surface energy decreases when the slider moves to 
the left. On the other hand, the gravitational energy decreases when the slider 
moves to the right. 
 The thermodynamic system reaches a state of equilibrium when the 
variation in the free energy associated with the variation in the position of the 
slider vanishes, namely, when 
  F = 2bγ . 
By measuring the weight F that equilibrates the membrane, one determines the 
surface energy density.  The surface energy density behaves like a force per unit 

x

b F
Liquid
Membrane
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length.  Perhaps for this reason the quantity γ  is also known as the surface 

tension. 
 
 A drop of water on a ceiling:  a competition between surface 
energy and gravity.  Let a be the radius of a drop of water on a ceiling.  The 
gravity tends to pull the drop down, but the surface tension tends to keep it up.  
In this case, the surface tension of the surface molecules acts like a rubber bag, 
holding the water inside.  Determine the maximum drop size. 
 Balance the forces due to surface tension and gravity, we obtain 

  γa ≈ ρga3 . 
The competition between the gravity and the surface energy defines a length 
scale: 

  a =
γ
ρg

 

Estimation of the maximum size of a drop on the ceiling.  Take γ  = 0.1 J/m2, ρ  = 

1000 kg/m3, and g = 10 m/s2.  We find that a is of magnitude of cm. 
 
 Measuring the surface energy of a solid.  Experimental 
determination of the surface energy of a solid is challenging.  To measure the 
surface energy, one has to observe a phenomenon in which fresh surface is 
created.  For a liquid, the fresh surface is created by flow, drawing molecules 
from the interior of the liquid to the surface.  For a solid, one has to do essentially 
the same thing.  That is, one has to arrange a situation in which additional atoms 
move from the interior to the surface.  Heat the solid so that it creeps (i.e., flows 
slowly).  In the following words, Griffith described how he measured the surface 
energy of glass.  
 

Between 730° C and 900° C the method described below was found to 
be practicable.  Fibers of glass about 2 inches long and from 0.002-inch 
to 0.01-inch diameter, with enlarged spherical ends, were prepared.  
These were supported horizontally in stout wire hooks and suitable 
weights were hung on their mid-points.  The enlarged ends prevented 
any sagging except that due to extension of the fibers.  The whole was 
placed in an electric resistance furnace maintained at the desired 
temperature.  Under these conditions viscous stretching of the fiber 
occurred until the suspended weight was just balanced by the vertical 
components of the tension in the fiber.  The latter was entirely due, in 
the steady state, to the surface tension of the glass, whose value could 
therefore be calculated from the observed sag of the fiber.  In the 
experiments the angle of sag was observed through a window in the 
furnace by means of a telescope with a rotating cross wire.  If w is the 
suspended weight, d the diameter of the fiber, T the surface tension, and 
θ  the angle at the point of suspension between the two halves of the 
fiber, then, evidently, 
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 πdT sin
θ
2
=w . 

 
 Measuring the surface energy of a solid by zero creep 
experiment.  Udin et al. (1949) described an experimental setup based a similar 
principle.  A series of small weights of increasing magnitudes are suspended from 
an array of copper wires of uniform cross section.  This array is brought to a 
temperature at which creep is appreciable.  If the weight overbalances the 
contracting effect of surface tension, the wire elongates; otherwise, it shrinks.  
The rate of creep is zero when the weight balances the contracting effect of 
surface.  This condition of thermodynamic equilibrium is 
        w = πrγ , 

where w is the hanging weight, and r is the radius of the copper wire. In the 
experiment, wires under larger weights elongate, and wires under smaller 
weights shrink.  Some intermediate weight just balances the contracting effect of 
the surface tension.  A more recent paper by Josell and Spaepen (1993) described 
more applications of this zero creep experiment. 
 

• H. Udin, A.J. Shaler, J. Wulff, The surface tension of solid copper.  
Transactions of the American Institute of Mining and Metallurgical 
Engineers 185, 186-190 (1949). 

• H. Udin, Surface tension of solid copper, PhD Thesis, Massachusetts 
Institute of Technology (1949).  This thesis is available online at 
http://dspace.mit.edu/bitstream/handle/1721.1/61810/29584462.pdf?se
quence=1 

• D. Josell and F. Spaepen, Determination of the interfacial tension by zero 
creep experiments on multilayers.  Acta Metallurgica Materialia 41, 3007-
3027 (1993). 

 
 Deriving the condition of equilibrium.  The condition of equilibrium 
w = πrγ  itself is interesting.  If you think of the surface tension as the force per 
unit length, then the balance of the force with the weight gives you w =2πrγ .  

