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Abstract 

The existing couple stress theory for polar media suffers from an indeterminacy of the 

spherical part of the couple-stress tensor, which limits significantly its applicability in the 

study of micro and nanoscale mechanics.  Here we rely on concepts from virtual work, 

along with some kinematical considerations, to establish a consistent polar theory for 

solids that resolves all of the indeterminacies by recognizing the character of the couple 

stress tensor.  We then develop the corresponding theory of small deformations in elastic 

bodies, including the energy and constitutive relations, displacement formulations, the 

uniqueness theorem for the corresponding boundary value problem and the reciprocal 

theorem for linear elasticity theory.  Next, we consider the more restrictive case of 

isotropic materials and present general solutions for two-dimensional problems based on 

stress functions and for problems of anti-plane deformation.  Finally, we examine several 

additional elementary boundary value problems within this consistent theory of polar 

elasticity. 
   
1.  Introduction  

Classical first gradient approaches in continuum mechanics do not address the size-

dependency that is observed in smaller scales.  Consequently, a number of theories that 

include higher gradients of deformation have been proposed to capture, at least partially, 

size-effects at the nano-scale.  Additionally, consideration of the second gradient of 

deformation leads naturally to the introduction of the concept of couple-stresses.  Thus, in 

the current form of these theories, the material continuum may respond to body and 

surface couples, as well as spin inertia for dynamical problems.  
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The existence of couple-stress in materials was originally postulated by Voigt (1887).  

However, Cosserat and Cosserat (1909) were the first to develop a mathematical model to 

analyze materials with couple stresses.  The idea was revived and generalized much later 

by Toupin (1962), Mindlin and Tiersten (1962), Mindlin (1964), Koiter (1964), Nowacki 

(1986) and others.  In these developments, the gradient of the rotation vector, as a 

curvature tensor, has been recognized as the effect of the second gradient of deformation 

in polar materials.  Unfortunately, there are some difficulties with the present 

formulations.  Perhaps the most disturbing troubles are the indeterminacy of the spherical 

part of the couple-stress tensor and the appearance of the body couple in the constitutive 

relation for the force-stress tensor (Mindlin and Tiersten, 1962). 

 

Here we develop a consistent couple stress theory for polar media and organize the 

current paper in the following manner.  In Section 2, we present stresses, couple stresses 

and the equilibrium equations per the usual definitions in the existing couple stress 

literature.  Based on purely kinematical considerations as provided in Section 3, we first 

suggest the mean curvature tensor as the measure of deformation compatible with the 

couple stress tensor for the infinitesimal theory.  Then, by using the virtual work 

formulation of Section 4, we demonstrate that in couple stress materials, body couples 

must be transformed to an equivalent body force system.  More importantly, based on 

resolving properly the boundary conditions, we show that the couple-stress tensor is 

skew-symmetric and, thus, completely determinate.  This also confirms the mean 

curvature tensor as the fundamental deformation measure, energetically conjugate to the 

couple stress tensor.  Afterwards, in Section 5, the general theory of small deformation 

polar elasticity is developed.  The constitutive and equilibrium equations for a linear 

elastic material also are derived under the assumption of infinitesimal deformations in 

Section 6, along with the uniqueness theorem for well-posed boundary value problems 

and the reciprocal theorem.  Section 7 provides the general solution based on stress 

functions for two-dimensional infinitesimal linear polar elasticity, while the 

corresponding anti-plane deformation problem is examined in Section 8.  Section 9 

presents solutions for several elementary problems in polar elasticity.  Finally, Section 10 

contains a summary and some general conclusions.   
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2.  Stresses and equilibrium 

For a polar material, it is assumed that the transfer of the interaction in the current 

configuration occurs between two particles of the body through a surface element dS  

with unit normal vector in  by means of a force vector ( )n
it dS  and a moment vector 

( )dSm n
i , where )(n

it  and )(n
im  are force  and couple traction vectors.  Surface forces and 

couples are then represented by generally non-symmetric force-stress jiσ  and couple-

stress jiμ  tensors, where 

                                                               ( )n
i ji jt nσ=                                                           (1) 

                                                    ( )n
i ji jm nμ=                                                           (2) 

 

Consider an arbitrary part of the material continuum occupying a volume V enclosed by 

boundary surface S as the current configuration. Under quasistatic conditions, the linear 

and angular balance equations for this part of the body are 
( ) 0

VS

n
i it dS F dV+ =∫ ∫                                                 (3) 

( ) ( ) 0
S V

n n
ijk j i ijk j k ikx t m dS x F C dVε ε⎡ ⎤+ ⎡ ⎤⎣ ⎦+ + =⎢ ⎥⎣ ⎦∫ ∫                               (4) 

where iF  and iC  are the body force and the body couple per unit volume of the body, 

respectively.  Here ijkε  is the permutation tensor or Levi-Civita symbol.  

 

By using the relations (1) and (2), along with the divergence theorem, and noticing the 

arbitrariness of volume V, we finally obtain the differential form of the equilibrium 

equations, for the usual couple stress theory, as 

                                                          0, =+ ijji Fσ                                                            (5) 

                                                      0, =++ ijkijkjji Cσεμ                                                   (6) 

where the comma denotes differentiation with respect to the spatial variables. 

 

 



   

 4

3.  Kinematics 

Here we consider the kinematics of a polar continuum under the assumptions of 

infinitesimal deformation.  In Cartesian coordinates, we define iu  to represent the 

displacement field of the continuum material.  Consider the neighboring points P and Q 

with position vectors ix  and ii dxx +  in the reference configuration.  The relative 

displacement of point Q with respect to P is 

                                                               jjii dxudu ,=                                                      (7) 

where jiu ,  is the displacement gradient tensor at point P.  As we know, although this 

tensor is important in analysis of deformation, it is not itself a suitable measure of 

deformation.  This tensor can be decomposed into symmetric and skew-symmetric parts  

                                                              ,i j ij iju e ω= +                                                       (8) 

where  

                                                ( ) ( )ijjijiij uuue ,,, 2
1

+==                                           (9) 

                                                          [ ] ( )ijjijiij uuu ,,, 2
1

−==ω                                         (10) 

 

Notice that here we have introduced parentheses surrounding a pair of indices to denote 

the symmetric part of a second order tensor, whereas square brackets are associated with 

the skew-symmetric part.  Of course, in (9) and (10), the tensors ije  and ijω  are the small 

deformation strain and rotation tensor, respectively.  The rotation vector iω  dual to the 

rotation tensor ijω  is defined by 

                                                        jkijkkjijki u ,2
1

2
1 εωεω ==                                         (11a) 

which in vectorial form is written 

uω ×∇=
2
1                                                      (11b) 

 

Alternatively, this rotation vector is related to the rotation tensor through 

                                                            ji ijk kω ε ω=                                                        (12) 
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which shows 

231 ωω −= ,  132 ωω = ,  123 ωω −=                                     (13) 

 

Therefore, the relative displacement is decomposed into  

                                                          ( ) ( )21
iii dududu +=                                                   (14) 

where 

                                                                          ( )
jiji dxedu =1                                                       (15) 

                                                                          ( )
jiji dxdu ω=2                                                      (16) 

 

Then, ijω  is seen to generate a rigid-like rotation of element idx  about point P, where 

                                                               ( ) 02 == jiijii dxdxdxdu ω                                               (17) 

 

Since ijω  does not contribute to the elongation or contraction of element idx , it cannot 

appear in a tensor measuring material stretches.  Therefore, as we know, the symmetric 

strain tensor ije  is the suitable measure of deformation in classical infinitesimal theories, 

such as Cauchy elasticity. 

