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bstract

In this study, the fracture micromechanics of Haversian cortical bone has been considered. To this effect, a two-dimensional micromechanical
bre–ceramic matrix composite tissue materials model has been presented. The interstitial tissue was modeled as a matrix and the osteon
as modeled as a fibre, followed by the application of linear elastic fracture mechanics theory. The solution for edge dislocations, in terms
f Green’s functions, was adopted to formulate a system of singular integral equations for the radial microcracks in the matrix in vicinity of
he osteon. The problem was solved for various configurations and the corresponding stress intensity factors were computed. The results of

his study indicated that the interaction between microcracks and an osteon was limited to vicinity of the osteon. Furthermore, the effect of

icrostructure morphology and heterogeneity on the fracture behavior has been established. The interactions between microcracks were also
nalyzed for various configurations. These selected configurations exhibited the effects of stress amplification and stress shielding.

2006 IPEM. Published by Elsevier Ltd. All rights reserved.
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. Introduction

Bone undergoes microdamage in the form of microcracks
ue to fatigue and cyclic loading [1–3]. The microcracks can
oalescence causing a reduction in the mechanical proper-
ies of the bone [4,5]. The weakness caused by microcracks
as been accepted as a primary assumption in the study of
echanical properties of this tissue [5–7]. This will increase

he possibility of fracture [8–10]. The relationship between
he microcracks and the parameters governing fracture, e.g.
hose associated with toughness, has not as yet been fully
nderstood and analyzed [11–13].

Formation and growth of microcracks are related to the
one microstructure [1,14]. The human Haversian corti-

al bone has been considered as a composite material and
odeled as fibre–ceramic matrix in microstructural stud-

es [15–17]. Osteons are considered as fibres and interstitial
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issue as matrix in this composite material. The interface
etween the osteons and interstitial tissue is a third type of
issue forming the cement line.

Fracture phenomena in Haversian cortical bone are pri-
arily affected by the morphology and heterogeneity of

he microstructure [12–14,18]. However, variations in these
arameters caused by the aging process can make the prob-
em rather more complicated [12,19,20]. For example, the
ging process increases the differences in the mechanical
roperties of osteons and interstitial tissue [19]. This has a
rofound effect upon the fracture behavior of bone [12,13].
t is thus necessary to enhance the understanding of the
echanisms governing fracture in Haversian cortical bone

18].
In this study, linear elastic fracture mechanics (LEFM)

heory was adopted for the analysis of fracture in compos-

te fibre–ceramic matrix materials [21]. This theory has also
een used in determination of the bone resistance to frac-
ure [22–24]. However, only a limited number of studies have
onsidered fracture micromechanics in the Haversian cortical
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prr = σ0 cos2θ − 2G1
A

r2 + −3B

r4 + 2C

r2 cos 2θ

(1a)

Table 1
Mechanical properties of model constituents

Effective elastic modulus
(GPa)

Effective shear modulus
(GPa)

Osteon Interstitial Osteon Interstitial
A.R. Najafi et al. / Medical Engi

one [13,25–27]. Amongst such investigations, Lakes et al.
ave reported that the fracture behavior of microcracks with
engths of 250–500 �m in Haversian cortical bone can not be
redicted by LEFM of a uniform material [25]. Furthermore,
artin and Burr have reported microcrack growth-arrest by

he cement line [27]. Guo et al. have reported on the osteonal
ffect on a microcrack that was oriented perpendicularly to
he external load [13]. However, a detailed description of the
elationship between microcracks and fracture behavior has
ot as yet been provided. To understand this relation, it is
ecessary to begin by formulating a sufficiently encompass-
ng description of microcrack governing micromechanics,
ccompanied by the description of the interaction between
xisting microcracks.

The objectives of the current study have been to pro-
ide a realistically simple model of Haversian cortical bone
icrostructure, so as to obtain a clearer description of the

ules governing the mutual interaction amongst microcracks
ssuming LEFM theory. Furthermore, interaction between
n osteon and radial microcracks was studied to establish the
usceptibility of fracture behavior to microstructure.