What is wrong with the factor of 2? 
 We can obtain the correct result by starting from the first principles.  The 
wire and the weight together form a thermodynamic system.  The surface of the 

wire contributes free energy γ 2πrl +2πr2( ) , where r is the radius of the wire and l 

the length of the wire.  Here the surface of the wire includes the cylindrical 
surface and the two ends of the wire.  The weight contributes potential energy 
−wl .  The free energy of the system—the wire and the weight together—is 

  U = γ 2πrl +2πr2( )−wl . 



ES 247 Fracture Mechanics Zhigang Suo 
 

2/5/16 7 http://imechanica.org/node/7448  
 

When the wire elongates, atoms from the interior of the wire move to the surface, 

and the volume of the wire remains the same.  The volume of the wire is πr2l =V .  
Rewrite the free energy of the wire as 

  U = γ 2 πVl +2
V
l

!

"
#

$

%
&−wl . 

The system has a single degree of freedom:  the length of the wire.  The free 

energy is a function of a single variable, U l( ) .  The system reaches 

thermodynamic equilibrium when dU /dl =0 , namely, 

  γ
πV
l
−2
V

l2

"

#
$
$

%

&
'
'=w . 

Replace V in this result, and we obtain that 

  γ πr −2πr
r
l

"

#
$

%

&
'=w  

Because r << l, we drop the second term in the bracket, reaching 
  πrγ =w . 

 Why can’t we directly use the balance of forces?  The surface of the wire is 
curved.  Consequently, the surface tension causes the Laplace pressure to atoms 
inside the wire: 

   p =
γ
r

. 

The weight needs to balance the force in the skin and the pressure in the interior: 

  w =2πrγ −πr2p . 
This result recovers w = πrγ . 
 
  The Griffith Theory   
 
 A large sheet of a glass is under stress σ .  The sheet has unit thickness. In 
the reference state, the stressed sheet contains no crack, and is in a state of 
homogeneous deformation.  In the current state, the stressed sheet contains a 
crack of length 2a, and is in a state of inhomogeneous deformation.   
  
 Helmholtz free energy.  The sheet containing the crack is a 
thermodynamic system.  The system is taken to be in thermal equilibrium with a 
reservoir of energy of a fixed temperature. For the time being we assume that the 
displacement at the loading point is fixed, so that the loading device does no work 
on the system when the length of crack changes.   
 Let U be the Helmholtz free energy of the system relative to that in the 
reference state. The length of the crack, a, is the thermodynamic variable of the 
system, and the free energy of the system is a function of the thermodynamic 

variable, 
 
U a( ) .  Thermodynamics dictates that the system should evolve in the 
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direction that reduces the Helmholtz free energy.  That is, the length of the crack 

a should change in the direction that reduces the Helmholtz free energy 
 
U a( ) .      

   
 Calculate the Helmholtz free energy of the system as a function 
of the length of the crack.  We next calculate the difference in energy between 
the two states.  Let γ  be the surface energy per unit area. Between the reference 
and the current states, the difference in surface energy is   4aγ . 

 For the time being, assume that the loading grips are rigidly held, so that 
the displacement is fixed, and the loading device does no additional work after a 
fixed displacement is applied.  When the crack is introduced into the body, the 
elastic energy reduces.  To determine the amount of the reduction, one has to 
solve the boundary-value problem to determine the inhomogeneous deformation 
in the current state.  This difficult elasticity problem is for professional 
elastitians.  Look how complicated the stress field must be near the crack.  
Griffith used the elasticity solution of Inglis, because a crack is just a special case 
of an ellipse when 0/ →ab .  This part of the Griffith paper is difficult to read, 
and is uninteresting.  In the end he made small errors.  It would be a distraction 
for us to go through the process of solving this boundary-value problem here. 
 An alternative approach is to invoke linearity and dimensional 
considerations.  For a linearly elastic boundary-value problem, the stress field is 
linearly proportional to the applied stress.  The elastic energy per unit volume is 

proportional to   σ
2 / E .  The elastic energy in an infinite sheet is infinite.  

However, we are interested in the difference in elastic energy between the 
cracked sheet and the uncracked sheet.  Note that the crack length a is the only 
length scale in the boundary-value problem.  Consequently, the difference in 
elastic energy between the two sheets takes the form 

  2
2

a
E
σβ , 

where β  is a numerical value.  Thus, from very basic considerations, we get 
nearly everything except for a pure number.  This number must be determined by 
solving the boundary-value problem in linear elasticity.  The solution turns out to 
be πβ = .  You can find the solution of the full problem in Timoshenko and 
Goodier. 
 Relative to the uncracked sheet, in the cracked sheet the combined surface 
energy and elastic energy is 

  U a( ) =+4γa−π σ
2

E
a2 . 

