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Abstract

The existing couple stress theory for polar media suffers from an indeterminacy of the
spherical part of the couple-stress tensor, which limits significantly its applicability in the
study of micro and nanoscale mechanics. Here we rely on concepts from virtual work,
along with some kinematical considerations, to establish a consistent polar theory for
solids that resolves all of the indeterminacies by recognizing the character of the couple
stress tensor. We then develop the corresponding theory of small deformations in elastic
bodies, including the energy and constitutive relations, displacement formulations, the
uniqueness theorem for the corresponding boundary value problem and the reciprocal
theorem for linear elasticity theory. Next, we consider the more restrictive case of
isotropic materials and present general solutions for two-dimensional problems based on
stress functions and for problems of anti-plane deformation. Finally, we examine several
additional elementary boundary value problems within this consistent theory of polar

elasticity.

1. Introduction

Classical first gradient approaches in continuum mechanics do not address the size-
dependency that is observed in smaller scales. Consequently, a number of theories that
include higher gradients of deformation have been proposed to capture, at least partially,
size-effects at the nano-scale. Additionally, consideration of the second gradient of
deformation leads naturally to the introduction of the concept of couple-stresses. Thus, in
the current form of these theories, the material continuum may respond to body and

surface couples, as well as spin inertia for dynamical problems.



The existence of couple-stress in materials was originally postulated by Voigt (1887).
However, Cosserat and Cosserat (1909) were the first to develop a mathematical model to
analyze materials with couple stresses. The idea was revived and generalized much later
by Toupin (1962), Mindlin and Tiersten (1962), Mindlin (1964), Koiter (1964), Nowacki
(1986) and others. In these developments, the gradient of the rotation vector, as a
curvature tensor, has been recognized as the effect of the second gradient of deformation
in polar materials. Unfortunately, there are some difficulties with the present
formulations. Perhaps the most disturbing troubles are the indeterminacy of the spherical
part of the couple-stress tensor and the appearance of the body couple in the constitutive

relation for the force-stress tensor (Mindlin and Tiersten, 1962).

Here we develop a consistent couple stress theory for polar media and organize the
current paper in the following manner. In Section 2, we present stresses, couple stresses
and the equilibrium equations per the usual definitions in the existing couple stress
literature. Based on purely kinematical considerations as provided in Section 3, we first
suggest the mean curvature tensor as the measure of deformation compatible with the
couple stress tensor for the infinitesimal theory. Then, by using the virtual work
formulation of Section 4, we demonstrate that in couple stress materials, body couples
must be transformed to an equivalent body force system. More importantly, based on
resolving properly the boundary conditions, we show that the couple-stress tensor is
skew-symmetric and, thus, completely determinate. This also confirms the mean
curvature tensor as the fundamental deformation measure, energetically conjugate to the
couple stress tensor. Afterwards, in Section 5, the general theory of small deformation
polar elasticity is developed. The constitutive and equilibrium equations for a linear
elastic material also are derived under the assumption of infinitesimal deformations in
Section 6, along with the uniqueness theorem for well-posed boundary value problems
and the reciprocal theorem. Section 7 provides the general solution based on stress
functions for two-dimensional infinitesimal linear polar elasticity, while the
corresponding anti-plane deformation problem is examined in Section 8. Section 9
presents solutions for several elementary problems in polar elasticity. Finally, Section 10

contains a summary and some general conclusions.



2. Stresses and equilibrium
For a polar material, it is assumed that the transfer of the interaction in the current

configuration occurs between two particles of the body through a surface element dS
with unit normal vector »; by means of a force vector ti(n)dS and a moment vector
m"dS , where 1™ and m™ are force and couple traction vectors. Surface forces and

couples are then represented by generally non-symmetric force-stress o ;; and couple-

stress u;; tensors, where

= .n, (1)

i JUJ

mi(n) =Hn; (2)

Consider an arbitrary part of the material continuum occupying a volume } enclosed by
boundary surface S as the current configuration. Under quasistatic conditions, the linear

and angular balance equations for this part of the body are

jz}”>dS+jF,. dv =0 3)
S V

j[&‘ijkxjtl({") + ml(")}dS + j[gijkijk +C; ]dV =0 (4)
§ v

where F, and C, are the body force and the body couple per unit volume of the body,

respectively. Here ¢, is the permutation tensor or Levi-Civita symbol.

By using the relations (1) and (2), along with the divergence theorem, and noticing the

arbitrariness of volume V, we finally obtain the differential form of the equilibrium
equations, for the usual couple stress theory, as

oy, =0 (5)

U +€,0,+C =0 (6)

where the comma denotes differentiation with respect to the spatial variables.



3. Kinematics
Here we consider the kinematics of a polar continuum under the assumptions of
infinitesimal deformation. In Cartesian coordinates, we define u, to represent the
displacement field of the continuum material. Consider the neighboring points P and QO
with position vectors x, and x, +dx, in the reference configuration. The relative
displacement of point Q with respect to P is

du, =u, dx, (7)
where u, ; is the displacement gradient tensor at point P. As we know, although this

tensor is important in analysis of deformation, it is not itself a suitable measure of

deformation. This tensor can be decomposed into symmetric and skew-symmetric parts

u ;= e+ (8)
where
i = W) T l(”i,j + ”j,i) 9)
. 2
= ) 10
W, =Uj; ;= By Uij —Uji (10)

Notice that here we have introduced parentheses surrounding a pair of indices to denote
the symmetric part of a second order tensor, whereas square brackets are associated with

the skew-symmetric part. Of course, in (9) and (10), the tensors ¢, and @, are the small
deformation strain and rotation tensor, respectively. The rotation vector @, dual to the

rotation tensor @; is defined by

| 1
N A (11a)
which in vectorial form is written
= %V xu (11b)

Alternatively, this rotation vector is related to the rotation tensor through

@) = & WO (12)



which shows

W =—Wy, W, =03, Wy =—0) (13)

Therefore, the relative displacement is decomposed into

du, = du"V + du® (14)

where
du" = e, dx, (15)
du? = o,dx, (16)

Then, @, is seen to generate a rigid-like rotation of element dx; about point P, where

duPdx, = w;dx,dx; =0 (17)

Since @, does not contribute to the elongation or contraction of element dx,, it cannot

appear in a tensor measuring material stretches. Therefore, as we know, the symmetric

strain tensor e, is the suitable measure of deformation in classical infinitesimal theories,

such as Cauchy elasticity.

