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Deterministic vs Probabilistic

+ Deterministic
— Consider of small number of scenanos: Mag, dist,
number of standard deviation of ground motion(g)

— Choose the largest ground motion from cases
considered

* Probabilistic

— Consider all possible scenarios: all mag, dist, and
number of std dev

— Compute the rate of each scenario

— Combine the rates of scenarios with ground motion
above a threshold to determine probability of
“exceedance”




Deterministic Approach

* Seclect a specific magnitude and distance
(location)

— For dams, typically the “worst-case” earthquake
— (Maximum Credible Earthquake)
* Design for ground motion, not earthquakes

— Ground motion has large varability for a given
magnitude, distance, and site condition

— Key 1ssue: What ground motion level do we
select?
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Worst-Case Ground Motion 1s Not
Selected 1n Deterministic Approach

* Combing largest earthquake with the worst-
case ground motion 1s too unlikely a case

— The occurrence of the maximum carthquake 1s
rare, so 1t 18 not “reasonable” to use a worst-

case ground motion for this earthquake

— Chose something smaller than the worst-case
ground motion that 1s “reasonable”.




What 1s “Reasonable™ ?

* The same number of standard deviation of ground
motion may not be “reasonable” for all sources

— Median may be reasonable for low activity sources, but
higher value may be needed for high activity sources

» Need to consider both the rate of the earthquake
and the chance of the ground motion

— Select ground motion below the worst-case




Considering Multiple Scenarios

Once we back off from worst-case ground motion, can no
longer 1ignore the smaller or more distant earthquakes

— Can get the same ground motion from smaller magnitudes with
larger number of std dev of ground motion

— Fltl: M=6.5, R=10km, e=0: PGA = 0.35¢
*» Rate eqk = 1/5000, P(e= 0)=0.5, combined=1/10,000

— FItl1: M 5.5, R=10km, £=1.5, PGA=0.35¢
* Rate eqk = 1/500, P{e= 0)=0.07, combined=1/7,000
— Flt2: M 7.0, R=20 km, £=1.2, PGA=0.35¢
* Rate eqk = 1/600, P{e= 0)=0.12, combined=1/5,000
What 1s “reasonable” needs to account for the multiple
earthquakes that could cause the design ground motion to
be exceeded




Basic Steps in Probabilistic Seismic Hazard
Analysis

o Seismic source characterization

«  Estimation of source seismicity parameters
(recurrence) parameters and probabilistic model

«  Selection of ground motion attenuation models

«  Treatment of Epistemic Uncertainties with Logic
Tree Models

«  Quantification of the seismic hazard



Probabilistic Approach

Consider all possible earthquakes and ground motion
levels and compute rates of each scenario

Hazard Calculation

— Rank scenarios (MR, £) in order of decreasing severity of shaking
(Tvpically use Sa)

— Result: Table of ranked scenarios with ground motions and rates

— Sum up rates of scenarios with ground motion above a specified
level (hazard curve)

Select a ground motion for the design hazard level

— Back off from worst case ground motion until either:
* The ground motion is does not lead to excessive costs, or

*» The hazard level is not too small (e.g. not too rare) to ignore (e.g. the
dezign hazard level)




Seismic source characterization

Estimation of seismicity (recurrence) parameters for each source
Selection of ground motion attenuation models

Quantification of the seismic hazard
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Earthquake Probability Estimation

Poissonian (“Time Independent™)
No memory -- probability iIs independent of past
(recent) earthquake history

Time Dependent (“Predictable”)
Considers the time elapsed since the last event In
estimating the probability of future events.

Stress Transfer (“Migration”)
Occurrence of earthquake on one fault has an impact
on the probability of occurrence on another fault



TIME DEPENDENCY AND INTERACTION OF FAULT RUPTURE

A T ¢

Ruptured at time T

B,C

Rupture Probability
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Active faults of

eastern Marmara region
during the last century
(Akyuz et al., 2000)
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The Earthquake Catalog

Development of one catalog from several
catalogs

Declustering

Use of the catalog

— Calculation of the Gutenberg-Richter a and b
values for the background

— Assignment of major earthquakes to the
segments 1n the fault segmentation model
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Association of major earthquakes between 1500-present with the
segmentation proposed
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Jan 1,1890 to Aug 18, 1953
Magnitude
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Source Zonation Scheme




RECURRENCE RELATIONSHIPS



The earthquake recurrence models for the
fault segments

Poisson model
— characteristic earthquake recurrence is assumed,
—  probability of occurrence of the characteristic event does not change
in time
—  the annual rate 1s calculated as:
R =1/ mean recurrence interval

Time dependent (Renewal model)

— the probability of occurrence of the characteristic event increases as a
function of the time elapsed since the last characteristic event,

— alognormal distribution with a coefficient of variation of 0.5 1s
assumed to represent the earthquake probability density distribution.