 

In couple stress theory, we expect to have an additional tensor measuring the curvature of 

the arbitrary fiber element idx .  To find this tensor, we consider the field of rotation 

vector iω .  The relative rotation of two neighboring points P and Q is given by 

                                                           jjii dxd ,ωω =                                                     (18) 

where the tensor ji,ω  is the gradient of the rotation vector at point P.  It is seen that the 

components 1,1ω , 2,2ω  and 3,3ω  represent the torsion of the fibers along corresponding 

coordinate directions 1x , 2x  and 3x , respectively, at point P.  The off-diagonal 

components represent the curvature of these fibers in planes parallel to coordinate planes.  

For example, 2,1ω  is the curvature of a fiber element in the 2x  direction in a plane parallel 



   

 6

to the 32 xx  plane, while 1,2ω  is the curvature of a fiber element in the 1x  direction in a 

plane parallel to the 31xx  plane.  

 

The suitable measure of curvature must be a tensor measuring pure curvature of an 

arbitrary element idx .  Therefore, in this tensor, the components 1,1ω , 2,2ω  and 3,3ω  

cannot appear.  However, simply deleting these components from the tensor ji,ω  does not 

produce a tensor.  Consequently, we expect that the required tensor is the skew-

symmetric part of ji,ω .  By decomposing the tensor ji,ω  into symmetric and skew-

symmetric parts, we obtain 

                                                               ijijji κχω +=,                                                    (19) 

where 

                                                      ( ) ( )ijjijiij ,,, 2
1 ωωωχ +==                                           (20) 

                                                     [ ] ( )ijjijiij ,,, 2
1 ωωωκ −==                                           (21) 

 

The symmetric tensor ijχ  results from applying the strain operator to the rotation vector, 

while the tensor ijκ  is the rotation of the rotation vector at point P.  From (20),  

                                               1,111 ωχ = ,  2,222 ωχ = ,  3,333 ωχ =                                     (22) 

and 

                                                      ( )1,22,12112 2
1 ωωχχ +==                                         (23a) 

                                                   ( )2,33,23223 2
1 ωωχχ +==                                         (23b) 

                                                      ( )1,33,13113 2
1 ωωχχ +==                                         (23c) 

 

The diagonal elements 11χ , 22χ  and 33χ  defined in (22) represent pure torsion of fibers 

along the 1x , 2x  and 3x  directions, respectively, as mentioned above.  On the other hand, 
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from careful examination of (23), we find that 12χ , 23χ  and 13χ  measure the deviation 

from sphericity (Hamilton, 1866) of deforming planes parallel to 21xx , 32 xx  and ,31xx  

respectively.  Furthermore, we may recognize that this symmetric ijχ  tensor must have 

real principal values, representing the pure twists along the principal  directions.  Thus, 

we refer to ijχ  as the torsion tensor and we expect that this tensor will not contribute as a 

fundamental measure of deformation in a polar material.  Instead, we anticipate that the 

fundamental curvature tensor is the skew-symmetric rotation of rotation tensor ijκ .  This 

will be confirmed in the next section through consideration of couple stresses and virtual 

work. 

 

We also may arrive at this outcome by noticing that only the part of idω  that is normal to 

element idx  produces pure curvature.  Therefore, by decomposing idω  into 

                                                           ( ) ( )21
iii ddd ωωω +=                                                (24) 

where 

                                                           ( )
jiji dxd χω =1                                                      (25) 

                                                          ( )
jiji dxd κω =2                                                      (26) 

we notice 

                                                  ( ) 02 == jiijii dxdxdxd κω                                              (27) 

This shows that ( )2
idω  is the component of idω  normal to idx .  Therefore, the tensor ijκ  

seems to be the suitable curvature tensor, which is represented by 

                                                         [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=

0
0

0

2313

2312

1312

κκ
κκ
κκ

κ ij                                      (28) 

where the non-zero components of this tensor are 

( )1,22,12112 2
1 ωωκκ −=−=                                      (29a) 

                                 ( )2,33,23223 2
1 ωωκκ −=−=                                     (29b) 
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( )1,33,13113 2
1 ωωκκ −=−=                                      (29c) 

 

Now we may recognize that 12κ , 23κ , and 13κ  are  the mean curvatures of planes parallel 

to the 21xx , 32 xx , 13xx  planes, respectively, at point P after deformation.  Therefore, the 

skew-symmetric tensor ijκ  will be referred to as the mean curvature tensor or simply the 

curvature tensor.  The curvature vector iκ  dual to this tensor is defined by 

                                         kjijkjkijki κεωεκ
2
1

2
1

, ==                                               (30) 

 

Thus, this axial vector is related to the mean curvature tensor through 

                                             ji ijk kκ ε κ=                                                        (31) 

which shows 

                                     231 κκ −= , 132 κκ = , 123 κκ −=                                      (32) 

 

It is seen that the mean curvature vector can be expressed as 

                                         ωκ ×∇=
2
1                                                       (33) 

 

This shows that κ  is the rotation of the rotation vector, which can also be expressed as 

                                ( ) ( ) uuuκ 2

4
1

4
1

4
1

∇−•∇∇=×∇×∇=                                    (34a) 

ikikkkikiki uuuu 2
,,, 4

1
4
1

4
1

4
1

∇−=−=κ                                     (34b) 

 

What we have presented here is applicable to small deformation polar theory, which 

requires the components of the strain tensor and mean curvature vector to be 

infinitesimal.  These conditions can be written as 

                                   1<<ije                                                        (35) 
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                                   1
i

Sl
κ <<                                                      (36) 

where, Sl  is the smallest characteristic length in the body. 

 

While analogous measures of strain and curvature can be obtained for finite deformation 

polar theory, this would take us beyond the scope of the present work, which is directed 

toward the infinitesimal linear couple stress theory. 

 

4.  Virtual work formulation and its consequences for polar media 

Consider now a polar material continuum occupying a volume V bounded by a surface S 

as the current configuration.  The standard form of the equilibrium equations for this 

medium were given in (5) and (6). 

 

Let us multiply equation (5) by a virtual displacement iuδ  and integrate over the volume 

and also multiply equation (6) by the corresponding virtual rotation iδω , where 

                                              jkijki u ,2
1 δεδω =                                                  (37) 

and integrate this over the volume as well.  Therefore, we have 

                                       ( ) 0, =+∫
V

iijji dVuF δσ                                                          (38) 

                                    ( ) 0, =++∫
V

iijkijkjji dVC δωσεμ                                               (39) 

 

By noticing the relation 

                             ( ) jijijijiijji uuu ,,, δσδσδσ −=                                                 (40) 

and using the divergence theorem, the relation (38) becomes 

                    ( ) ∫∫∫ +=
V

ii
S

i
n

i
V

jiji dVuFdSutdVu δδδσ ,                                          (41) 

 

Similarly, by using the relation 

                 ( ) jkjkjijijijiijkijkijji δωσδωμδωμδωσεδωμ −−=+ ,,,                          (42) 
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equation (39) becomes 

             ( ) ∫∫∫∫ +=−
V

ii
S

i
n

i
V

ijji
V

jiji dVCdSmdVdV δωδωδωσδωμ ,                         (43) 

 

Then, by adding (41) and (43), we obtain 

( )
( ) ( )

, ,ji i j ji i j ij
V V

n n
i i i i i i i i

S V S V

dV u dV

t u dS F u dV m dS C dV

μ δω σ δ δω

δ δ δω δω

+ − =∫ ∫

+ + +∫ ∫ ∫ ∫
                  (44) 

 

However, by noticing the relation 

                   ijjiij ue δωδδ −= ,                                                               (45) 

for compatible virtual displacement, we obtain the virtual work theorem as 

   ( ) ( )∫ ∫∫∫∫∫ +++=+
V V

ii
S

i
n

iii
S

i
n

i
V

jiji
V

ijji dVCdSmdVuFdSutdVdVe δωδωδδδωμδσ ,        (46) 

 

Now, by using this virtual work formulation, we investigate the fundamental character of 

the body couple and couple stress in a material continuum. 