In couple stress theory, we expect to have an additional tensor measuring the curvature of

the arbitrary fiber element dx;. To find this tensor, we consider the field of rotation
vector @,. The relative rotation of two neighboring points P and Q is given by

dw, = o, dx, (18)
where the tensor @, ; is the gradient of the rotation vector at point P. It is seen that the
components @, , @,, and o, represent the torsion of the fibers along corresponding
coordinate directions x,, x, and x;, respectively, at point P. The off-diagonal

components represent the curvature of these fibers in planes parallel to coordinate planes.

For example, @, , is the curvature of a fiber element in the x, direction in a plane parallel



to the x,x; plane, while @, is the curvature of a fiber element in the x, direction in a

plane parallel to the x,x; plane.

The suitable measure of curvature must be a tensor measuring pure curvature of an

arbitrary element dx,. Therefore, in this tensor, the components w,,, ®,, and o, ,
cannot appear. However, simply deleting these components from the tensor @, ; does not

produce a tensor. Consequently, we expect that the required tensor is the skew-

symmetric part of @, ;. By decomposing the tensor @, ; into symmetric and skew-

symmetric parts, we obtain

@) =Xy T K (19)
where
1
Xy =@y = 5(0’[,_/ T, ) (20)
1
Ky =@ ;) :E(a)i,j_a)j,i) (21)

The symmetric tensor y, results from applying the strain operator to the rotation vector,

while the tensor «;; is the rotation of the rotation vector at point . From (20),

A=W X =05, Y33 =03 (22)
and
1
X=X = E(a)l,z + a’z,l) (23a)
1
X=X = 5(602,3 + 0)3,2) (23b)
1
X3 =X = 5(601,3 + a’3,1) (23¢)

The diagonal elements y,,, x,, and y;, defined in (22) represent pure torsion of fibers

along the x,, x, and x, directions, respectively, as mentioned above. On the other hand,



from careful examination of (23), we find that y,,, y,, and y,, measure the deviation
from sphericity (Hamilton, 1866) of deforming planes parallel to x,x,, x,x, and x,x;,
respectively. Furthermore, we may recognize that this symmetric y;; tensor must have

real principal values, representing the pure twists along the principal directions. Thus,

we refer to y;; as the torsion tensor and we expect that this tensor will not contribute as a

fundamental measure of deformation in a polar material. Instead, we anticipate that the

fundamental curvature tensor is the skew-symmetric rotation of rotation tensor «,. This

will be confirmed in the next section through consideration of couple stresses and virtual

work.

We also may arrive at this outcome by noticing that only the part of dw, that is normal to

element dx, produces pure curvature. Therefore, by decomposing dw, into

do, =do" +do® (24)
where
do! = y,dx, (25)
do? =k,dx, (26)
we notice
doPdx, = xdx,dx, =0 27)

This shows that da)l.(z) is the component of dw, normal to dx,. Therefore, the tensor «;

seems to be the suitable curvature tensor, which is represented by

0 Ky, Ky
[Kij]: — K 0 K3 (28)

—K3 —Ky 0
where the non-zero components of this tensor are

1
K, ==K, = 5(0)1,2 - a)z,l) (29a)

1
Ky =—K3 = 5(0)2,3 - 0)3,2) (29b)



1
K3 =—K3 = 5(”1,3 - 0)3,1) (29¢)

Now we may recognize that x,,, k,;, and «,; are the mean curvatures of planes parallel
to the x,x,, x,x;, x;x, planes, respectively, at point P after deformation. Therefore, the
skew-symmetric tensor x; will be referred to as the mean curvature tensor or simply the

curvature tensor. The curvature vector x; dual to this tensor is defined by

1 1
K, = Egijka)k,j = Eg,.jklckj (30)

Thus, this axial vector is related to the mean curvature tensor through
Kji = &k (31)
which shows

Ky ==Ky, K, =K3, K3 =—K), (32)

It is seen that the mean curvature vector can be expressed as

K%wm (33)

This shows that k is the rotation of the rotation vector, which can also be expressed as

1 1 1,
k=—Vx(Vxu)=—V(Veu)-—V-u 34a
;Vx(Vxu)=2V(Veu)—- (342)
1 1 1 1
Ki :Zuk,ki _Zui,kk :Zuk,ki _szui (34b)

What we have presented here is applicable to small deformation polar theory, which
requires the components of the strain tensor and mean curvature vector to be

infinitesimal. These conditions can be written as

‘el.j‘ <«<1 (35)



| <<~ (36)
lS

where, [ is the smallest characteristic length in the body.

While analogous measures of strain and curvature can be obtained for finite deformation
polar theory, this would take us beyond the scope of the present work, which is directed

toward the infinitesimal linear couple stress theory.

4. Virtual work formulation and its consequences for polar media
Consider now a polar material continuum occupying a volume V" bounded by a surface §
as the current configuration. The standard form of the equilibrium equations for this

medium were given in (5) and (6).

Let us multiply equation (5) by a virtual displacement du;, and integrate over the volume

and also multiply equation (6) by the corresponding virtual rotation dw,, where

1
ow, = Egﬁkﬁuk’j (37)
and integrate this over the volume as well. Therefore, we have
[, +F Judr =0 (38)
7
[, + 0, +C Jowav =0 (39)
vV
By noticing the relation
0.0, =0 ,0u;)  — 0 0u,, (40)

and using the divergence theorem, the relation (38) becomes

o.du dV=[t"sudS+Foudv (41)
J‘ Jt l,] I 1 1 J‘ 1 1
Vv N Vv

Similarly, by using the relation

Hjij 5601’ T O jk 5601’ = (lujié‘a)i ) P /ujié‘a)i,j O 5a)jk (42)

b JJ



equation (39) becomes

[1,60,,dv - [ o ,60,aV = [ m"s0,dS + | ComdV (43)
Vv vV N Vv

Then, by adding (41) and (43), we obtain

i“ﬁ‘sa’i,jd Ve i“ﬁ (6w, — 6, )V =
(44)

4

(8" Su,dS + | FoudV + [ m"sw,dS + | C.omdV
S Vv S V

However, by noticing the relation

oe,; = ou, ; — 0w, (45)

y

for compatible virtual displacement, we obtain the virtual work theorem as

[oe,dV + [ 60, ,dV = [t 6u,dS + [ Fou,dV + [m"dwdS + [C.owdV  (46)
Vv Vv N Vv S Vv

Now, by using this virtual work formulation, we investigate the fundamental character of

the body couple and couple stress in a material continuum.