— the annual rate 1s calculated as:
Reff — _hl(l B Pcond) /T



MAGNITUDE AND FREQUENCY DISTRIBUTION

1. Truncated Gutenberg-Richter distribution

logN(M)=a-bM Richter (1958)

N: The number of earthquakes per year with a magnitude equal to or greater than M . N is
associated with a given area and time period.
ave b: Constants for the seismic zone.

2. Characteristic Distribution

a.Assess magnitude of potential earthquakes (segmentation, floating)

b. Calculate recurrence of earthquake (Wells ve Coppersmith, 1994) =
moment of char earthquake/moment rate of fault
= rigidity*area*displacement/rigidity*area*slip rate
rigidity modulus (resistance to shearing motion we use in
U.S. is 3.0 X 10exp11 gm/cm*s*s(dynes/cm*cm)

Gutenberg-Richter Characteristic

Log (no of eq >=M)

Magnitude (M) Magnitude (M)



Gutenberg-Richter Distribution

Richter (1958) logN=a-bM

N: The number of earthquakes per year with a magnitude equal to or greater than M .
N is associated with a given area and time period.
ave b: Constants for the seismic zone.

The constant “a” is the logarithm of the number of earthquakes with magnitude equal to or
greater than zero.

The constant “b” is the slope of the distribution and controls the relative proportion of large
to small earthquakes.
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Recurrence Relationships

Charocteristic Magnitude
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Cascading

It is well known that, even though segments can be mapped
separately at the surface, they could combine and be a single
structure at depth, or a rupture on one segment could trigger
ruptures on others in a cascade model. So two scenarios are
envisioned:

1. faults rupture independently, producing characteristic-size
carthquakes, or

2. fault segments rupture together as a cascade, producing
earthquakes of M>7.

The Cascade assumption increases the Maximum Magnitude
but reduces the rate of occurrence of the more moderate
events.

Previous rupturing cycles around the Marmara Sea indicate
that, on average, one out of three ruptures were multiple
segments.

The probabilistic results based on cascade models provided
about the same earthquake hazard levels obtained from non-
cascading models.



ATTENUATION
MODELS



PEAK HORIZONTAL GROUND MOTION (% g ) 20
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PGA =f (Magnitude, Distance, Fault type, Site condition)
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class B; (¢) Toro et al. (1994); and (d) Youngs et al. (1988), intraslab event.



Boore, Joyner, Fumal (1997)

=Based on Western North America data
=Distance measure is closest distance to surface projection of rupture

=Strike-slip and reverse faults
=Site conditions based on shear-wave velocity in upper 30 m of soil

=PSA from 0 to 2.0 seconds
] Mechanism: unspecified

D = 0.0 km
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Campbell 1997

=Based on worldwide data
*Horizontal and vertical components
=Distance measure is shortest distance to seismogenic rupture
=Strike-slip and reverse faults

*Hard rock, soft rock (620 m/sec), and firm soil site conditions
"PSA from 0.05 to 4 sec

5
E
[-]
a
]
]
L*]
o
ol
k|
5
I
W
-]
-

Distance to Selamogenic Rupture (km)

In(A,,) = -3.512 + 0.904M - 1.328 In[R_., 2 + (0 1490-67M) 212
+[1.125 - 0.112In(Rg,c) - 0.0957M]F
+[0.440 - 0.171 In(Rg.,c)] Sqr + [0.405 - 0.222 In(R )] Sy n + €



Sadigh, 1997

=Based on California data

»Horizontal and vertical components
=Distance measure is closest to rupture
=Strike-slip and reverse faults

"Rock and deep soil site conditions
"PSA 0.075 to 4.0 seconds

Sirike Slip
M 6.8-7.2
¢ Kock

O Deep soll

1 2 5 10 20 50 100 300
Distance (km)

In(y) = C, + C,M + C;(8,5-M)25+ C,In[r,, + exp(Cs+C,M)] + C7In(r  +2)

rup
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SNELL’S LAW

V,-sinf, =V, -sinf, - sind, = I_r—l-smﬁ1




DIRECTIVITY

Stronger shaking Weaker shaking

Rupture direction E




QUANTIFICATION OF THE
EARTHQUAKE HAZARD
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Steps of probabilistic seismic hazard analysis (1) definition of earthquake sources, (2) earthquake
recurrence characteristics for each source, (3? attenuation of ground motions with magnitude and distance, and
(4) ground motions for specified probability of exceedance levels (calculated by summing probabilities over all the

sources, magnitudes, and distances).