 

It is seen that the term  

                                                    dVC i
V

iδω∫                                                         (47) 

in (46) is the only term in the volume that involves iδω .  However, iδω  is not 

independent of iuδ  in the volume, because we have the relation 

                                              jkijki u ,2
1 δεδω =                                                    (48) 

 

Therefore, by using (48), we find 

   ( ) kjiijkjkiijkjkijkiii uCuCuCC δεδεδεδω ,,, 2
1

2
1 

2
1

−==                         (49) 

and, after applying the divergence theorem, the body couple virtual work in (47) becomes 
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                 dSunCdVuCdVC
S

ikjijki
V

jkijk
V

ii ∫∫∫ += δεδεδω
2
1

2
1

,                       (50) 

which means that the body couple iC  transforms into an equivalent body force jkijkC ,2
1 ε  

in the volume and a force traction vector kjijk nCε
2
1  on the bounding surface.  This shows 

that in polar materials, the body couple is not distinguishable from the body force.  

Therefore, in the couple stress theory for polar media, we must only consider body 

forces.  This is analogous to the impossibility of distinguishing a distributed moment load 

in Euler–Bernoulli beam theory, in which the moment load must be replaced by the 

equivalent distributed force load and end concentrated loads.  Therefore, for a proper 

couple stress theory, the equilibrium equations become 

                                 0, =+ ijji Fσ                                                        (51) 

                                    0, =+ jkijkjji σεμ                                                    (52) 

where 

1
2

+ ∇ →F ×C F          in   V                                         (53a) 

and 

   ( ) ( )1       on  
2

n n S+ × →t C n t                                        (53b) 

and the virtual work theorem reduces to 

                   ( ) ( )∫ ∫∫∫∫ ++=+
V S

i
n

iii
S

i
n

i
V

jiji
V

ijji dSmdVuFdSutdVdVe δωδδδωμδσ ,                (54) 

 

Next, we investigate the fundamental character of the couple stress tensor based on 

boundary conditions. 

 

The prescribed boundary conditions on the surface of the body can be either vectors iu  

and iω , or ( )n
it and ( )n

im , which makes a total number of six boundary values for either 

case.  However, this is in contrast to the number of geometric boundary conditions that 

can be imposed (Koiter, 1964).  In particular, if components of iu  are specified on the 
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boundary surface, then the normal component of the rotation iω  corresponding to 

twisting 

                                   ( ) ( )
ikki

nnn
i nnn ωωω ==                                              (55) 

where 

                                        ( )
kk

nn nωω =                                                      (56) 

cannot be prescribed independently.  However, the tangential component of rotation iω  

corresponding to bending, that is, 

                            ( ) ( )
ikkii

nn
i

ns
i nnn ωωωωω −=−=                                       (57) 

may be specified in addition, and the number of geometric or essential boundary 

conditions that can be specified is therefore five. 

 

Next, we let ( )nnm  and ( )ns
im  represent the normal and tangential components of the 

surface couple vector ( )n
im , respectively, where 

                              ( )
jijik

n
k

nn nnnmm μ== )(                                               (58) 

causes twisting, while 

                           ( ) ( ) ( )
i

nnn
i

ns
i nmmm −=                                                 (59) 

is responsible for bending. 

 

From kinematics, since ( )nnω  is not an independent generalized degree of freedom, its 

apparent corresponding generalized force must be zero.  Thus, for the normal component 

of the surface couple vector ( )n
im , we must enforce the condition 

( ) ( ) 0   on  nn n
k k ji i jm m n n n Sμ= = =                                      (60) 

 

Furthermore, the boundary couple surface virtual work in (54) becomes 

                              ( ) ( ) ( ) ( )

S S S

n ns ns ns
i i i i i im dS m dS m dSδω δω δω= =∫ ∫ ∫                               (61) 

This shows that a polar material in couple stress theory does not support independent 

distributions of normal surface couple ( )nnm , and the number of mechanical boundary 
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conditions also is five.  In practice, it might seem that a given ( )nnm  has to be replaced by 

an equivalent shear stress and force system.  Koiter (1964) gives the detail analogous to 

the Kirchhoff bending theory of plates.  However, we should realize that there is a 

difference between couple stress theory and the Kirchhoff bending theory of plates.  Plate 

theory is an approximation for elasticity, which is a continuum mechanics theory.  

However, couple stress theory is a continuum mechanics theory itself without any 

approximation. 

 

From the above discussion, we should realize that on the surface of the body, a normal 

couple ( )nnm  cannot be applied.  By continuing this line of reasoning, we may reveal the 

subtle character of the couple stress-tensor.  First, we notice that the virtual work theorem 

can be written for every arbitrary volume with arbitrary surface within the body.  

Therefore, for any point on any arbitrary surface with unit normal in , we must have 

                   ( ) Vnnm jiji
nn in       0== μ                                            (62) 

 

Since jinn  is symmetric and arbitrary in (62), jiμ  must be skew-symmetric.  Thus, 

                          Vijji in       μμ −=                                                   (63) 

 

This is the fundamental property of the couple-stress tensor in polar continuum 

mechanics, which has not been recognized previously.  Here we can see the crucial role 

of the virtual work theorem in this result. 

 

In terms of components, the couple stress tensor now can be written as 

             [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=

0
0

0

2313

2312

1312

μμ
μμ
μμ

μij                                               (64) 

and one can realize that the couple stress actually can be considered as an axial vector. 

This couple stress vector iμ  dual to the tensor ijμ  can be defined by 

                                         kjijki μεμ
2
1

=                                                       (65) 
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where we also have 

                                               jikijk μμε =                                                        (66) 

 

These relations simply show 

                                    231 μμ −= ,  132 μμ = ,  123 μμ −=                                     (67) 

 

It is seen that the surface couple vector can be expressed as 

                          ( )n
i ji j ijk j km n nμ ε μ= =                                               (68) 

which can be written in vectorial form 

                               ( ) μnm ×=n                                                       (69) 

This obviously shows that the surface couple vector ( )nm  is tangent to the surface. 