It is seen that the term

[cowar (47)
)

in (46) is the only term in the volume that involves ow,. However, dw, is not

independent of du, in the volume, because we have the relation

1
ow; = 55@/1«5“1«,1‘ (48)

Therefore, by using (48), we find

1

1 1
€60, = C, 0, = 5(‘9% Cou,) - G0, (49)

=ik J

and, after applying the divergence theorem, the body couple virtual work in (47) becomes

10



1 1
[Cowmar =] ~ € Cr i,V + J.Egi/’kc 1,0, dS (50)
vV N

Vv

. . . 1
which means that the body couple C,; transforms into an equivalent body force —¢,,C, .
i 2 y 5J

. . 1 . .
in the volume and a force traction vector 58!/,{ C,n, on the bounding surface. This shows

that in polar materials, the body couple is not distinguishable from the body force.
Therefore, in the couple stress theory for polar media, we must only consider body
forces. This is analogous to the impossibility of distinguishing a distributed moment load
in Euler—Bernoulli beam theory, in which the moment load must be replaced by the
equivalent distributed force load and end concentrated loads. Therefore, for a proper

couple stress theory, the equilibrium equations become

o, =0 (51)
My €30y =0 (52)
where
F+%V><C—>F in v (53a)
and
") +%c xn—>t"  on S (53b)

and the virtual work theorem reduces to

[0 e,dV + [ 60, ,dV = [ du,dS + [ F.ou,dV + [ m"5e,dS (54)
14 14 S vV S

Next, we investigate the fundamental character of the couple stress tensor based on

boundary conditions.

The prescribed boundary conditions on the surface of the body can be either vectors u,

and @,, or tl.(”)and mf"), which makes a total number of six boundary values for either
case. However, this is in contrast to the number of geometric boundary conditions that

can be imposed (Koiter, 1964). In particular, if components of u, are specified on the

11



boundary surface, then the normal component of the rotation @, corresponding to

twisting
= a)(””)ni =w,n,n, (55)
where

o™ = an, (56)
cannot be prescribed independently. However, the tangential component of rotation o,

corresponding to bending, that is,

a)l.(”s) = - a)("")ni =W, —onn (57)

may be specified in addition, and the number of geometric or essential boundary

conditions that can be specified is therefore five.

(nn)

Next, we let m™" and ml.('”) represent the normal and tangential components of the

()

surface couple vector m;"’, respectively, where

m") = mn, = Hynn, (58)

causes twisting, while
—m"p, (59)
is responsible for bending.

(nn)

From kinematics, since @™’ is not an independent generalized degree of freedom, its

apparent corresponding generalized force must be zero. Thus, for the normal component

(n)

of the surface couple vector m;"’, we must enforce the condition

m("”) — mz(cn)”k = nn; = 0 on S (60)

1

Furthermore, the boundary couple surface virtual work in (54) becomes

s - oy = i a
s s S

This shows that a polar material in couple stress theory does not support independent

distributions of normal surface couple m™), and the number of mechanical boundary

12



(™) has to be replaced by

conditions also is five. In practice, it might seem that a given m
an equivalent shear stress and force system. Koiter (1964) gives the detail analogous to
the Kirchhoff bending theory of plates. However, we should realize that there is a
difference between couple stress theory and the Kirchhoff bending theory of plates. Plate
theory is an approximation for elasticity, which is a continuum mechanics theory.
However, couple stress theory is a continuum mechanics theory itself without any

approximation.

From the above discussion, we should realize that on the surface of the body, a normal
couple m"™) cannot be applied. By continuing this line of reasoning, we may reveal the
subtle character of the couple stress-tensor. First, we notice that the virtual work theorem
can be written for every arbitrary volume with arbitrary surface within the body.

Therefore, for any point on any arbitrary surface with unit normal »,, we must have

m"™ =pnn,=0 in V (62)

Since n;n; is symmetric and arbitrary in (62), 4, must be skew-symmetric. Thus,
wy=—py in V (63)

This is the fundamental property of the couple-stress tensor in polar continuum

mechanics, which has not been recognized previously. Here we can see the crucial role

of the virtual work theorem in this result.

In terms of components, the couple stress tensor now can be written as

0 Hy  Hiz
[luij ] =~ Hp 0 Hos (64)
—H3 —Hy O

and one can realize that the couple stress actually can be considered as an axial vector.

This couple stress vector g, dual to the tensor x,; can be defined by

1
H; =Eg{/'kﬂlgj (65)

13



where we also have

Eity = Hy; (66)

These relations simply show

Hy=—Hys Hy=Hyz, Hy=—Hp (67)

It is seen that the surface couple vector can be expressed as
mi") = g, = ey (68)
which can be written in vectorial form
m" =nx 1) (69)

This obviously shows that the surface couple vector m") is tangent to the surface.

