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High-accuracy differential quadrature finite element method
and its application to free vibrations of thin plate

with curvilinear domain
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SUMMARY

Based on the differential quadrature (DQ) rule, the Gauss Lobatto quadrature rule and the variational
principle, a DQ finite element method (DQFEM) is proposed for the free vibration analysis of thin plates.
The DQFEM is a highly accurate and rapidly converging approach, and is distinct from the differential
quadrature element method (DQEM) and the quadrature element method (QEM) by employing the function
values themselves in the trial function for the title problem.

The DQFEM, without using shape functions, essentially combines the high accuracy of the differential
quadrature method (DQM) with the generality of the standard finite element formulation, and has superior
accuracy to the standard FEM and FDM, and superior efficiency to the p-version FEM and QEM in
calculating the stiffness and mass matrices.

By incorporating the reformulated DQ rules for general curvilinear quadrilaterals domains into the
DQFEM, a curvilinear quadrilateral DQ finite plate element is also proposed. The inter-element compat-
ibility conditions as well as multiple boundary conditions can be implemented, simply and conveniently
as in FEM, through modifying the nodal parameters when required at boundary grid points using the DQ
rules. Thus, the DQFEM is capable of constructing curvilinear quadrilateral elements with any degree
of freedom and any order of inter-element compatibilities. A series of frequency comparisons of thin
isotropic plates with irregular and regular planforms validate the performance of the DQFEM. Copyright q
2009 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

The standard finite element method (FEM) and finite difference method (FDM) have been employed
for the solution of a wide variety of engineering problems in the past. However, both FEM and
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FDM typically use low-order schemes, and, consequently, high accuracy is achieved with some
difficulties. In seeking alternative numerical algorithms, using less grid points with acceptably
accurate solutions to differential equations, another numerical scheme called differential quadrature
method (DQM) was introduced by Bellman et al. [1, 2]. The DQM has been experimented with
and its general versatility has been established in a variety of physical problems, such as transport
processes [3], structural mechanics [4–12], fluid mechanics [13–15] and some problems in chemical
engineering [16, 17]. An exhaustive list of the literature on the DQM up to 1996 may be found
in survey papers [18, 19]. The DQM was also referred to as the generalized collocation method
in Reference [19]. Although the DQM as a numerically accurate and computationally efficient
technique has been well demonstrated, its limitations summarized by Bert and Malik [18] are also
apparent, which are reviewed below and given more comments incorporating the developments
since then.

The DQM, by its very basis, is limited in application to the domains having boundaries that are
aligned with the coordinate axes. But it is obvious that we can use the DQM to analyze irregular
domains that are the assemblies of such regular domains using the domain decomposition ([20]
for example) and the quadrature element ([21, 22] for example). Bert and Malik [5] have extended
the DQM to curvilinear quadrilaterals by means of the natural-to-Cartesian geometric mapping
technique, the quadrature rules were reformulated there. However, since the computational domain
of the DQM is much larger than that of a finite element, the geometric mapping may cause
significant errors when the domain is large and the boundary has a high curvature; hence, accurate
transformation techniques are needed. The blending function method used by Malik and Bert [23]
is such an approach, but higher-order serendipity mapping functions used by the authors in present
study are another natural and general choice. Another work on irregular domains is that of Shu
et al. [24] for the DQ solutions of the free vibration of thin plates with curvilinear boundaries. In
their work, the exact geometric mapping using blending functions was utilized for transforming
the governing equations from Cartesian to natural reference frame and the usual quadrature rules
were then used for setting up the DQ analog equations, and much less computational effort and
virtual storage were required.

The second limitation or problem, first pointed out by Civan and Sliepcevich [25], is the
deterioration of the DQ solution with increasing number of grid points. This problem, basically,
is how to space grid points. It has been well shown ([5, 7, 26, 27] for example) that the so-called
Chebyshev–Gauss–Lobatto points, first used by Shu and Richards [14] and used widely since then,
are better than the equally spaced, Legendre and Chebyshev points in a variety of problems.

Since the original DQM has only the function values at the grid points as independent variables,
difficulty arises for applying multiple boundary conditions, for example, to solve fourth-order
differential equations of beam or thin plate. To resolve this difficulty several different schemes
have been investigated, see [28–31].

In �-method [4, 6, 21], one boundary condition is exactly imposed while the other is approxi-
mately imposed only. Jang et al. [6] found that the �-method was not equally successful for all
structural problems with different boundary conditions if � was not very small. Nevertheless, if �
is too small, the polynomial solution may oscillate.