. Methods

The assumption of plane strain conditions and linear elas-
ic fracture mechanics in a two-dimensional model of the
one could be justified by the similarities between Haversian
ortical bone and the composite fibre–ceramic matrix materi-
ls. The osteons were represented as fibres and the interstitial
issue was considered as a matrix and the cement line was
xcluded in this model. All the tissues were assumed homoge-
ous. Furthermore, the osteonal interaction was ignored by
onsidering a single osteon. Exclusion of the Haversian chan-
el structure, on the other hand, leads to the single osteon
eing represented by a solid cylinder.

The model consists of a single osteon with the radius
0 = 100 �m [17], and constants of K2 and G2 situated within
matrix resembling the interstitial tissue with constants K1

nd G1, as shown in Fig. 1, where Gi are the shear moduli
nd Ki, with respect to Poisson’s ratio (νi) in plane strain
ondition, are computed as Ki = 3–4νi. Here (n) radial micro-
racks, each having a length 2Li, where Li is assumed to be
0–150 �m [9], were situated within the interstitial tissue. A
niform tensile load of σ0 = 10 MPa was applied to the model
t the infinity [16]. The interface between the osteon and the
nterstitial tissue was also assumed to be a perfectly bonding.

Mechanical properties of bone constituents are greatly
ffected by such factors as bone type and anatomical
ocation. The average elastic moduli in human diaphyseal
emoral bone, for example, are found to be 19.3 ± 5.4 GPa in
steonal and 21.2 ± 5.3 GPa in interstitial lamellae [28]. In

he neck, the average moduli are 15.8 ± 5.3 GPa in osteonal,
7.5 ± 5.3 GPa in interstitial lamellae [28]. Table 1 shows
he various mechanical properties of individual constituents
n the model.

S
S

Fig. 1. Osteon-interstitial tissue model.

It was thus possible to solve the problem as a superposition
f two distinct problems. In the first problem, an elastic osteon
ituated within an infinite elastic plane, similar to interstitial
issue, and without any microcracks was considered. This
roblem was solved for an external load of σ0.

The second problem described stress disturbance due
o microcracks in the interstitial tissue. Here, the exter-
al loads were limited to the microcrack surface tractions.
he external loads were equal in magnitude and opposite

n sign to the obtained stress in the presumed location of
icrocracks as described by the first problem. It should,

owever, be noted that formulation of stress equations for
ndividual microcracks does entail the effects of other micro-
racks. It is apparent that the second problem contains a
ingularity.

.1. Solutions of equations of elasticity, in polar
oordinates

Solution of the first problem for a uniaxial tension at infin-
ty is as follow [29]:[ ( ( ) )]
fibrea (E2) tissuea (E1) fibrea (G2) tissuea (G1)

oft osteon 19 21 7.31 8.08
tiff osteon 19 16 7.31 6.15
a Poisson’s ratio ν1 = ν2 = 0.3.
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θθ = σ0

[
sin2θ + 2G1

(
A

r2 − 3B

r4 cos 2θ

)]
(1b)

rθ = σ0

[
− sin 2θ

2
+ 2G1

(
3B

r4 − C

r2

)
sin 2θ

]
(1c)

here

= R2
0

4G1

(K2 − 1) − (K1 − 1)GR

2GR + (K2 − 1)
(2a)

= R4
0

4G1

1 − GR

1 + K1GR
(2b)

= R2
0

2G1

1 − GR

1 + K1GR
(2c)

R = G2

G1
(2d)

ere, r and θ are polar coordinates where r is measured from
he center of the osteon and θ is measured with respect to the
oad direction. In providing a solution to the first problem,
he shear and normal stress (pti and pni ) at t, a point on the
ocation of ith imaginary microcrack, had to be computed.