The Earthquake Hazard

The ground motion parameters used in the quantification
of the earthquake hazard are the peak ground
acceleration (PGA) and the spectral accelerations (SA)
for natural periods of 0.2 and 1.0 seconds.

The ground motions are determined for soft rock
(NEHRP B/C boundary) conditions (Vs = 760m/s) .

The results are presented as 1so-intensity contour maps
for 10% probability of exceedence in 50 years.
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Standard Shape of the Response Spectrum (NEHRP 1997)



Renewal Model
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Renewal Model 0 10 20
SA (T=0.2s.) P ey —
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SITE-DEPENDENT HAZARD




FACTORS AFFECTING SITE AMPLIFICATION
6

1- Resonances due to impedance contrasts
2-Focusing due to subsurface topography
J- Body waves converted to surface waves
4- Water content

S-Randomness of the medium
6- Surface topography







Name of classes Fxplanations
A Hard rock with measured shear wave velocity Vs = 1500 m/s.
B Rock with (760 m/s= Vs< 1500 m/s)
Very dense soil and rock with (260 m/s < Vg < 760 m/s) or with either
C Standard Penetration Resistance N> 50 or Average Undrainded shear
Strength at top 30m Su=— 100 kPa
D Stiff soil with (180 m/s <Vs<=<360 m/s) or with either 15<N<50 or { 50
kPa= Suzl100kPa)
I A zoil profile with Vs<180m/s or with PI=20 and Su<25 kPa
F Soils requiring site-specific evaluations.

The NEHRP-based Soil
Classification Map of Istanbul

10 20
- ) ISTAMBUL
kilometers Soil Classification Map
NEHRP(1997)
Classification

[ | A-Bhoundary
Black Ses B

]

¢
o
[

Marmara Sea

KOERI, 2002




B The earthquake hazard results are converted to site-dependent values to reflect the local site effects in
Istanbul. For this reason, spectral response acceleration values obtained for NEHRP site class B/C
boundary (Vs= 760 m/sec) are adjusted using Fa factors for short period and Fv factors for long period
site-correction defined in the 1997 NEHRP Provisions (NEHRP 1997).

Fa, the short period site-correction defined in the 1997 NEHRP Provisions (NEHRP 1997)

Site Class Se< 0.25 Se=0.50 Ss=0.75 Se=1.00 Sg=1.25
A 0.8 0.8 0.8 0.8 0.8
B 1 1 1 1
C 1.2 1.2 1.1 1
D 1.6 1.4 1.2 1.1 1
E 2.5 1.7 1.2 : *
F E E S E E

Fv, the long period site correction defined in the 1994 and 1997 NEHRP Provisions (NEHRP 1997)

Site Class Ss< 0.1 Ss= 0.20 S8 =0.30 Ss=0.40 Ss =0.5
A 0.8 0.8 0.8 0.8 0.8
B 1 1 1 1 1
C 1.7 1.6 1.5 1.4 1.3
D 2.4 2.0 1.8 1.6 1.5
E 3.5 3.2 2.8 2.4 *
F E He E E




Site dependent seismic hazard assessment
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Site Dependent
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Site dependent SA (T=0.2 s) map at NEHRP B/C boundary site class for 10% probability of exceedence in 50
years




Site dependent seismic hazard assessment

Renewal Hocascade Hodel
SA (1.05)10% PE in 50 yrs
Site Dependent
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Site dependent SA (T=1.0 s) map at NEHRP B/C boundary site class for 10% probability of exceedence in 50
years



Deterministic Seismic Hazard
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Earthquake Hazard Analysis

ADAPAZARI
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Deterministic Seismic Hazard
Estimation of Peak Ground
Velocity (PGV) and Intensity



Peak Ground Velocity

Based on HAZUS99 recommendations PGV has been calculated from SA
at T=1.0 using the following formula.

where PGV is the peak ground velocity in inches per second and
S,, Is the spectral acceleration in units of g, at T=1.0sec.