Interestingly, the angular equilibrium equation (52) can be expressed as
et +0,)=0 (70)
which indicates that g,  +o, is symmetric. Therefore, its skew-symmetric part
vanishes and
O = ~Hiij) (71)
which produces the skew-symmetric part of the force stress tensor in terms of the couple
stress vector. This result could have been expected on the grounds that the skew-
symmetric stress tensor o7, is actually an axial vector and should depend on the axial
couple stress vector 1, . Therefore, it is seen that the sole duty of the angular equilibrium

equation (52) is to produce the skew-symmetric part of the force stress tensor. This

relation can be elaborated if we consider the axial vector s, dual to the skew-symmetric

part of the force-stress tensor o7, where

1
5= 5 i Oly] (72a)
which also satisfies
Eiijk = O-[ji] (72b)

14



or simply
S1 =7O03]> S2 = O0[13]> S3 = ~O[12] (73)

By using (71) and (72a), we obtain

1 1
S; = _Egyk:u[_/,k] = Egijk/uk,j (742)
which can be written in vectorial form
s= %V X 1 (74b)

This simply shows that half of the curl of the couple stress vector p produces the skew-

symmetric part of the force-stress tensor through s. Interestingly, it is seen that

Ves=0 (75)

Returning to the virtual work theorem, we notice since x, is skew-symmetric

H;:00, ; = 10K, (76)
which shows that the skew-symmetric mean curvature tensor x, is energetically
conjugate to the skew-symmetric couple-stress tensor y;,. This confirms our speculation

of x; as a suitable curvature tensor in Section 2. Furthermore, the virtual work theorem
(54) becomes

[0 i8eyav + [ uo,dV = [1"5u,dS + [ Fsudv + [m"™ so{"ds (77)
vV 14 N 4 N

Interestingly, by using the dual vectors of these tensors, we have
0Ky = &, 1€, OK, ==&, 1L, 0K, ==28, 11,0k, = =2 11,0k, (78)
which shows the conjugate relation between twice the mean curvature vector —2x; and

the couple-stress vector ;.

Since de; is symmetric, we also have

0 ;i0¢; = 0|08 (79

i

where

15



Oi) = %(in 0y ) (80)

is the symmetric part of the force-stress tensor. Thus, the principle of virtual work can be

written

[o0e,dV +[ 1,01,V = [ 6, dS + [ Fdu,dV + [m" s, dS (81)
Vv N vV S

14

Therefore, it is seen that the symmetric small deformation strain tensor e, is the

kinematical tensor energetically conjugate to the symmetric part of the force-stress tensor

(- Finally, the virtual work theorem (81) can be rewritten as

[(o 08, —20,6%,)av = [60,dS + [ F.ou,dv + [ m" 5e,ds (82)
S 4 S

Vv

What we have presented so far is a continuum mechanical theory of couple stress polar
materials, independent of the material properties. In the following section, we specialize

the theory for elastic materials.

5. Infinitesimal polar elasticity
Now, we develop the theory of small deformation for elastic polar materials. In a polar
elastic material, there is a strain energy function W , where for arbitrary virtual
deformations about the equilibrium position, we have

oW =0 ,0e; + 1,,0k; = 0(;\0€; —21,0K, (83)
Therefore, W is a positive definite function of the symmetric strain tensor e, and the

mean curvature vector x,. Thus,

W=Wex)=Wle,x) (84)

However, for a variational analysis the relation (83) should be written as
oW = O-(ji)&'ti,j - Zﬂi5Ki (85)
where the all components of du, ; and Jk; can be taken independent of each other. From

the relations (84) and (85), we obtain

16



O/.\ =
(i) aui’j
ow
24, =——r
M=o
However, it is seen that
oW oW oe,
Ou; , Oey, Ou,
By noticing
1
€y = E(uk,l + ul,k)
we obtain
Oe 1
aui =2 (6,0, +5,5,)
Therefore
o = la_W(é‘kié‘r + 5li5k')
ou,, 2 0e, ! ’
which shows
ow l ow N ow
ou,; 2\ 0e; Oe,
Then
o _ifow aw
U2\ e, de,
__law
# 2 Ok;
It is also seen that
1 1| oW

==\, =)=~

2

Therefore, for the skew-symmetric part of the force-stress tensor, we have

4

17
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ox,

1

ow
81(‘ ;

)

(86)

(87)

(88)

(89)

(90)

C2))

(92)

(93)

(94)

(95)



t{(ow) (ow
= —Ur. 1= — —_— — — 96
i) = M) = 7 (f%f,-jj (axj} (06)

Finally, we obtain the constitutive relations as

L{ow ow | 1|(owW ow
oo Rt il kb | Beusnll B B-as 97)
"2\ 0e;, Oe,;) 4|\ 0k, ) |0k, )
i i i/, iJi
1 ow
= 98
H; 2ok, (98)

The total potential energy functional for polar elastic body is defined as

mu}=[wdv - [ Fu,dv - [1udS - [m" w,ds (99)
4 Vv S N

It can be easily shown that this functional attains its absolute minimum when the
displacement field corresponds to the elastic solution that satisfies the equilibrium
equations. The kinematics of deformation and variation of (99) reveal an important
character of the strain energy function W . We know there are two sets of equilibrium
equations (51) and (52) corresponding to linear and angular equilibrium of an
infinitesimal element of material. Therefore, the geometrical boundary conditions are the
displacement u; and rotation @, as we discussed previously. As we showed in Section 4,
polar continuum mechanics supports the geometrical boundary conditions u; and a),.(”s),

(n

i

ns)

and their corresponding energy conjugate mechanical boundary conditions ¢ ) and mi( .
Consequently, there is no other possible type of boundary condition in polar continuum
mechanics. Therefore, in the variation of the total potential energy /7 in (99), the strain
energy function /¥ at most can be in the form (84). This means at most the strain energy

function W is a function of the second derivative of deformation in the form of the mean

curvature vector x,. In other words, the continuum mechanics strain energy function

W cannot depend on third and higher order derivative of deformations.