 

Interestingly, the angular equilibrium equation (52) can be expressed as 

                         ( ) 0, =+ jkjkijk σμε                                                     (70) 

which indicates that jkjk σμ +,  is symmetric.  Therefore, its skew-symmetric part 

vanishes and 

                 [ ] [ ]jiji ,μσ −=                                                         (71) 

which produces the skew-symmetric part of the force stress tensor in terms of the couple 

stress vector. This result could have been expected on the grounds that the skew-

symmetric stress tensor [ ]jiσ  is actually an axial vector and should depend on the axial 

couple stress vector iμ .  Therefore, it is seen that the sole duty of the angular equilibrium 

equation (52) is to produce the skew-symmetric part of the force stress tensor. This 

relation can be elaborated if we consider the axial vector is  dual to the skew-symmetric 

part of the force-stress tensor [ ]ijσ , where 

                  [ ]kjijkis σε
2
1

=                                                      (72a) 

which also satisfies 

                       [ ]jikijk s σε =                                                        (72b) 
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or simply 

                                       [ ]231 σ−=s ,  [ ]132 σ=s ,  [ ]123 σ−=s                                   (73) 

By using (71) and (72a), we obtain  

[ ] jkijkkjijkis ,, 2
1

2
1 μεμε =−=                                         (74a) 

which can be written in vectorial form  

μs ×∇=
2
1                                                     (74b) 

This simply shows that half of the curl of the couple stress vector μ  produces the skew-

symmetric part of the force-stress tensor through s.  Interestingly, it is seen that 

0=•∇ s                                                         (75)  

 

Returning to the virtual work theorem, we notice since jiμ  is skew-symmetric 

                                       ijjijiji δκμδωμ =,                                                 (76) 

which shows that the skew-symmetric mean curvature tensor ijκ  is energetically 

conjugate to the skew-symmetric couple-stress tensor jiμ .  This confirms our speculation 

of ijκ  as a suitable curvature tensor in Section 2.  Furthermore, the virtual work theorem 

(54) becomes 

        ( ) ( ) ( )

V V S V S

n ns ns
ji ij ji ij i i i i i ie dV dV t u dS F u dV m dSσ δ μ δκ δ δ δω+ = + +∫ ∫ ∫ ∫ ∫               (77) 

 

Interestingly, by using the dual vectors of these tensors, we have           

    iiqppqqpijqijpqjiqpijpijji δκμδκμδδκμεεδκεμεδκμ 22 −=−=−==               (78) 

which shows the conjugate relation between twice the mean curvature vector iκ2−  and 

the couple-stress vector iμ . 

 

Since ijeδ  is symmetric, we also have 

                               ( ) ijjiijji ee δσδσ =                                                      (79) 

where  
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                            ( ) ( )ijjiji σσσ +=
2
1                                                    (80) 

is the symmetric part of the force-stress tensor.  Thus, the principle of virtual work can be 

written 

         ( )
( ) ( )∫ ∫∫∫∫ ++=+

V S
i

n
iii

S
i

n
i

V
ijji

V
ijji dSmdVuFdSutdVdVe δωδδδκμδσ            (81) 

 

Therefore, it is seen that the symmetric small deformation strain tensor ije  is the 

kinematical tensor energetically conjugate to the symmetric part of the force-stress tensor 

( )jiσ .  Finally, the virtual work theorem (81) can be rewritten as 

               ( ) ( ) ( )∫ ∫∫∫ ++=−
V S

i
n

iii
S

i
n

i
V

iiijji dSmdVuFdSutdVe δωδδδκμδσ 2               (82) 

 

What we have presented so far is a continuum mechanical theory of couple stress polar 

materials, independent of the material properties.  In the following section, we specialize 

the theory for elastic materials. 

 

5.  Infinitesimal polar elasticity 

Now, we develop the theory of small deformation for elastic polar materials.  In a polar 

elastic material, there is a strain energy function W , where for arbitrary virtual 

deformations about the equilibrium position, we have 

                  ( ) iiijjiijjiijji eeW δκμδσδκμδσδ 2−=+=                                (83) 

Therefore, W  is a positive definite function of the symmetric strain tensor ije  and the 

mean curvature vector iκ .  Thus, 

                         ( )iijeWWW κ,),( == κe                                              (84) 

 

However, for a variational analysis the relation (83) should be written as 

                           ( ) iijiji uW δκμδσδ 2, −=                                              (85) 

where the all components of jiu ,δ  and iδκ  can be taken independent of each other.  From 

the relations (84) and (85), we obtain 
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                                    ( )
ji

ji u
W

,∂
∂

=σ                                                        (86) 

                                             
i

i
W
κ

μ
∂
∂

−=2                                                        (87) 

 

However, it is seen that 

                                   
ji

kl

klji u
e

e
W

u
W

,, ∂
∂

∂
∂

=
∂
∂                                                    (88) 

By noticing 

                                   ( )kllkkl uue ,,2
1

+=                                                   (89) 

we obtain 

                           ( )kjliljki
ji

kl

u
e δδδδ +=

∂
∂

2
1

,

                                             (90) 

 

Therefore 

                          ( )kjliljki
klji e

W
u
W δδδδ +

∂
∂

=
∂
∂

2
1

,

                                         (91) 

which shows 

                      ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
∂
∂

jiijji e
W

e
W

u
W

2
1

,

                                                (92) 

 

Then 

                        ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
jiij

ji e
W

e
W

2
1σ                                                  (93) 

                                 
i

i
W
κ

μ
∂
∂

−=
2
1                                                         (94) 

It is also seen that 

           [ ] ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=−=
ijji

ijjiji
WW

,,
,,, 4

1
2
1

κκ
μμμ                             (95) 

Therefore, for the skew-symmetric part of the force-stress tensor, we have 
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                  [ ] [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=−=
ijji

jiji
WW

,,
, 4

1
κκ

μσ                                (96) 

 

Finally, we obtain the constitutive relations as 

               
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
ijjijiij

ji
WW

e
W

e
W

,,
4
1

2
1

κκ
σ                            (97) 

                          
i

i
W
κ

μ
∂
∂

−=
2
1                                                         (98) 

 

The total potential energy functional for polar elastic body is defined as 

{ } ( ) ( )∫∫∫∫ −−−=
S

i
n

i
S

i
n

i
V

ii
V

dSmdSutdVuFWdVΠ ωu                        (99) 

 

It can be easily shown that this functional attains its absolute minimum when the 

displacement field corresponds to the elastic solution that satisfies the equilibrium 

equations. The kinematics of deformation and variation of (99) reveal an important 

character of the strain energy function W .  We know there are two sets of equilibrium 

equations (51) and (52) corresponding to linear and angular equilibrium of an 

infinitesimal element of material.  Therefore, the geometrical boundary conditions are the 

displacement iu  and rotation iω  as we discussed previously.  As we showed in Section 4, 

polar continuum mechanics supports the geometrical boundary conditions iu  and ( )ns
iω , 

and their corresponding energy conjugate mechanical boundary conditions ( )n
it  and ( )ns

im .  

Consequently, there is no other possible type of boundary condition in polar continuum 

mechanics.  Therefore, in the variation of the total potential energy Π  in (99), the strain 

energy function W  at most can be in the form (84). This means at most the strain energy 

function W is a function of the second derivative of deformation in the form of the mean 

curvature vector iκ .  In other words, the continuum mechanics strain energy function 

W cannot depend on third and higher order derivative of deformations. 
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6. Infinitesimal linear polar elasticity 

 

Strain energy and constitutive relations 

For a linear elastic material, based on our development, the quadratic positive definite 

strain energy must be in the form  

                       jiijklijijkl BeeAW κκ
2
1

2
1),( +=κe                                        (100) 

The tensors ijklA and ijB  contain the elastic constitutive coefficients.  It is seen that the 

tensor ijklA  is actually equivalent to its corresponding tensor in Cauchy elasticity.  The 

symmetry relations 

                            ijkl klij jiklA A A= =                                                       (101) 

                        jiij BB =                                                              (102) 

are trivial.  These symmetry relations show that for the most general case the number of 

distinct components for ijklA  and ijB  are 21 and 6, respectively.  It is seen that the couple 

stress vector and symmetric part of stress tensor can be found as 

                             jiji B κμ
2
1

−=                                                          (103) 

                               ( ) klijklji eA=σ                                                         (104) 

Additionally, we find that 

                          jkikji B ,, 2
1 κμ −=                                                      (105) 

 