.2. Integral equations

To solve the second problem, however, dislocation solu-
ion [30] could be used. The dislocations Burgers vectors (bt

nd bn) were placed along and perpendicular to the micro-
racks direction, respectively. The shear stress and normal
tress values in the microcrack location were equal in mag-
itude but with opposing signs to that of the first problem
21]. The dislocation density (Bt and Bn) at ξ, a point on the
icrocrack, could thus be defined as

bt = Bt(ξ) dξ, ξ ∈ Li (3a)

bn = Bn(ξ) dξ, ξ ∈ Li, i = 1, 2, . . . , n (3b)

ere the microcrack opening displacement and the disloca-
ion density were related by Eq. (4) as

t(ξ)|0 − ut(ξ)|2π = −
∫ ξ

ai

Bt(ξ) ds, i = 1, 2, . . . , n (4a)

n(ξ)|0 − un(ξ)|2π = −
∫ ξ

ai

Bn(ξ) ds, ai ≤ ξ ≤ bi (4b)

ince the microcrack tip opening displacements were equal
o zero, Eq. (5) would have implied:

bi
ai

Bt(ξ) ds = 0 (5a)

bi

ai

Bn(ξ) ds = 0, i = 1, 2, . . . , n (5b)

s
o

σ

& Physics 29 (2007) 708–717

ow, if it is assumed that bt and bn are continually distributed
ver the microcracks, the shear and normal stresses could be
ormulated as

ti (t) =
n∑

j=1

∫ 1

−1
[kt1 (s, t)bt(s) + kt2 (s, t)bn(s)] ds (6a)

σni (t) =
n∑

j=1

∫ 1

−1
[kn1 (s, t)bt(s) + kn2 (s, t)bn(s)] ds,

i, j = 1, 2, . . . , n (6b)

he computation method for kt1 , kt2 , kn1 , and kn2 are pre-
ented in Appendix A. Furthermore, variables s and t in Eq.
6) are defined as

i = xim + (Li cos αi)t (7a)

i = yim + (Li sin αi)t (7b)

i = xim + (Li cos αi)s (7c)

i = yim + (Li sin αi)s (7d)

n Eq. (7), the xim and yim represent the coordinates of the ith
icrocrack center and αi is the ith microcrack direction with

espect to the horizontal axis.
After separating the singular part from dislocation density,

t and Bn with respect to the unknown functions ft(s) and fn(s)
ould be defined as

t(s) = ft(s)√
1 − s2

(8a)

n(s) = fn(s)√
1 − s2

(8b)

ubstituting Eq. (8) in Eqs. (5) and (6):

ti (t) =
n∑

j=1

∫ 1

−1

[
kt1 (s, t)

ft(s)√
1 − s2

+ kt2 (s, t)
fn(s)√
1 − s2

]
ds

(9a)

σni (t) =
n∑

j=1

∫ 1

−1
[kn1 (s, t)

ft(s)√
1 − s2

+ kn2 (s, t)
fn(s)√
1 − s2

] ds,

i, j = 1, 2, . . . , n (9b)

1

−1

ft(s)√
1 − s2

ds = 0 (10a)

1

−1

fn(s)√
1 − s2

ds = 0 (10b)

he unknown functions ft(s) and fn(s) could thus be deter-
ined by substituting, equal in magnitude and opposite in
ign, stress values from the first problem to that of the sec-
nd:

ti (t) = −pti (t) (11a)
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This interaction was significantly reduced as d was increased.
The reduction, however, approached a limit set by the value
of the SIF for a single microcrack.
A.R. Najafi et al. / Medical Engi

ni (t) = −pni (t) (11b)

.3. Stress intensity factors

The stress intensity factor (SIF) in the microcrack tips
ould be obtained once the functions ft(s) and fn(s) were deter-
ined:

kI|s=±1 = ± 2G1

k + 1

√
Lifn(±1) (12a)

kII|s=±1 = ± 2G1

k + 1

√
Lift(±1) (12b)

he derivation of expression (12) is provided in Appendix B.