The density of surface energy γ  and the applied stress σ  are taken to be constant 

for the time being.  The crack length, 2a, is the thermodynamic variable.  As 
expected, when the crack length increases, the surface energy increases, but the 
elastic energy decreases. 
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 Plot the free energy as a function of the crack length.  The free energy first 
goes up, reaches a peak, and then goes down.  Because there is no minimum free 
energy, the crack cannot reach equilibrium.    
 

 
 
 When the length of the crack changes by aδ , the free energy changes by 

  δU =2 2γ −π
σ 2a
E

"

#
$$

%

&
''δa   

Let us distinguish two situations. 
 
 Small crack heals.  If the crack is small, namely, 

  2γ > π
σ 2a
E

, 

the surface energy prevails over the elastic energy.  To reduce the free energy, 

  δU <0 , the crack must decrease its length, 0<aδ .  The crack does so by healing, 
i.e., forming atomic bonds one by one, like closing a zipper.   
 In reality crack healing is not often observed.  This is not because the 
thermodynamics is wrong, but because surfaces are not flat to the atomic 
dimension, so that atoms cannot meet across the gap and form bonds.  Several 
examples show that a crack heals under certain conditions. 

• Adhesives.  Soft material can heal readily by flows.   
• Wafer bonding.  If the surfaces are indeed made flat, they will join.   
• Sintering.   At elevated temperatures, atoms can diffuse, so that the two 

surfaces change shape and can join. 
 

Large crack grows.  If the crack is large, namely, 

  2γ < π
σ 2a
E

, 

U

a

a*
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the elastic energy prevails over the surface energy.  To reduce the free energy, 
0<Uδ , the crack must increase its length,   δa >0 .  The crack does so by breaking 

atomic bonds one by one, like opening a zipper.  This is the situation studied in 
this course. 
 
  The Griffith Experiments   
 
 The main prediction of the Griffith theory can be written as 

  σ
c
=
2γE
πa

. 

He performed several experiments to ascertain various predictions of the 
equation. 
 
 Experiment 1.  Confirm that  

  σ
c
a = constant ,  

independent of the size of the crack.  Griffith invented the following experiment, 
which would be repeated to this day.  Start with several sheets glass (large 
spherical bulbs actually).  Introduce a crack in each sheet either with a glass-
cutter’s diamond, or by scratching with a hard steel edge and tapping gently.  
Measure the strength of each sheet.  Two important points:   
(1) The crack introduced is in the mm to cm range, much longer than any 

“natural flaws” in the sheets, so that the natural flaws are negligible.  In this 
way Griffith circumvented the uncertainties associated with the natural flaws.   

(2) The cracks introduced in different sheets have different lengths, and the 
measured strengths are also different.   

His data confirmed that σ
c
a = constant . 

   
  

  Crack Length, 2a 
            mm 

 
  Measured Strength, cσ  
              MPa 

 

         acσ  

         mMPa  
 
sample 1 
sample 2 
sample 3 
sample 4 
 

 
             3.8 
             6.9 
           13.7 
           22.6 
              

 
              6.0 
              4.3 
              3.3 
              2.5 

 
              0.26 
              0.25 
              0.27 
              0.27 

 (Data from the Griffith experiment) 
 

 Experiment 2.  Confirm that the constant is indeed πγ /2 E .  Young’s 

modulus for the glass used by Griffith was E = 62 GPa.  The surface energy 
inferred from the measured breaking strength is 2J/m75.1=γ . 
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 Griffith needed an independent measurement of the surface energy.  He 
did the creeping fiber experiment.  The value he obtained was 2J/m54.0=γ .  The 
agreement was fair. 
 
 Griffith’s error.  Griffith made a mistake in his calculation of the elastic 
energy, and gave a wrong formula: 

  σ
c
=
2γE
πνa

   (wrong formula) 

where ν  is Poisson’s ratio, and ν  = 0.251 for glass.  This erroneous result 

estimates a value of the surface tension γ =0.44J/m2 .  This value determined 
from his fracture experiment was lower than the surface determined from his 
zero creep experiment, 2J/m54.0=γ .  Griffith tried to find an explanation for 
this erroneous estimate.  I do not believe that one can find a sound explanation 
when the surface tension determined by fracture experiment is smaller than that 
determined by the zero-creep experiment.  But this is a moot point:  Griffith 
made an error in his formula.  
 
 Experiment 3.  Measure strengths of glass fibers. 
 Experimental strength.  For a fixed pre-existing crack size a, there is a 
critical stress: 

  σ
c
=
2γE
πa

. 