The skew-symmetric part of this tensor is 

             [ ] [ ] ikjkjkikjiji BB ,,, 4
1

4
1 κκσμ +−=−=                                   (106) 

 

Therefore, for the force stresses, we find 

                         ikjkjkikklijklji BBeA ,, 4
1

4
1 κκσ −+=                                      (107) 
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For an isotropic polar material, the symmetry relations require 

            jkiljlikklijijklA δμδδμδδλδ ++=                                        (108) 

                   ijijB ηδ16=                                                       (109) 

 

The moduli λ  and μ  have the same meaning as the Lamé constants for an isotropic 

material in Cauchy elasticity.  It is seen that only one extra material constant η  accounts 

for couple-stress effects in an isotropic polar material and the strain energy becomes 

              ( ) iiijijkk eeeW κηκμλ 8
2
1),( 2 ++=κe                                   (110) 

with the following restrictions on elastic constants for positive definite strain energy 

                            0      ,0      ,023 >>>+ ημμλ                                       (111) 

 

Then, the constitutive relations can be written 

                          ii ηκμ 8−=                                                      (112) 

( ) ijijkkji ee μδλσ 2+=                                              (113) 

Interestingly, it is seen that for an isotropic material  

0, ==•∇ iiμμ                                                    (114) 

By using the relation 

          kkikiki uu ,, 4
1

4
1

−=κ                                                 (115) 

we obtain 

( )kikii uu ,
22 −∇= ημ                                               (116a) 

or in vectorial form 

( )[ ]uuμ •∇∇−∇= 22η                                             (116b) 

Additionally, 

( )kijkjiji uu ,,
2

, 2 −∇= ημ                                             (117) 

Therefore, 

[ ] ( )ijjiji uu ,,
2

, −∇=ημ                                              (118) 

or 
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[ ] ijji ωημ 2
, 2 ∇=                                                  (119) 

and we obtain 

[ ] [ ] jijiji ωημσ 2
, 2 ∇=−=                                            (120) 

or by exchanging indices 

[ ] ijij ωησ 22 ∇=                                                  (121) 

 

Recall that the axial vector is  is dual to [ ]ijσ , as shown in (72).  Then, from (74a) and 

(112), is  can be written in terms of the curvature vector as 

,4i ijk k js ηε κ= −                                                  (122) 

Therefore, the constitutive relation for vector s  is 

κs ×∇−= η4                                                  (123a) 

which can be written alternatively as 

ωωs 222 ∇=×∇×∇−= ηη                                        (123b) 

or 

us ×∇×∇×∇−= η                                               (123c) 

 

This remarkable result shows that in an isotropic polar material the vector s , 

corresponding to skew-symmetric part of stress tensor, is proportional to the curl of curl 

of curl of the displacement vector u . 

 

By using the relations (113) and (120), the total force-stress tensor can be written as 

jiijijkkji ee ωημδλσ 222 ∇++=                                        (124) 

We also notice that 

( )ijji

jiji

,,4      

8

ωωη

ηκμ

−=

−=
                                               (125) 

which is more useful than iμ  in practice. 
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It is seen that these relations are similar to those in the indeterminate couple stress theory 

(Mindlin and Tiersten, 1962), when ηη −=′ .  Here we have derived the couple stress 

theory for polar materials in which all former troubles with indeterminacy disappear. 

There is no spherical indeterminacy and the second couple stress coefficient η′  depends 

on η , such that the couple stress tensor becomes skew-symmetric. 

 

Interestingly, the ratio 

                            2 l=
μ
η                                                         (126) 

specifies a characteristic material length l , which is absent in Cauchy elasticity, but is 

fundamental to small deformation couple-stress polar elasticity.  We realize that this is 

the characteristic length in an elastic material and that Sl l→  in (36).  Thus, the 

requirements for small deformation polar elasticity are 

                                   1<<ije                                                        (127a) 

                                   1
i l

κ <<                                                        (127b) 

 

Displacement formulations  

When the force-stress tensor (107) is written in terms of displacements, as follows 

                         
( ) ( )ikmkimjkjkmkjmiklkijkl

ikjkjkikklijklji

uuBuuBuA

BBeA

,
2

,,
2

,,

,,

16
1

16
1

4
1

4
1

∇−−∇−+=

−+= κκσ
                  (128) 

 

and is carried into the linear equilibrium equation, we obtain 

( ) ( ) 0
16
1

16
1

,
2

,
22

,
2

, =∇−−∇∇−∇+ ijkmkijmjkkmkmikljkijkl uuBuuBuA               (129) 

 

For an isotropic material, the force-stress tensor becomes 

( ) ( )ijjiijjiijkk

ijijijkkji

uuuuu

ee

,,
2

,,,

2

      

22

−∇−++=

∇−+=

ημδλ

ωημδλσ
                              (130) 
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and for the linear equilibrium equation, we have 

             ( )2 2 2
, ( ) 0k ki i iu u Fλ μ η μ η+ + ∇ + − ∇ ∇ + =                                (131a) 

which can be written in the vectorial form 

            ( ) ( )2 2 2( )λ μ η μ η+ + ∇ ∇ ∇• + − ∇ ∇ + =u u F 0                          (131b) 

 

This relation can also be written as 

             ( ) ( ) 22 ( )λ μ μ η+ ∇ ∇• − − ∇ ∇×∇× + =u u F 0                           (132) 

which was derived previously by Mindlin and Tiersten (1962) within the context of the 

indeterminate couple stress theory.  However, recall that the Mindlin-Tiersten 

formulation involved two couple stress parameters η  and η′ .  In hindsight, the fact that 

η′  does not appear in (132) should have been an indication that this coefficient is not 

independent of η .  We now know that ηη −=′ . 

 

The general solution for the displacement in isotropic polar elasticity also has been 

derived by Mindlin and Tiersten (1962) as 

( ) ( )[ ]0
222 1

14
1 Gll +∇−•∇
−

−•∇∇−= GrGGu
ν

                        (133) 

where the vector function G  and scalar function 0G  satisfy the relations  

( ) FG −=∇∇− 2221 lμ                                                (134a) 

Fr •=∇ 0
2Gμ                                                     (134b) 

These functions reduce to the Papkovich functions in the classical theory, when 0=l .  It 

is easily seen that 

( ) Gu •∇∇−=•∇
+ 2212 l
μ
μλ                                          (135a) 

Gu ×∇=×∇                                                     (135b) 

 

Uniqueness theorem for boundary value problems  

Now we investigate the uniqueness of the linear polar elasticity boundary value problem.  

The proof follows from the concept of strain energy, similar to the approach for Cauchy 
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elasticity.  By replacing the virtual deformation with the actual deformation in the virtual 

work theorem (82) and accounting for the symmetry of ije , we obtain   

               ( )( ) ( ) ( )2 n n
ij i i i i i i i iji

V S V S
e dV t u dS Fu dV m dSσ μ κ ω− = + +∫ ∫ ∫ ∫                     (136) 

 

Using the constitutive relations (103) and (104), we have 

( ) 2 2 ( , )ij i i ijkl ij kl ij i jji e A e e B Wσ μ κ κ κ− = + = e κ                           (137) 

 

Therefore, (136) can be written as 

               ( ) ( ) ( )∫ ∫∫∫ ++=+
V S

i
n

iii
S

i
n

i
V

jiijklijijkl dSmdVuFdSutdVBeeA ωκκ                (138) 

This relation gives twice of total strain energy in terms of the work of external body 

forces and surface tractions. 