18



6. Infinitesimal linear polar elasticity

Strain energy and constitutive relations
For a linear elastic material, based on our development, the quadratic positive definite

strain energy must be in the form

1 1
W (e,x) ZEAy.k,eijek, +EBl.jlcin (100)

The tensors 4, and B, contain the elastic constitutive coefficients. It is seen that the

tensor A4, is actually equivalent to its corresponding tensor in Cauchy elasticity. The
symmetry relations

Aijkl = Aklij = Ajikl (101)

B,=B, (102)

are trivial. These symmetry relations show that for the most general case the number of

distinct components for 4, and B are 21 and 6, respectively. It is seen that the couple

stress vector and symmetric part of stress tensor can be found as

1
M= _EB”Kj (103)
U(ji) = Aijkle,d (104)
Additionally, we find that
1
M= _EBikKk,j (105)

The skew-symmetric part of this tensor is

1 1
Hij)=—011= _ZBikKk,j +ZBijk,i (106)

Therefore, for the force stresses, we find

1 1
0, = Aijklekl +ZBikKk,j _ZBijk,i (107)
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For an isotropic polar material, the symmetry relations require

Av‘jkl = /15y5k1 + ﬂé‘ikgjl + ﬂé;l5jk (108)

B, =1615, (109)

The moduli 4 and g have the same meaning as the Lamé constants for an isotropic
material in Cauchy elasticity. It is seen that only one extra material constant 7 accounts

for couple-stress effects in an isotropic polar material and the strain energy becomes

1
W(ex)= _ﬁ(ekk )2 + Le;

> ;€5 T8Nk K, (110)

with the following restrictions on elastic constants for positive definite strain energy

34+2u>0, u>0, n>0 (111)

Then, the constitutive relations can be written
H; =—8nk; (112)
O () = Aey S, +2ue; (113)

Interestingly, it is seen that for an isotropic material

Vepn=yu,,=0 (114)
By using the relation
K, ziuk’,d—iui,kk (115)
we obtain
1, =2n(Vu, —u ) (116a)
or in vectorial form
n=27Vu-v(Veu) (116b)
Additionally,
M= 277(V2u1.5j - ”k,sz) (117)
Therefore,
Hi =1V, —u,,) (118)
or

20



My )= 277V2a)l.j (119)
and we obtain
O =My =20V 0, (120)
or by exchanging indices

Recall that the axial vector s, is dual to oy,), as shown in (72). Then, from (74a) and
(112), s, can be written in terms of the curvature vector as
;= —4775[.ij,€,]. (122)

Therefore, the constitutive relation for vector s is

s =—-4nV xk (123a)
which can be written alternatively as
s=-2nVxVxo=2nV'e (123b)
or
s=-nVxVxVxu (123c)

This remarkable result shows that in an isotropic polar material the vector s ,
corresponding to skew-symmetric part of stress tensor, is proportional to the curl of curl

of curl of the displacement vector u.

By using the relations (113) and (120), the total force-stress tensor can be written as

o, =0, +2ue; + 277V2a)ﬁ (124)
We also notice that
. =—8nx ..
/ujz 77 Ji (125)
=4n (a’t,_/ - a)_/.,l.)

which is more useful than ; in practice.
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It is seen that these relations are similar to those in the indeterminate couple stress theory

(Mindlin and Tiersten, 1962), when n'=—n. Here we have derived the couple stress

theory for polar materials in which all former troubles with indeterminacy disappear.

There is no spherical indeterminacy and the second couple stress coefficient 7' depends

on 77, such that the couple stress tensor becomes skew-symmetric.

Interestingly, the ratio

_p (126)
U
specifies a characteristic material length [/, which is absent in Cauchy elasticity, but is

fundamental to small deformation couple-stress polar elasticity. We realize that this is

the characteristic length in an elastic material and that /g —/ in (36). Thus, the
requirements for small deformation polar elasticity are

\e,.j\ <«<1 (127a)

x| <<% (127b)

Displacement formulations

When the force-stress tensor (107) is written in terms of displacements, as follows

1
0= Aijklekl +Z Kk, _ZBijk,i

| . (128)
= Aijkluk,l + EBik (um,mlg' - Vz”k,j )_ EBjk (um,mki - vzuk,i)
and is carried into the linear equilibrium equation, we obtain
1 1
Aijkluk,lj + E B, (vzum,mk - vzvzuk )_ E Bjk (”m,mkg/ - Vz”k,g; ): 0 (129)
For an isotropic material, the force-stress tensor becomes
2

0, =€, 0, +2ue; —2nV-w, (130)

=Auy 6, + /”(”i,j +uj,i)_77v2(ui,j _”Ai,i)
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and for the linear equilibrium equation, we have
(/1+/1+77V2)uk’ki+(/1—77V2)V2ui+Fi:0 (131a)
which can be written in the vectorial form

(/I—i-,u+77V2)V(Vou)+(y—77V2)V2u+F:0 (131b)

This relation can also be written as
(A+24)V(Veu)—(u-nV>)VxVxu+F=0 (132)
which was derived previously by Mindlin and Tiersten (1962) within the context of the

indeterminate couple stress theory.  However, recall that the Mindlin-Tiersten

formulation involved two couple stress parameters 7 and 7'. In hindsight, the fact that
n' does not appear in (132) should have been an indication that this coefficient is not

independent of 7. We now know that ' =-7 .

The general solution for the displacement in isotropic polar elasticity also has been

derived by Mindlin and Tiersten (1962) as

u=G-IPVVeG-— 1 V[re(i-rv*)6+G,] (133)
41-v)
where the vector function G and scalar function G, satisfy the relations
u(1-1*V?V?G = —F (134a)
UV’G, =reF (134b)

These functions reduce to the Papkovich functions in the classical theory, when /=0. It
is easily seen that

A+2u
7

Veu=(1-1V*IVeG (1352)

Vxu=VxG (135b)

Uniqueness theorem for boundary value problems
Now we investigate the uniqueness of the linear polar elasticity boundary value problem.

The proof follows from the concept of strain energy, similar to the approach for Cauchy
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elasticity. By replacing the virtual deformation with the actual deformation in the virtual
work theorem (82) and accounting for the symmetry of ¢, , we obtain

f (0'( ey =244 AV = [ u,dS + [ Fudv + [ m" o, ds (136)
14 / S Vv S

Using the constitutive relations (103) and (104), we have
(i~ 2uk; = Ayeey + Bk =2 (e,K) (137)

yor

Therefore, (136) can be written as

[(4,ue 00+ By, Jav = [1u,dS + [ Fudv + [me,ds (138)
S Vv S

7o
14

This relation gives twice of total strain energy in terms of the work of external body

forces and surface tractions.