. Results

A radial microcrack, as shown in Fig. 2, with a constant

ength perpendicular to the external loading was considered
n the interstitial tissue. The mode I stress intensity factor (KI)
ariation in the microcrack tips is shown for this condition
ith respect to the microcrack distance (d) to the osteon in

ig. 2. (a) Model and (b) the normalized SIF of microcrack tips vs. the
ormalized distance (d/R0) from the osteon. Interaction between osteon and
he microcrack is limited to the vicinity of the osteon.

F
b
e

& Physics 29 (2007) 708–717 711

ig. 2(b). Here, the reduction of d was found to be accompa-
ied by an increase in (KI), when the osteon was considered
o be softer than the interstitial tissue (GR = 0.5). When the
steon was stiffer than the interstitial tissue (GR = 2.0), the
IF was found to decrease as d was reduced. The results have
hown the interaction between the osteon and microcracks
as limited to the vicinity of the osteon.
To analyze the microcrack interaction, two microcracks

ith a distance (d) apart, were considered as indicated by
ig. 3. The existence of another microcrack increased the
tress intensity factor (SIF) at crack tips as shown in Fig. 3(b)
nd (c). The figure shows the stress amplification in the SIF.
ig. 3. The normalized SIF of microcrack tips vs. the normalized distance
etween two microcracks (d/R0). Figure indicates “stress amplification”
ffect. (a) Model; (b) soft osteon (GR = 0.5); (c) stiff osteon (GR = 2.0).
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Fig. 5. The normalized SIF of microcrack tips vs. microcrack angle (α). (a)
Model; (b) soft osteon (GR = 0.5); (c) stiff osteon (GR = 2.0).

Table 2
Stress amplification effect

Number of microcracks

2 3 4 5 6

GR = 0.9
KI (a)/KI0 (a) 1.0879 1.1022 1.1186 1.1328 1.1442
KI (b)/KI0 (b) 1.2748 1.3369 1.3831 1.3920 1.383

GR = 1.19
ig. 4. (a) Model and (b) the normalized SIF of microcrack tips vs. the
ormalized distance (d/R0) from the osteon.

Microcrack interaction was also found to be negligible if
he microcracks were located symmetrically on both sides of
he osteon as shown in Fig. 4. Here, the SIF changes accom-
anying an increase in d were found to be similar to that
bserved in Fig. 2. In effect, the osteon was found to exhibit
n overriding influence when the distance between the micro-
racks was greater than the osteonal diameter.

The SIF variation in modes I and II (KI and KII), when the
adial microcrack angle (α) changed with respect to horizon-
al axis, is shown in Fig. 5. The figure indicates that KI(a)
nd KI(b) were reduced as the angle (α) was increased. Here,
he SIF in mode II was found to rise as (α) was increased to
5◦. A reduction of SIF was, however, observed as the angle
as further increased.
The effect of the two microcracks upon one another when

here was an angle (α) between them is shown in Fig. 6. As can
e seen, the first microcrack was assumed to be located along
he horizontal axis. The second microcrack was orientated to

ake an angle (α) to the first. In such a situation, the KI(a)
nd KI(b) associated with the first microcrack tips were found
o be reduced by the existence of the second microcrack.
he interaction of microcracks was an indication of stress
hielding. This effect, however, was reduced as the angle (α)
ncreased. This reduction approached a limit set by the value
f SIF for a single microcrack.

The existence of a secondary microcrack could have either

rising effect on SIF (stress amplification) or a reducing

ffect (stress shielding) as shown in Figs. 3 and 6. To study
hese phenomena, a number of microcracks were added to the

odel as shown in Fig. 7. Table 2 represents the results of this

KI (a)/KI0 (a) 1.0925 1.1074 1.1245 1.1393 1.1511
KI (b)/KI0 (b) 1.2784 1.3413 1.3879 1.3965 1.3851

K10 is SIF at the tip of primary microcrack (1) when other microcracks were
absent.
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Fig. 6. The normalized SIF of microcrack tips vs. the angle (α) between two
m
s

e
w
r
c

a
n
i
a
m
s

Fig. 7. Microcrack configuration for the “stress amplification” effect.

Fig. 8. Microcrack configuration for the “stress shielding” effect.