 

Now, we consider the general boundary value problem.  The prescribed boundary 

conditions on the surface of the body can be any well-posed combination of vectors iu  

and iω , ( )n
it  and ( )n

im  as discussed on Section 4.  Assume that there exist two different 

solutions ( ) ( ) ( ) ( ) ( ){ }11111 ,,,, ijiiiji eu μσκ  and ( ) ( ) ( ) ( ) ( ){ }22222 ,,,, ijiiiji eu μσκ  to the same problem with 

identical body forces and boundary conditions.  Thus, we have the equilibrium equations 

                                 ( )
, 0ji j iFασ + =                                                        (139) 

                 ( ) ( )
[ ] [ , ]ji i j
α ασ μ= −                                                       (140) 

where 

                             ( ) ( )1
2i ij jBα αμ κ= −                                                  (141a) 

                               ( ) ( )
( )ji ijkl klA eα ασ =                                                     (141b) 

and the superscript ( )α  references the solutions (1)  and (2) . 

 

Let us now define the difference solution  
( ) ( )12

iii uuu −=′                                                     (142a) 
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( ) ( )12
ijijij eee −=′                                                      (142b) 

( ) ( )12
iii κκκ −=′                                                     (142c) 

( ) ( )12
jijiji σσσ −=′                                                     (142d) 

( ) ( )12
iii μμμ −=′                                                     (142e) 

 

Since the solutions ( ) ( ) ( ) ( ) ( ){ }11111 ,,,, ijiiiji eu μσκ  and ( ) ( ) ( ) ( ) ( ){ }22222 ,,,, ijiiiji eu μσκ  correspond to the 

same body forces and boundary conditions, the difference solution must satisfy the 

equilibrium equations 

                                 0, =′ jjiσ                                                            (143) 

                 [ ] [ ]jiji ,μσ ′−=′                                                         (144) 

with zero corresponding boundary conditions.  Consequently, twice the total strain 

energy (137) for the difference solution is 

               ( ) 2 0ijkl ij kl ij i j
V V

A e e B dV W dVκ κ′ ′ ′ ′ ′+ = =∫ ∫                                   (145) 

Since the strain energy density W ′  is non-negative, this relation requires 

VBeeAW jiijklijijkl in     02 =′′+′′=′ κκ                                     (146) 

 

However, the tensors ijklA  and ijB  are positive definite. Therefore the strain, curvature 

and associted stresses for difference solution must vanish 

0    ,0    ,0    ,0 =′=′=′=′ iijiije μσκ                                       (147a-d) 

 

These require that the difference displacement iu′  can be at most a rigid body motion. 

However, if displacement is specified on part of the boundary such that rigid body 

motion is prevented, then the difference displacement vanishes everywhere and we have 
( ) ( )21

ii uu =                                                      (148a) 

( ) ( )21
ijij ee =                                                      (148b) 

( ) ( )21
ii κκ =                                                     (148c) 

( ) ( )21
jiji σσ =                                                      (148d) 
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( ) ( )1 2
i iμ μ=                                                      (148e) 

 

Therefore, the solution to the boundary value problem is unique.  On the other hand, if 

only force and couple tractions are specified over the entire boundary, then the 

displacement is not unique and is determined only up to an arbitrary rigid body motion. 

 

Reciprocal theorem 

We derive now the general reciprocal theorem for the equilibrium states of a linear polar 

elastic material under different applied loads.  Consider two sets of equilibrium states of 

compatible elastic solutions ( ) ( ) ( )( ) ( )( ) ( ){ }11111 ,,,, i
n

i
n

iii Fmtu ω  and ( ) ( ) ( )( ) ( )( ) ( ){ }22222 ,,,, i
n

i
n

iii Fmtu ω . 

Let us apply the virtual work theorem (82) in the forms 

             ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )∫ ∫∫∫ ++=−
V S

i
n

iii
S

i
n

i
V

iiijji dSmdVuFdSutdVe 2121212121 2 ωκμσ               (149) 

             ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )∫ ∫∫∫ ++=−
V S

i
n

iii
S

i
n

i
V

iiijji dSmdVuFdSutdVe 1212121212 2 ωκμσ               (150) 

By using the general constitutive relations 

                         ( ) ( ) ( ) ( )1
,

1
,

11

4
1

4
1

ikjkjkikklijklji BBeA κκσ −+=                                      (151) 

                          ( ) ( )11

2
1

jiji B κμ −=                                                       (152) 

                         ( ) ( ) ( ) ( )2
,

2
,

22

4
1

4
1

ikjkjkikklijklji BBeA κκσ −+=                                      (153) 

                          ( ) ( )22

2
1

jiji B κμ −=                                                       (154) 

it is seen that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2121
,

21
,

212121

4
1

4
12 ijijijikjkijjkikijklijkliiijji BeBeBeeAe κκκκκμσ +−+=−         (155) 

 

However, the symmetry relation (102) shows 

( ) ( ) ( ) ( ) 0
4
1

4
1 21

,
21

, =− ijikjkijjkik eBeB κκ                                        (156) 

Therefore 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21212121 2 ijijijklijkliiijji BeeAe κκκμσ +=−                            (157) 

Similarly, 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )12121212 2 ijijijklijkliiijji BeeAe κκκμσ +=−                            (158) 

 

Now we see that the symmetry relations (101) and (102) require 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )12122121 22 iiijjiiiijji ee κμσκμσ −=−                               (159) 

which shows 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )∫∫ −=−

V
iiijji

V
iiijji dVedVe 12122121 22 κμσκμσ                     (160) 

 

Therefore, the general reciprocal theorem for these two elastic solutions is 
( )( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( )( ) ( )

1 2 1 2 1 2

2 1 2 1 2 1

n n
i i i i i i

S V S

n n
i i i i i i

S V S

t u dS F u dV m dS

t u dS F u dV m dS

ω

ω

+ +∫ ∫ ∫

= + +∫ ∫ ∫
                         (161) 

 

7.  Two-dimensional infinitesimal linear isotropic polar elasticity theory 

In this section, we reconsider the two-dimensional infinitesimal linear isotropic polar 

elasticity developed by Mindlin (1963).  We start this development by assuming that the 

displacement components are two-dimensional, where 

( )yxuu ,1 = , ( )yxvu ,2 = , 03 =u                              (162a-c) 

 

This is exactly the conditions for plane strain theory in Cauchy elasticity.  The non-zero 

components of strains are 

x
uex ∂
∂

= ,  
x
vey ∂
∂

= ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
x
v

y
uexy 2

1                         (163a-c) 

and the only non-zero rotation component is  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

==
y
u

x
v

yxz 2
1ωω                                          (164) 

 

Therefore, the components of the mean curvature vector are 
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y
z

yzx ∂
∂

=−=
ωκκ

2
1 ,      

x
z

xzy ∂
∂

−==
ωκκ

2
1                         (165a,b) 

 

It is seen that the compatibility equations for this case are 

yx
e

x
e

y
e xyyx

∂∂

∂
=

∂

∂
+

∂
∂ 2

2

2

2

2

2                                            (166a) 

yx
xzyz

∂
∂

=
∂

∂ κκ
                                                 (166b) 

y
e

x
e

x
xxyz

∂
∂

−
∂

∂
=

∂
∂ω                                              (166c) 

y
e

x
e

y
xyyz

∂

∂
−

∂

∂
=

∂
∂ω                                              (166d) 

 

Then, the corresponding couple stress and force stress components can be written 

4 z
x y

ωμ η ∂
= −

∂
,    4 z

y x
ωμ η ∂

=
∂

                                 (167a,b) 

[ ] zxyxy ωηωησ 22 22 ∇−=∇=                                       (168a) 