Now, we consider the general boundary value problem. The prescribed boundary

conditions on the surface of the body can be any well-posed combination of vectors u,
and w,, ti(") and mi(”) as discussed on Section 4. Assume that there exist two different
solutions {ul.(l),efil),zcl.(l),ag), ,ui(l)} and {ul.(z),eé.(/.z),/cl.(z),o-gf), ,ul.(z)} to the same problem with

identical body forces and boundary conditions. Thus, we have the equilibrium equations

ol +F=0 (139)
O =~ Hih (140)
where
H Z‘%Biﬂfﬁ‘” (141a)
() = Aeii” (141b)

and the superscript (“) references the solutions " and .

Let us now define the difference solution

u =u? -y (142a)
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—el (142b)

i i i
Kkl =k - (142c)
o, =c? -l (142d)
w = — (142¢)

G((l')’ ,U,-(l)} and {u @) o) K(z),a(.z), ,ui(z)} correspond to the

Since the solutions {ufl) e, kW p i K p

LR /A Rt B
same body forces and boundary conditions, the difference solution must satisfy the
equilibrium equations

o, =0 (143)
Ol = ~Hii (144
with zero corresponding boundary conditions. Consequently, twice the total strain

energy (137) for the difference solution is

y

g (Al + Byxix', )dV = g 2W'dV =0 (145)

Since the strain energy density /' is non-negative, this relation requires

2W' = A,eie, + Bk, =0 in V (146)

However, the tensors 4, and B, are positive definite. Therefore the strain, curvature

and associted stresses for difference solution must vanish

e; =0, x/=0, 0,=0, =0 (147a-d)

These require that the difference displacement u; can be at most a rigid body motion.

However, if displacement is specified on part of the boundary such that rigid body

motion is prevented, then the difference displacement vanishes everywhere and we have

u =y (148a)
el =e? (148b)
kU = (148¢)
o) =c? (148d)
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= u? (148e)

Therefore, the solution to the boundary value problem is unique. On the other hand, if
only force and couple tractions are specified over the entire boundary, then the

displacement is not unique and is determined only up to an arbitrary rigid body motion.

Reciprocal theorem
We derive now the general reciprocal theorem for the equilibrium states of a linear polar

elastic material under different applied loads. Consider two sets of equilibrium states of

compatible elastic solutions {ul.(l),a)i(l),tl.(”)(l),mf”)(l),F;.(l)} and {ul.(z),a)@,t.(”)(z),ml.(")(z),F.(Z)}.

1 1 1

Let us apply the virtual work theorem (82) in the forms

[(oef? 24k Jay = j tuDds + [FuPdv + [m Vo ds (149)
4 14 N
| (6l — 2PNy = I (" udS + [ FCulay + [m"Pods (150)
V vV N

By using the general constitutive relations

J;p=A,,.k,e,g;>+%3ik,(,g{>,_%Bjk,(,gg (151)
/J,~(1) = _%B@/KE‘I) (152)
o) = Ayef) + Bt~ B (153)
u = —%Byx_gz) (154)

it is seen that

ki~ij

e — 2,0 ;)_Ai,k,e,gye;ﬂ+%B[k,<,5{_;e§,2>_%Bjkwe@+B[j,<;l>,<,(2) (155)

However, the symmetry relation (102) shows

ki~

1 1
T Burllel = LBkl =0 (156)

Therefore
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oWel?) — 24V = 4, el)el” + B Vi (157)
Similarly,
el —2 12l = Ag,-kzez(j)eg)+Bg/’f,(~2)’fi(l) (158)

Ji l] i l

Now we see that the symmetry relations (101) and (102) require

O-ﬁl) 15) 2#1() l() O-ﬁl) 5) 2#;“ l() (159)
which shows
'[(0-51) 15) 2#1() l( ))dV:J(O'EZ) IS) 2lul() l())dV (160)
v v

Therefore, the general reciprocal theorem for these two elastic solutions is

[0y, dS+jF dV+jm VePds

> (161)
= 4N ufldS+jF dV+jm 2w\Vds
S

7. Two-dimensional infinitesimal linear isotropic polar elasticity theory
In this section, we reconsider the two-dimensional infinitesimal linear isotropic polar
elasticity developed by Mindlin (1963). We start this development by assuming that the

displacement components are two-dimensional, where

w =u(x,), uy =v(x,), u; =0 (162a-c)

This is exactly the conditions for plane strain theory in Cauchy elasticity. The non-zero

components of strains are

e, :a—u, e, = o , €, _1 8_u+@ (163a-c)
o’ Y a2 oy Ox
and the only non-zero rotation component is
0, =0, = Lfov_ou (164)
2( x oy

Therefore, the components of the mean curvature vector are
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K =—K,=——, K =K_=———— (165a,b)

It is seen that the compatibility equations for this case are

0%e Oe 628x
5 T ey (1662

o
Lo O (166b)
Ox oy
0w, _0Oey _Oe, (166¢)
ox ox Oy
0o, 0 Oy (166d)
oy Ox 0Oy

Then, the corresponding couple stress and force stress components can be written

ow ow
=4 z, =4 z 167a,b
My n » Hy == ( )
Oy =20V 0, = 20V’ 0, (168a)
0l =20V 0, =21V 0, (168b)
Oy =(A+2p)e, + Je, (169a)
o, =Ae, +(A+2ue, (169b)
O'(Xy) = 2,U€Xy (169C)
It is also found that
u, =402 (170a)
ox
ow
=4 z 170b
’uyz 77 ay ( )
Finally, it is seen that
o, :(/1+2,u)ex+ﬂey (171a)
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o, =Ae,+(A+2u)e,

o, =2ue, -2nV’w

z

z

_ 2
o, =2ue, +2nV-w
where
ny + O-yx = 41Llexy
It is also seen that
o, = v(o-)r + O'y)
similarly to plane strain Cauchy elasticity, while for the couple stresses