Table 3
Stress shielding effect

Number of microcracks

2 3 4 5

GR = 0.9
KI (a)/KI0 (a) 0.6561 0.6459 0.6958 0.5360
KI (b)/KI0 (b) 0.7082 0.7021 0.7484 0.6405

GR = 1.19
KI (a)/KI0 (a) 0.6483 0.6435 0.5802 0.5255
KI (b)/KI0 (b) 0.7097 0.7035 0.6677 0.6389

K
a

4

icrocracks. Figure indicates the “stress shielding” effect. (a) Model; (b)
oft osteon (GR = 0.5); (c) stiff osteon (GR = 2.0).

xpansion. Here, the SIF associated with the first microcrack
as observed to increase as number of added microcracks was

aised. This increase in SIF is an example of stress amplifi-
ation.

Analysis of the model was further progressed by retracting
ll secondary microcracks and repeating the tests by adding a
umber of microcracks to the primary microcrack as shown

n Fig. 8. Table 3 represents the results. As the number of
dded microcracks increased, the SIF value for the primary
icrocrack was reduced. This could be influenced by the

tress shielding phenomena.

o
m
d

I0 is SIF at the tip of primary microcrack (1) when other microcracks were
bsent.

. Discussion

This effort represents a study of fracture micromechanics

f Haversian cortical bone through adoption of a simplified
odel. The simplifications were based on a number of fun-

amental assumptions. One such assumption has been the
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doption of LEFM. The application of this theory was based
n the results of experimental efforts found in the literature.
hese results indicate that bone fracture follows linear elastic
atterns [22–24]. Furthermore, Robertson et al. have reported
hat the plastic zone on the microcrack tips was approximately
–5 �m, which was negligible in comparison to microcrack
ize [31]. The model also represents a plane strain condi-
ion. In long bone, longitudinal dimension is quite large in
omparison to its diameter. The loading in the current model,
ccurs in a perpendicular direction to the longitudinal axis
ithout altering the bone length. This leads to considera-

ion of the plane strain condition in the two-dimensional
odel of cortical bone during lateral loading. The microc-

acks, in this paper, were assumed to be situated within the
nterstitial tissue. This point was also raised in the results of
n vivo experiments [2,16]. Another factor is that a single
steon away from others is considered. Osteons are situated
t close proximities in the real bone. The distance between the
steons and osteonal density will greatly influence the micro-
rack growth trajectory, thus affecting the fracture behavior
f the bone. Detailed description of such a complex behavior
equires that the stress intensity factor at the tip of individ-
al microcracks be fully investigated. It is thus appropriate
o place the emphasis on modeling a single osteon. Further-

ore, consideration of an isolated osteon does not play a
ecisive factor as results have indicated that the effect of
n osteon on fracture behavior is limited to the vicinity of
he osteon. Articles published by Guo et al. confirm this
pproach [13].

It is also assumed that cement lines are not present. Here,
tress fields at the microcrack tips are naturally affected by
he existence of cement lines. Debonding phenomena and
he corresponding osteon pull-out are the expected results
f microcracks approaching the cement line boundary. This
s primarily due to the weak interface between the cement
ine and the surrounding tissue. The material properties of
he interfacing tissue are, however, not yet fully understood
15,16]. In addition, comparison of the osteon diameter of
bout 100 �m and cement line thickness which is close to
–3 �m led to a decision to include the cement line in the
uture developments of the current model. In this study,
icrocracks are modeled before they reach the cement line.
he results are therefore not greatly affected by the lack of
ement line presence.

Another simplification was the exclusion of the Haversian
hannel in the model. The inclusion of the channel would have
educed the effective modulus of the osteon, thereby increas-
ng the effect on the SIF at the microcrack tips. The placement
f microcracks outside the osteon, however, did reduce the
ffect of Haversian channel exclusion upon microcrack frac-
ure behavior. It could further be argued that if the microcrack
eaches the Haversian channel by passing through the cement

ine boundary, fracture could occur due to the high stress con-
entration associated with this channel.