[ ] zyxyx ωηωησ 22 22 ∇=∇=                                        (168b) 

 

( ) ( ) yxxx ee λμλσ ++= 2                                          (169a) 

( ) ( ) yxyy ee μλλσ 2++=                                         (169b) 

( ) xyxy eμσ 2=                                                  (169c) 

It is also found that 

x
z

xz ∂
∂

=
ω

ημ 4                                                (170a) 

y
z

yz ∂
∂

=
ωημ 4                                                (170b) 

Finally, it is seen that 

( ) yxx ee λμλσ ++= 2                                           (171a) 



   

 29

( ) yxy ee μλλσ 2++=                                           (171b) 

zxyxy e ωημσ 222 ∇−=                                           (171c) 

zxyyx e ωημσ 222 ∇+=                                           (171d) 

where 

xyyxxy eμσσ 4=+                                               (171e) 

It is also seen that 

( )yxz σσνσ +=                                                 (171f) 

similarly to plane strain Cauchy elasticity, while for the couple stresses 

x
z

xzzx ∂
∂

−=−=
ω

ημμ 4                                          (171g) 

4 z
zy yz y

ωμ μ η ∂
= − = −

∂
                                         (171h) 

 

When there is no body force, these stresses satisfy the equilibrium equations  

0=
∂

∂
+

∂
∂

yx
yxx σσ                                                (172a) 

0=
∂

∂
+

∂

∂

yx
yxy σσ

                                               (172b) 

0=−+
∂

∂
+

∂
∂

yxxy
yzxz

yx
σσ

μμ                                       (172c) 

 

To solve for stresses, we need to derive compatibility equations in terms of stresses as 

follows.  It is seen that 

( )[ ]yxxe νσσν
μ

−−= 1
2
1                                         (173a) 

( )[ ]xyye νσσν
μ

−−= 1
2
1                                         (173b) 

( )yxxyxye σσ
μ

+=
2
12                                            (173c) 
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( )xyyxz σσ
η

ω −=∇
4
12                                           (173d) 

 

By inserting these in (166), we obtain the compatibility equations in terms of the force 

and couple stress tensors.  Thus, 

( ) ( )xyyxyx
yx

yxxy
σσσσν

σσ
+

∂∂
∂

=+∇−
∂

∂
+

∂
∂ 2

2
2

2

2

2

                           (174a) 

xy
yzxz

∂

∂
=

∂
∂ μμ                                                     (174b) 

( ) ( )[ ]yxxxyyxxz y
l

x
l σσνσσσμ +−

∂
∂

−+
∂
∂

= 22 2                           (174c) 

( )[ ] ( )xyyxyxxyz y
l

x
l σσσσνσμ +

∂
∂

−+−
∂
∂

= 222                           (174d) 

 

By combining these with the equilibrium equations, we obtain the set of equations 

0=
∂

∂
+

∂
∂

yx
yxx σσ                                                (175a) 

0=
∂

∂
+

∂

∂

yx
yxy σσ

                                               (175b) 

0=−+
∂

∂
+

∂
∂

yxxy
yzxz

yx
σσ

μμ                                       (175c) 

( ) 02 =+∇ yx σσ                                                (175d) 

xy
yzxz

∂

∂
=

∂
∂ μμ                                                  (175e) 

 

By introducing the stress functions ( )yx,Φ=Φ  and ( )yx,Ψ=Ψ , we may write the force 

stresses and couple stresses as follows: 

yxyx ∂∂
Ψ∂

−
∂
Φ∂

=
2

2

2

σ                                                (176a) 

yxxy ∂∂
Ψ∂

+
∂
Φ∂

=
2

2

2

σ                                               (176b) 
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2

22

yyxxy ∂
Ψ∂

−
∂∂
Φ∂

−=σ                                             (176c) 

2

22

xyxyx ∂
Ψ∂

+
∂∂
Φ∂

−=σ                                             (176d) 

xxz ∂
Ψ∂

=μ                                                      (177a) 

yyz ∂
Ψ∂

=μ                                                      (177b) 

 

Equilibrium equations satisfy and compatibility equations give 

022 =Φ∇∇                                                      (178) 

( ) ( ) ( )2 2 2 2 22 1l l
x y

ν∂ ∂
Ψ − ∇ Ψ = − − ∇ Φ

∂ ∂
                             (179a) 

( ) ( ) ( )2 2 2 2 22 1l l
y x

ν∂ ∂
Ψ − ∇ Ψ = − ∇ Φ

∂ ∂
                               (179b) 

 

Combining (179a) and (179b) by eliminating Φ  gives 

0422 =Ψ∇−Ψ∇ l                                                (180) 

 

All these relations are exactly the equations derived by Mindlin (1963).  This shows that 

the solutions for two-dimensional cases based on Mindlin’s development, such as stress 

concentration relations for a plate with a circular hole, still can be used. However, we 

should notice that the couple stresses zxμ  and zyμ  are  

x
z

xzzx ∂
∂′=

′
=

ω
ημ

η
ημ 4                                         (181a) 

y
z

yzzy ∂
∂′=

′
=

ω
ημ

η
ημ 4                                        (181b) 

in Mindlin’s development. These relations become identical to those in the present 

theory, when we take ηη −=′ .  Thus, we may solve the boundary value problem in an 

identical manner to Mindlin (1963), but then evaluate the couple stresses through a 

postprocessing operation. 
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More specifically, by comparing the relations (170) and (177), we can see 

xx
z

xz ∂
∂

=
∂
∂

=
Ψ4 ωημ                                                (182a) 

yy
z

yz ∂
∂

=
∂
∂

=
Ψ4 ωημ                                                (182b) 

 

Therefore, we can take 

Ψ4 =zηω                                                       (183) 

 

If Ψ is zero, there are no couple stress tensor components, and the relations for the force-

stress tensor reduce to the relations in classical elasticity, where Φ  is the Airy stress 

function. 

 

For force and couple traction vectors, we have 

yyxxxx
n

x nnt σσ +=)(                                            (184a) 

yyyxxy
n

y nnt σσ +=)(                                             (184b) 

yyzxxz
n

z nnmm μμ +== )(                                         (184c) 

which can be written in terms of stress functions as 
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yx
n

y n
yxx

n
yyx

t ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
+

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂∂

∂
−=

ΨΦΨΦ 2

2

2

2

22
)(                         (185b) 

yx n
y

n
x

m
∂
∂

+
∂
∂

=
ΨΨ                                           (185c) 

If the location on the surface is specified by the coordinate s along the boundary in a 

positive sense, we have 

ds
dynx =                                                          (186a) 
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ds
dxny −=                                                         (186b) 

Therefore 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
xyds

dt n
x

ΨΦ)(                                               (187a) 
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⎞
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⎛
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+
∂
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−=
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y

ΨΦ)(                                             (187b) 

nn
m

∂
∂

=
∂
∂

=
ωη4Ψ                                                   (187c) 

 

8.  Anti-plane deformation infinitesimal linear isotropic polar elasticity theory 

We assume the displacement components are  

01 =u ,  02 =u ,  ( )yxwu ,3 =                                     (188a-c) 

 

These are exactly the conditions for anti-plane deformation in Cauchy elasticity. The 

non-zero components of strains are 

x
wezx ∂
∂

=
2
1 ,  

y
wezy ∂
∂

=
2
1 ,                                     (189a,b) 

and the non-zero rotation components are 

y
w

x ∂
∂

=
2
1ω    ,    

x
w

y ∂
∂

−=
2
1ω                                       (190) 