Intensity Based Deterministic
Earthquake Hazard

The relationships between PGA, PGV and Modified Mercalli
Intensity of Walid et al. (1999)

Imm = 3.66%log PGA -1.66, for V<lypm<VIlI

Inm= 3.47"log PGV + 2.35, for V<lym<IX



Risk Assessment



ELEMENTS AT RISK

Buildings
Lifeline Systems_—— Built Environment
Population

Socio-Economic Activities



Vulnerability estimation methodology

Two alternative approaches:

e Observed Vulnerability (OV) — based on past

damage and intensity

e Calculated Vulnerability (CV) — based on
calculated performance of building types
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Classification of damage to buildings of reinforced concrete
Grade 1: Negligible to slight damage

{no structural damage,

slight non-structural damage)

Fine cracks in plaster over frame metmbers or in walls at the base.

Fine cracks in partitions and mfills.

Grade 2: Moderate damage

(slight structural damage,

=

Rt = _—- -~
—i=— =l ==

moderate non-structural damage)

Cracks in columns and beams of frames and m structural walls.

Cracles in partition and infill walls, fall of brittle cladding and plaster. Falling mortar from the joints of wall panels.
Grade 3: Suhstantial to heavy damage

{moderate structural damage,

heavy non-structural damage)

|Cracks in columns and beam column joints of frames at the base and at joints of coupled walls. Spalling of conrete

cover, buckling of reinforced rods.

Large cracks m partition and mfill walls, fature of mdividual mfill panels.

Grade 4: Very heavy damage

{heavy structural damage,
very heavy non-structural damage)

on failure of concrete and fracture of rebars; bond fallure of beam
few columns or of a single upper floor.

i Lar ze cracks in structural elen

£

."J' LY 1
remforced bars; tiling of col ofa

Grade 5: Destruction

% (very heavy structural damage)

Collapse of ground floor or parts (e. g wings) of buildings.



Observed vulnerability (OV)

Advantages:
e Based on observed damage to actual building stock in area
e [akes account of real variety of faillure modes

e« Simple in concept and application to loss estimation — few
assumptions

Limitations:
e Intensity measurement difficult when building stock is dynamic

e Does not fit with today’s engineering parameters of ground
motion

¢ No real modelling of interaction between ground motion, soil
and structure response

e Difficult to apply to new or modified building types
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Calculated vulnerability (CV)

Advantages:
e Relates to engineering ground motion

e Can be applied to building types not previously
damaged

¢ Models interaction between ground motion, soil and
structure response

e Avoids the use of intensity

Limitations

e Not based on damage data

e Not valid for buildings which fail in non-structural ways
e Complex structure — many assumptions
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Classification of Building Data

v’ Structural systems category
» | =1:RC frame building

2 : Masonry building
3 : Shear wall building (Tunnel formwork system)
4 : Pre-fabricated building

v Number of building stories category
» J=1:1-4 stories (including basement)

> |
> |
> |

» J=2:5—8 stories (including basement)
» J=3: > 8 stories (including basement)

v’ - Construction Year category
» K =1: Construction year: pre-1979 (included)
» K =2: Construction year: post-1980



Classification of Structural Damage

» S: Slight damage
» M: Moderate damage
» E: Extensive damage

» C: Complete damage

Classification of Casualties

» Severity 1
»> Severity 2
» Severity 3

» Severity 4



BUILDING INVENTORIES

3 Building Inventory based on aerial photos prepared by Iki
Nokta

(] Data prepared by State Statistics Institute (SSI)
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Output of the Analysis

v" Buildings Damage Loss
v Direct Economic Loss
v Number of Casualties

In terms of

dGeo-cells (Grids)
Subdistricts (Mahalle)
ADistricts (Ilce)
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Extensive Damage Distribution of Mid-Rise Pre-1980 R/C Buildings
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Lifeline Systems
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WASTE WATER TRANSMISSION SYSTEM
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NATURAL GAS TRANSMISSION SYSTE
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Intensity Based Life Line Damage
Assessment



Transportation system: Earthquake
Vulnerability and Damage

Road damages consist of the surface damages and
collapse of the neighboring slopes or retaining
walls.

Also collapsed underpasses or buildings can block
the traffic even if the motorway 1s not damaged.
According to ATC 25, the ratio of damage of local
roads during an earthquake are given as %2 for
MMI V, %4 for MMI VI, %11 for MMI VII, and
%32 for MMI VIII



Water and Wastewater Transmission
Systems

According to ATC 235, the ratio of damage of water
transmission lines during an earthquake are given
as %0 for MMI V, 1% for MMI V1, 4% tfor MMI
VII, and 12% for MMI VIII.

According to ATC 235, the ratio of damage of
wastewater transmission lines during an
earthquake are given as 0% for MMI V, 2% for
MMI VI, 40% for MMI VII, and 100% for MMI
VIII
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