This is the stress needed to fracture the sample.  This relation shows that the 
fracture strength depends on the crack size.  Because different samples have 
different crack sizes, the fracture strength is not a material property.  The 
measured strength has large scatter.  Take representative values γ  = 1 J/m2, E = 

1011 N/m2, a = 10-6 m, the strength is 250 MPa.  This corresponds to the 
experimental strength.  
 Theoretical strength.  Assume that the solid is flawless.  There is no stress 
concentration.  The solid breaks when the applied stress is so high to break 
atomic bonds. If we put m10 10−=a  (atomic dimension) into the above formula, 
we obtain an estimate of the theoretical strength ~10 GPa. 
 Alternatively, a commonly quoted rough estimate of the theoretical 
strength is 

  S
th
=
E
10

. 

Today the theoretical strength can be calculated by atomistic simulations. 
 Griffith measured the strength of glass fibers of diameters between 107 
µ m and 3.3 µ m.  The data scattered, but the trend was that the strength 

increased as the fiber diameter decreased.  He reported a value of strength of 171 
MPa for a fiber of diameter 107 µ m, and a value of strength of 3.4 GPa for a fiber 
of diameter 3.3 µ m. The theoretical strength of the glass corresponds to a fiber 
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of the smallest possible (molecular) diameter.  He extrapolated his data to the 
molecular diameter, and estimated the theoretical strength to be 12 GPa . 
  
  Historical Notes 
 
 Alan Arnold Griffith (1893-1963).  He was born in London 0n 13 June 
1893.  He earned his B.Eng. in mechanical engineering in 1914, M.Eng. in 1917, 
and D.Eng. in 1921, all from the University of Liverpool.  In 1915, he entered the 
Royal Aircraft Factory (later known as the Royal Aircraft Establishment), and 
advanced through a workshop traineeship followed by other positions to become 
senior scientific officer in 1920. In 1917, together with G.I. Taylor, he published a 
pioneering paper on the use of soap films in solving torsion problems, and in 
1920 he published his famous paper on the theory of brittle fracture. He then 
worked on the design theory of gas turbines. Griffith was Head of the Engine 
Department of the Royal Aircraft Establishment in 1938 and joined Rolls Royce 
as research engineer in 1939. He worked first on conceptual design of turbojet 
engines and later on vertical takeoff aircraft design. He retired in 1960 but 
continued working as a consultant for Rolls Royce.  He died on 13 October 1963. 
  

• Wikipedia page http://en.wikipedia.org/wiki/Alan_Arnold_Griffith  
• A.A. Rubbra, "Alan Arnold Griffith 1893-1963". Biographical Memoirs of 

Fellows of the Royal Society 10: 117–126. doi:10.1098/rsbm.1964.0008 
 
 Inglis (1913) vs. Griffith (1921).  Rewrite Inglis’s equation as 

  σ
c
a ≈
1
2
σ
max

ρ . 

We have interpreted σ
max

 as the theoretical strength of atomic bonds, and ρ  as 

the atomic spacing.  The Griffith theory gives that 

  σ
c
a =

2γE
π

. 

The two theories give the same prediction:  σ
c
a  is a constant independent of 

the size of the crack.  Griffith did experiments to confirm that σ
c
a  is indeed the 

constant.   
 In the Inglis theory, the constant involves atomic strength and atomic 
size.  In the Griffith theory, the constant involves Young’s modulus and surface 
energy.  If we adopt any simple-minded atomic model, we can show that the two 
constants are essentially the same.  See below.  
 Both theories work approximately for silica glass.  Neither works for steel.  
Both theories survived to this day, in somewhat different forms.  In general 
terms, the Inglis theory has evolved into the stress approach to fracture, and the 
Griffith theory has evolved into the energy approach. We will talk more about 
both approaches in coming lectures. 
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 Polanyi (1921) derived an approximate relation between theoretical 
strength, modulus, surface tension and atomic spacing.  If a solid is extended 
uniformly, the extension should be stable until the stress reaches the theoretical 

strength σ
max

. Assume that Hooke’s law holds up to fracture.  The elastic energy 

per atom at fracture is b3 σ
max( )

2
/2E , where b is the atomic spacing.  After 

fracture, the surface energy per atom is γb2 .  The elastic energy in the stressed 
specimen must provide the surface energy.  Equating the two quantities gives that   

  
σ
max( )

2
b

2E
≈ γ  

Taking representative values b = 10−10m , E = 1011N/m2  and γ = 1N/m , we 

estimate that σ
max

≈ 40GPa .   

• Von M. Polanyi, On the nature of the tearing process.  Zeitschrift für 
Physik 7, 323-327 (1921) 

• E.P. Wigner and R.A. Hodgkin. Michael Polanyi (1891-1976). Biographical 
Memoirs of Fellows of the Royal Society 23, 413–448 (1977). doi: 
10.1098/rsbm.1977.0016. 