 

Therefore, the only non-zero component of the mean curvature vector is 

w
yx

xy
yxz

2

4
1

2
1

∇−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
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−
∂
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==
ωω

κκ                                (191) 

Then, the corresponding couple stress and force stress components can be written 

wyxz
22 ∇== ημμ                                                 (192) 

( ) x
w

zx ∂
∂

= μσ ,  ( ) y
w

zy ∂
∂

= μσ                                     (193a,b) 
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Therefore 

    w
xx

w
zx

2∇
∂
∂

−
∂
∂

= ημσ ,    w
xx

w
xz

2∇
∂
∂

+
∂
∂

= ημσ                       (194a,b) 

w
yy

w
zy

2∇
∂
∂

+
∂
∂

= ημσ ,   w
yy

w
yz

2∇
∂
∂

−
∂
∂

= ημσ                      (194c,d) 

 

When there is no body force, these stresses satisfy the equilibrium equation 

0=
∂
∂

+
∂
∂

yx
yxxz σσ                                                (195) 

which in terms of displacement gives the single fourth order equation  
2 22 0w wμ η∇ − ∇ ∇ =                                             (196) 

 

If couple stresses are zero on the boundary, the solution reduces to the classical Cauchy 

elasticity solution  

02 =∇ w                                                       (197) 

with  

0== yxz μμ                                                  (198a) 

x
w

xzzx ∂
∂

== μσσ                                            (198b) 

 
y
w

zyyz ∂
∂

== μσσ                                            (198c) 

everywhere in the domain.  However, geometrical boundary conditions, such as  

( ) S
n
ww on            0

2
1    ,0 ns =
∂
∂

== ω                       (199a,b) 

create couple stresses in polar media.  In that case, the classical solution cannot be used. 

 

9.  Some elementary linear isotropic polar elasticity problems 

In this section, we reconsider several elementary problems in Cauchy elasticity within the 

framework of the present infinitesimal linear polar theory.  Koiter (1964) considered all 
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of these problems, but within the context of the indeterminate couple stress theory. 

Consequently, some differences appear. 

 

Twist of a cylindrical bar 

Consider the 3x -axis of our coordinate system along the axis of a cylindrical bar with 

constant cross section.  We assume the displacement components are in the form as in the 

classical theory and examine the corresponding stress field in the couple stress theory. 

The assumed displacement components are  

1 2 3 2 1 3 3,          ,             0u x x u x x uθ θ= − = =                         (200a-c) 

where θ  is the constant angle of twist per unit length.  The non-zero components of the 

strain tensor and rotation vector are 

13 2 23 1
1 1,          
2 2

e x e xθ θ= − =                                      (201a,b) 

1 32 1 2 13 2 3 21 3
1 1,          ,             
2 2

x x xω ω θ ω ω θ ω ω θ= = − = = − = =          (202a-c) 

Interestingly, it is seen that the curvature vector vanishes 

0ωκ =×∇=
2
1                                                      (203) 

Therefore, the force-stress distribution is the classical result 

13 2 23 1,          x xσ μθ σ μθ= − =                                     (204a,b) 

and the twist of a cylindrical bar does not generate couple stresses. This is in contrast 

with the Koiter (1964) result, in which couple stresses appear. 

 

Cylindrical bending of a flat plate 

Consider a flat polar material plate of thickness h bent into a cylindrical shell with 

generators parallel to the 3x -axis.  Let R  denote the radius of curvature of the middle 

plane 31xx  in the deformed configuration.  We assume the displacement components are 

similar to those in Cauchy elasticity.  Thus, 

0        ,1
12

11
2
1        ,1

3
2
2

2
12211 =

−
+=−= ux

R
x

R
uxx

R
u

ν
ν                 (205a-c) 
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The non-zero components of the strain tensor, rotation vector and mean curvature vector 

are 

222211
1

1
         ,1 x

R
ex

R
e

ν
ν
−

=−=                                       (206a,b) 

 1
213 R

x
==ωω                                                          (207) 

R2
1

231 =−= κκ                                                          (208) 

Therefore, the non-zero force and couple stresses are written as 

      R
x

R
x 2

33
2

11 1
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1
2
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μνσ

ν
μσ

−
−=

−
−=                                   (209a.b) 

R
ημμμ 431132 =−==                                                    (210) 

Notice that unlike the previous example of twisting deformation, bending does produce 

couple stresses.  This is due to the existence of non-zero mean curvature. 

 

Pure bending of a bar with rectangular cross-section 

We take the 1x -axis to coincide with the centerline of the rectangular beam and the other 

axes parallel to the sides of the cross section of the beam.  Let R denote the radius of 

curvature of the central axis of the beam after bending in the 31xx -plane .  We assume the 

displacement components are the same as in the classical Cauchy elasticity theory as 

follows: 

( ) 2
1

2
3

2
23322311 2

1
2

            ,         ,1 x
R

xx
R

uxx
R

uxx
R

u −−=−==
νν            (211a-c) 

 

Then, the strains, rotations and mean curvatures can be written 

R
xee

R
xe 3

3322
3

11          , ν
−===                                  (212a,b) 

 2
321 R

xνωω == ,     1
132 R

x
==ωω                               (213a,b) 

( ) 0
2
1

3,22,3321 =−== ωωκκ                                        (214a) 
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( ) 0
2
1

1,33,1132 =−== ωωκκ                                        (214b) 

( )
R2

1
2
1

2,11,2213
νωωκκ −

=−==                                     (214c) 

As a result, the non-zero force and couple stresses take the form 

( )
R
x3

11 12 νμσ +=                                                   (215a) 

R
νημμμ −

−=−==
1412213                                         (215b) 

 

Again, for this problem, we find non-zero mean curvature and couple stresses. 

 

10.  Conclusions 

By considering further the consequences of the kinematics of a continuum and the 

principle of virtual work, we find that the couple stress theory for polar media can be 

formulated as a practical theory without any ambiguity.  In the resulting quasistatic 

theory, independent body couples cannot be specified in the volume and surface couples 

can only exist in the tangent plane at each boundary point.  (Although not specifically 

addressed here, in the corresponding dynamical theory, it should be clear that spin inertia 

does not appear.)  As a consequence, the couple stress tensor is found to be skew-

symmetric and energetically conjugate to the mean curvature tensor, which also is skew-

symmetrical.  Then, for infinitesimal or small deformation linear polar elasticity, we can 

write constitutive relations for all of the components of the force stress and couple stress 

tensors.  The most general anisotropic polar material is described by 27 independent 

constitutive coefficients, including six coefficients relating mean curvatures to couple 

stresses.  At the other extreme, for isotropic materials, the two Lamé parameters and one 

length scale completely characterize the behavior.  In addition, strain energy relations and 

uniqueness and reciprocal theorems have been developed for linear polar elasticity.  

General formulations for two-dimensional and anti-plane problems are also elucidated for 

the isotropic case.  The former employs a pair of stress functions, as introduced 

previously by Mindlin for the indeterminate theory.  Finally, several additional 
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elementary problems are examined within the context of small deformation polar 

elasticity.  

 

By resolving the indeterminacy of the previous couple stress theory, the present polar 

theory provides a fundamental basis for the development of scale-dependent material 

response.  Additional aspects of the linear theory, including fundamental solutions and 

computational mechanics formulations, will be addressed in forthcoming work.  Beyond 

this, the present polar theory should be useful for the development of nonlinear elastic, 

elastoplastic, viscoplastic and damage mechanics formulations that may govern the 

behavior of solid continua at the smallest scales.   
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