The results were a clear indication of the effect of
icrostructure heterogeneity upon Haversian cortical bone

o
d
i
o

& Physics 29 (2007) 708–717

racture behavior. It was shown that the osteonal effect upon
icrocracks changed as the mechanical properties of various
icrostructural tissues varied. These results were in accor-

ance with other experimental and theoretical reports [12,13].
he effect of microstructure heterogeneity upon bone fracture
ehavior is primarily observed in the mechanical properties
f tissues. Differences in mechanical properties of osteonal
nd interstitial tissues results in different deformations when
he bone is subjected to an applied load. Localized stress con-
entrations could consequently occur at the interfaces [12].
his stress concentration affects the stress fields at the micro-
rack tips.

Experimental results indicate that the difference in
echanical properties associated with the osteons and inter-

titial tissues vary with age, disease, gender and genetic
actors [18,32]. As an example, the bone remodeling asso-
iated with the aging process causes the secondary osteon
o contain new bone in comparison to the interstitial region
12]. The mechanical properties of the osteon are expected to
emain constant while the remodeling process during aging
s sustained [12]. The properties associated with interstitial
issue, however, do not remain constant with aging [12]. This
as a severe effect on the bone fracture mechanics. It could
e argued that the underlying reason for an increased suscep-
ibility of bone to fracture is due to changes in the mechanical
roperties of different tissues in the bone. It should also be
dded that the osteonal mechanical properties alter as the
one remodeling is retarded [13]. This also affects other phe-
omena such as the osteon pull-out. Osteon pull-out could
lso be affected by the existence of fluid in the bone. The
ffect of bone fluid upon fracture behavior at the microstruc-
ural level has not as yet been fully investigated. Comparison
f the basic fracture experiments on wet and dry bones, how-
ver, indicate that osteon pull-out is slightly higher in the wet
one [22,23].

The results of this paper have shown that the effects of
icrocracks upon one another could lead to amplification

r shielding of the stress intensity factor. This effect was,
owever, shown to be dependent upon the way microcracks
ere located with respect to each other. It could, therefore,
e argued that fracture parameters were influenced by the
nteraction between microcracks. Other experimental results
ave also point to a direct relationship between microcracks
nd fracture behavior [33] in such a way that reduction of
one resistance to fracture has been found to be accompanied
y the coalescence of microcracks [8,34].

In conclusion, the results of this paper emphasize the effect
f microstructure morphology and heterogeneity upon frac-
ure behavior. The provided mathematical formulation indi-
ates that the stress field at the tip of the microcracks is greatly
nfluenced by microstructure and the effect of existence of
ther microcracks. This could result in stress amplification

r stress shielding. Further research towards providing a more
etailed model through inclusion of the cement line debond-
ng and osteon pull-out and the effect of microcracks on each
thers growth trajectories would be valuable.



A

f

σ

σ

σ

k

k

k

k

A.R. Najafi et al. / Medical Engineering & Physics 29 (2007) 708–717 715

ppendix A. Singular integral equations

The matrix consists of two edge dislocations with Burgers vectors bx and by at the point s (xs = ξ) on x axis (Fig. A.1). Stress
or any point as P(x, y) on the matrix could be determined as

xx = kxx1 (x, y, ξ)bx + kxx2 (x, y, ξ)by (A.1a)

yy = kyy1 (x, y, ξ)bx + kyy2 (x, y, ξ)by (A.1b)

xy = kxy1 (x, y, ξ)bx + kxy2 (x, y, ξ)by (A.1c)

In Eq. (A.1) the variables are defined as

xx1 (x, y, ξ) = G1

π(k1 + 1)R0

{
−2

(
1 + 2x2

1

r1
2

)
y1R0

r1
2 +
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2
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)
R0y2
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−2A
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x3
2
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R0

(
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2
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)]
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0y2
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2