0w,
ox

ow

y4

oy

U, =—p. =-4n

My ==y, = =40

When there is no body force, these stresses satisfy the equilibrium equations

6o'x any _0
ox oy
90, 99, _,
ox oy
Ot + e +o -0, =0

(171b)
(171c)

(171d)

(171e)

(1719)

(171g)

(171h)

(172a)

(172b)

(172¢)

To solve for stresses, we need to derive compatibility equations in terms of stresses as

follows. It is seen that

e =i[(l—v)ax —vay]

e, = i[(l —v)ay —vax]
2exy = i(axy + O'yx)
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Vo, :%(ayx -0, (173d)

By inserting these in (166), we obtain the compatibility equations in terms of the force

and couple stress tensors. Thus,

o*c, 0'c o

& + 6x2y —sz(O'X +0, ): e (O'yx + O'Xy) (174a)
Oty O (174b)

oy ox

0 0
1, = lza(ayx +axy)—2125[ax (o, +0,) (174c)
7 =2128—i[0'x —V(O'X +Gy)]—12%((7yx +O'xy) (174d)

By combining these with the equilibrium equations, we obtain the set of equations

oo .
99, %9 _y (1752)
Ox oy
do, 0o
S N (175b)
ox oy
o
L (175¢)
ox 0Oy Y
Vo, +0,)=0 (175d)
o
%:ﬁ (175¢)
oy ox

By introducing the stress functions ® = CD(x, y) and ¥ = ‘P(x, y), we may write the force

stresses and couple stresses as follows:

2 2
x:a?_aqf (176a)
oy”  Oxoy
2 2
626?+6‘P (176b)
Y ox? OxOy
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=— 176¢
Y xoy oy’ (1760)
2 2
yX:_aq>+aEf (176d)
ox0y  Ox
U, = kg (177a)
’ ox
oY
= 177b
U, o (1770b)
Equilibrium equations satisfy and compatibility equations give
VV0 =0 (178)
i(\P—zzvz\}'):-2(1-%)123(%1)) (179a)
Ox oy
i(\P—zﬂvzw):z(l—vz)zzi(vch) (179b)
oy ox
Combining (179a) and (179b) by eliminating @ gives
VW -’V =0 (180)

All these relations are exactly the equations derived by Mindlin (1963). This shows that
the solutions for two-dimensional cases based on Mindlin’s development, such as stress
concentration relations for a plate with a circular hole, still can be used. However, we

should notice that the couple stresses g, and s, are

g =g =22 (181a)
Ox
n' , 0w
=1 =4n'—= 181b
Hy nf“yz n o ( )

in Mindlin’s development. These relations become identical to those in the present

theory, when we take '=-7n. Thus, we may solve the boundary value problem in an

identical manner to Mindlin (1963), but then evaluate the couple stresses through a

postprocessing operation.
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More specifically, by comparing the relations (170) and (177), we can see

ow., oY
=4 A 182a
Ha =50 ox  Ox ( )
/1224776&)2 _ Y (182b)
’ oy oy
Therefore, we can take
dnow, =¥ (183)

If W is zero, there are no couple stress tensor components, and the relations for the force-
stress tensor reduce to the relations in classical elasticity, where @ is the Airy stress

function.

For force and couple traction vectors, we have

t" =c_ n, + o,n, (184a)
(n) _

t"=o.n +o,n, (184b)

m=m" = pu.n +u.n, (184c)

which can be written in terms of stress functions as

2 2 2
)(r”):a_q;_all'nx_'_ _8(I)+6‘2Pny (185a)
oy~  0OxOy ox0y  Ox
o [0 W) [0 oW (185)
! oxoy oy° )" | ox* oxoy )’
m=2%, 0¥ (185c¢)

=—n, + n
ox oy 7
If the location on the surface is specified by the coordinate s along the boundary in a

positive sense, we have

dy
n o= 186a
P (186a)
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=—— 186b
n= (186b)
Therefore
o 40D 0¥ (187a)
Yods\ oy ox
t;”) __4 8_CD+6_‘P (187b)
ds\ ox 0oy
oY ow
=2 —4p= 187
" on 7 on (187¢)

8. Anti-plane deformation infinitesimal linear isotropic polar elasticity theory
We assume the displacement components are

=0, u,=0, u, =wx,y) (188a-c)

These are exactly the conditions for anti-plane deformation in Cauchy elasticity. The

non-zero components of strains are

ezx :lﬁ_w’ ez =16_W, (189a,b)
20¢ 7 20y
and the non-zero rotation components are
o, :lc'?_w , @ :_la_w (190)
2 oy Y 20x
Therefore, the only non-zero component of the mean curvature vector is
ow
KZ=ny=l r 00| Lo, (191)
2\ ox oy 4
Then, the corresponding couple stress and force stress components can be written
e = p, =20V w (192)
ow ow
O \=U—, O\ =l— 193a,b
() THZ s O TH o ( )
ou., 0
O-[Zx] :l ﬂX} — _nﬁvzw, o-[zy] — l /uyx — nivzw (193C,d)
2 Ox ox 2 Oy oy
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Therefore

0
o . =u—-n—vViw, o.=u—+n—vVGw 194a,b
a SH T e SHo IS ( )
ow 2 ow 0 2
=u—+n—Vw, o.=u—-n—vV>=w 194c.,d
- ,Uay ny 12 ,Uay "ay ( )

oo 0o
—+—

195
ox oy (195)
which in terms of displacement gives the single fourth order equation

WV *w—nViViw=0 (196)

If couple stresses are zero on the boundary, the solution reduces to the classical Cauchy
elasticity solution

Viw=0 (197)
with
o =p, =0 (198a)
L (198b)
ox
ow
0,.=0,= ua (198¢)

everywhere in the domain. However, geometrical boundary conditions, such as
1 ow
w=0, o™ ==-""=

—=0 on § (199a,b)
2 On

create couple stresses in polar media. In that case, the classical solution cannot be used.

9. Some elementary linear isotropic polar elasticity problems

In this section, we reconsider several elementary problems in Cauchy elasticity within the

framework of the present infinitesimal linear polar theory. Koiter (1964) considered all
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of these problems, but within the context of the indeterminate couple stress theory.