−
(
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x2

r2

)
R0y
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1

β

(
2xyR2

0

r4

)
− 2A

(
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r2

)
R3

0y

r4

}
(A.2a)

xx2 (x, y, ξ) = G1

π(k1 + 1)R0
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(
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(A.2b)

yy1 (x, y, ξ) = G1

π(k1 + 1)R0
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(A.2c)
yy2 (x, y, ξ) = G1

π(k1 + 1)R0

{
2

(
3 − 2x2

1

r2
1

)
x1R0

r2
1

−
(
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(A.2d)
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xy1 (x, y, ξ) = G1

π(k1 + 1)R0

{
−2

(
1 − 2x2

1

r2
1

)
R0x1

r2
1

+
(

3A

− 2A
β2 − 1

β3

[
1 − 8
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2

r2
2

+ 8
x4

2

r4
2
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1

β

(
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)
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0
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(
3 − 4

x

r

xy2 (x, y, ξ) = G1

π(k1 + 1)R0

{
−2

(
1 − 2x2

1

r2
1

)
R0y1

r2
1

+
(

A

+ 2A
β2 − 1

β3

[
2β2x2 − 4

(
x2 − 2

x3
2

r2
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)
+ β2

− [A(2β2 − 1) + M(k2 + 1) − 1]
2

β

R0xy

r4 +

1 = x − ξ, r2
1 = x2

1 + y2 (A.3a)

2 = x − R2
0

ξ
, r2

2 = x2
2 + y2 (A.3b)

2 = x2 + y2, β = ξ

R0
(A.3c)

= 1 − GR

1 + GRk1
(A.4a)

= k2 − GRk1

k2 + GR
(A.4b)

= GR(k1 + 1)
(A.4c)
(k2 + GR)(k2 − 1 + 2GR)

he resulting stress obtained through dislocation distribu-
ion bt and bn in the tangential and normal direction of

ig. A.1. The edge dislocations bx and by in the neighborhood of an inclu-
ion.

k

k

k

I

α
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− 4A
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2

r2
2

)
R0x2
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2
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2
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−
(
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}
(A.2e)
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(
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(A.2f)

icrocracks could be expressed as

ti (t) =
n∑

j=1

∫ 1

−1
[kt1 (s, t)bt(s) + kt2 (s, t)bn(s)] ds (A.5a)

σni (t) =
n∑

j=1

∫ 1

−1
[kn1 (s, t)bt(s) + kn2 (s, t)bn(s)] ds,

i, j = 1, 2, . . . , n (A.5b)

here

t1 =
{

kxx1

(−sin(2αij)

2

)
+ kyy1

(
sin(2αij)

2

)

+ kxy1 cos(2αij)

}
Lj (A.6a)

t2 =
{

kxx2

(−sin(2αij)

2

)
+ kyy2

(
sin(2αij)

2

)

+ kxy2 cos(2αij)

}
Lj (A.6b)

n1 = {kxx1 sin2(αij) + kyy1 cos2(αij) − kxy1 sin(2αij)}Lj

(A.6c)

n2 = {kxx2 sin2(αij) + kyy2 cos2(αij) − kxy2 sin(2αij)}Lj

(A.6d)
n Eq. (A6) αij could be defined as follow:

ij = αj − αi (A7)
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ppendix B. Stress intensity factor (SIF)
omputation

The relationships between crack opening in different frac-
ure modes (gt, gn) and the SIFs (KI, KII) could be expressed
s

dgn

dr
= k + 1

2G

kI√
2πr

(B.1a)

dgt

dr
= k + 1

2G

kII√
2πr

(B.1b)

he relation between crack opening and dislocation density,
n the other hand, could be described:

n(r) =
∫ r

0
Bn(r) dr (B.2a)

t(r) =
∫ r

o

Bt(r) dr (B.2b)

he resulting, SIFs (KI, KII) could thus be obtained by sub-
tituting Eq. (8) in Eqs. (B1) and (B2):

kI|s=±1 = ± 2G1

k + 1

√
Lifn(±1) (B.3a)

kII|s=±1 = ± 2G1

k + 1

√
Lift(±1) (B.3b)
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