Consequently, some differences appear.

Twist of a cylindrical bar

Consider the x;-axis of our coordinate system along the axis of a cylindrical bar with

constant cross section. We assume the displacement components are in the form as in the
classical theory and examine the corresponding stress field in the couple stress theory.
The assumed displacement components are

u, =—0x,x;, u, = 0x,x;, uy; =0 (200a-c)
where @ is the constant angle of twist per unit length. The non-zero components of the

strain tensor and rotation vector are

ey = —%sz, €y = %Hxl (201a,b)
1 1
W =0y, = —Eﬁxl, W, =W = —Eﬁxz, Wy = @, = 0xy (202a-c)

Interestingly, it is seen that the curvature vector vanishes

KZ%VXO):O (203)

Therefore, the force-stress distribution is the classical result
O3 =—HOXx,, 0,3 = 10X, (204a,b)
and the twist of a cylindrical bar does not generate couple stresses. This is in contrast

with the Koiter (1964) result, in which couple stresses appear.

Cylindrical bending of a flat plate

Consider a flat polar material plate of thickness 4 bent into a cylindrical shell with

generators parallel to the x;-axis. Let R denote the radius of curvature of the middle
plane x,x; in the deformed configuration. We assume the displacement components are

similar to those in Cauchy elasticity. Thus,

1 11
U = —Exlxz, u, = Ex

=— 4+
2

12 1 v lxzz,
21-v R

u, =0 (205a-c)
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The non-zero components of the strain tensor, rotation vector and mean curvature vector

are
1 v 1
€, = —E.Xz, €y, = :Exz (206a,b)
X,
w; =0y = El (207)
1
K'31 = —K2 = ﬁ (208)

Therefore, the non-zero force and couple stresses are written as

2u x, 2uv x,
o, =————=, =———-= 209a.b
11 1—v R 33 1—v R ( )
Hy = Hi3 = — s :4% (210)

Notice that unlike the previous example of twisting deformation, bending does produce

couple stresses. This is due to the existence of non-zero mean curvature.

Pure bending of a bar with rectangular cross-section

We take the x, -axis to coincide with the centerline of the rectangular beam and the other

axes parallel to the sides of the cross section of the beam. Let R denote the radius of

curvature of the central axis of the beam after bending in the x,x;-plane . We assume the

displacement components are the same as in the classical Cauchy elasticity theory as

follows:
1 14 14 ( 2 2) |

u, :Exlxy u, = —Exzxp u, =R Xy — X3 _Exl (211a-c)

Then, the strains, rotations and mean curvatures can be written

X 1%
e :?, €y, =€ = —?3 (212a,b)
%4 X
O, = 0, =?2 , 0, =, =El (213a,b)
1

K, =K = E(%’z - 0)2,3)= 0 (214a)
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1
K, =k = E(a)m ~w,,)=0 (214b)

1 I-v
K, =K Wy, — @, )=—— 214c
3 21 ( 2,1 1 2) 2R ( )
As a result, the non-zero force and couple stresses take the form
X3
o, =2y(1+v)E (215a)
I-v
My =y ==y, = =47 R (215b)

Again, for this problem, we find non-zero mean curvature and couple stresses.

10. Conclusions

By considering further the consequences of the kinematics of a continuum and the
principle of virtual work, we find that the couple stress theory for polar media can be
formulated as a practical theory without any ambiguity. In the resulting quasistatic
theory, independent body couples cannot be specified in the volume and surface couples
can only exist in the tangent plane at each boundary point. (Although not specifically
addressed here, in the corresponding dynamical theory, it should be clear that spin inertia
does not appear.) As a consequence, the couple stress tensor is found to be skew-
symmetric and energetically conjugate to the mean curvature tensor, which also is skew-
symmetrical. Then, for infinitesimal or small deformation linear polar elasticity, we can
write constitutive relations for all of the components of the force stress and couple stress
tensors. The most general anisotropic polar material is described by 27 independent
constitutive coefficients, including six coefficients relating mean curvatures to couple
stresses. At the other extreme, for isotropic materials, the two Lamé parameters and one
length scale completely characterize the behavior. In addition, strain energy relations and
uniqueness and reciprocal theorems have been developed for linear polar elasticity.
General formulations for two-dimensional and anti-plane problems are also elucidated for
the isotropic case. The former employs a pair of stress functions, as introduced

previously by Mindlin for the indeterminate theory. Finally, several additional
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elementary problems are examined within the context of small deformation polar

elasticity.

By resolving the indeterminacy of the previous couple stress theory, the present polar
theory provides a fundamental basis for the development of scale-dependent material
response. Additional aspects of the linear theory, including fundamental solutions and
computational mechanics formulations, will be addressed in forthcoming work. Beyond
this, the present polar theory should be useful for the development of nonlinear elastic,
elastoplastic, viscoplastic and damage mechanics formulations that may govern the

behavior of solid continua at the smallest scales.

References
Cosserat, E., Cosserat, F., 1909. Théorie des corps déformables (Theory of deformable

bodies). A. Hermann et Fils, Paris.
Hamilton, W. R., 1866. Elements of quaternions. Longmans, Green, & Co., London.

Koiter, W. T., 1964. Couple stresses in the theory of elasticity, I and II. Proc. Ned. Akad.
Wet. (B) 67, 17-44.

Mindlin, R. D., 1963. Influence of couple-stresses on stress concentrations. Exp. Mech. 3,

1-7.

Mindlin, R. D., 1964. Micro-structure in linear elasticity, Arch. Rational Mech. Anal. 16,
51-78.

Mindlin, R. D., Tiersten, H. F., 1962. Effects of couple-stresses in linear elasticity, Arch.
Rational Mech. Anal. 11, 415-488.

Nowacki, W., 1986. Theory of asymmetric elasticity. Pergamon Press, Oxford.

Toupin, R. A., 1962. Elastic materials with couple-stresses. Arch. Rational Mech. Anal.
11, 385-414.

Voigt, W., 1887. Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle
(Theoretical studies on the elasticity relationships of crystals). Abh. Gesch.
Wissenschaften 34.

38