The multiple boundary conditions can also be imposed by modifying weighting coefficient
matrices [11, 12, 27, 28], in which the boundary conditions were built during the formulation of
the weighting coefficients for higher-order derivative. However, Shu and Du [32, 33] reported that
this technique had some major limitations and was not applicable to general boundary conditions,
for example, free boundary conditions.
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Another way to impose the boundary conditions is to apply the multiple boundary conditions at
the same boundary points and to establish the DQ analogous equations of the boundary conditions
at the boundary points. To eliminate the redundant equations, the DQ analogous equations of
the governing differential equations at so-called auxiliary grid points are dropped. This approach
has been used extensively by many researchers [8, 32–37] and was viewed as substituting all the
boundary conditions into the governing equations [32].

Alternatively, the boundary conditions involving higher-order derivatives can be imposed exactly
by modifying the trial functions to incorporate the degrees of freedom (DOFs) of the specified
higher-order derivatives at the boundary [29, 30, 38–44]. In this approach, the first-order [44]
and the second-order derivatives (see [29, 30] for example) were employed as the independent
DOFs at boundary points, the Lagrange (see [43] for example) and Hermite (see [38, 42] for
example) functions were commonly used in the determination of weighting coefficients. But in
general, mixed-type boundary conditions cannot be tackled directly by this method. Additionally, Lu
et al. [45] formulated the DQM in the state space, where the boundary conditions were dealt with
without difficulties using state variables.

In a word, there are problems of feasibility, generality and simplicity in imposing the multiple
boundary conditions (the free boundary condition of plates, for example), although several methods
as aforementioned have been proposed.

All works via DQM yield good to excellent results due to the use of the high-order global
basis functions in the computational domain. Nevertheless, further application of the method has
been greatly restricted by its drawback of not being able to be directly employed to solve the
problem with discontinuities [21]. To improve the versatility of the DQM, the DQ element method
(DQEM) [26, 29, 30, 38, 41, 43, 44, 46–49] was formulated from the strong forms of the governing
equations. The trial functions include the slopes or curvatures for implementing multiple boundary
conditions, in this sense the method differs from the original idea of the DQM wherein only the
function values are used in trial functions.

As is well known, the FEM is famous for its versatility and its simplicity in imposing the
inter-element compatibility conditions and boundary conditions. Using the p-version element with
higher-order polynomials, an entire plate can be modeled by one such element without loss of
accuracy. For example, the convergence of the 49-DOF rectangular quadrature plate element [50, 51]
is more rapid than that of the h-version elements using the same number of DOFs. However, it is
not easy to formulate the shape functions in the p-version FEM and the QEM with higher-order
polynomials. Once the DOFs change, the shape functions must be recalculated. Therefore, the
p-version FEM and the QEM [50, 51] lack adaptability, the calculation of the stiffness and mass
matrices is expensive and the cost will increase dramatically when using curvilinear quadrilateral
elements. Moreover, one would encounter difficulties in formulating complete compatible thin
plate element due to the requirements of C1 continuity, thus commonly used quadrilateral element
of thin plate has 12 DOFs, and is a partial compatible plate element.

In present study the DQ rules in conjunction with the Gauss–Lobatto quadrature rules are used
to discretize the energy functional that is generally used to derive the FEM formulation. This novel
method is called the DQ finite element method (DQFEM), where the boundary conditions can be
simply imposed as in FEM, the shape functions are not needed any more and the stiffness and
mass matrices can be obtained by simple algebraic operations of the weighting coefficient matrices
of the DQ rules and Gauss–Lobatto quadrature rule. Consequently, the efficiency is improved
dramatically while the high accuracy of the DQM is maintained. The inter-element compatibility
conditions are implemented through modifying the nodal displacement vector using the DQ rules.
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The advantages of the DQFEM can be briefly summarized as follows: (1) there are not slopes or
curvatures in trial functions, i.e. the Lagrange polynomials are used as trial function even though
for thin plate, this is consistent to the original idea of the DQM. (2) The slopes or/and curvatures
can be involved at boundary grid points when required for imposing multiple boundary conditions
via the transformation of nodal displacement vector using DQ rules. (3) The node shape functions
are not necessary, the stiffness and mass matrices can be computed by simple multiplications of
the weighting coefficient matrices of the DQ rules and Gauss–Lobatto quadrature rule. (4) The
assemblage of elements and implementation of boundary conditions are exactly the same as in the
standard FEM.

The title problem or the free vibrations of isotropic thin plates with different planforms have
been studied extensively due to a variety of applications by using the FEM [52–56], the Ritz
method [57–63], the DQM [5, 23, 64–70], the discrete singular convolution (DSC) method [71–73],
the superposition method [74–76], the Green function method [77], the moving least-square Ritz
method [78] and the Galerkin method [79]. In the above paragraph there are some comments
on FEM and DQM. The Ritz method featured by high accuracy, easy coding and capabilities of
accommodating a wide spectrum of plate configurations and boundary constraints is computation-
ally expensive and cannot be used to solve problems with complex geometry and discontinuities.
The DSC method, with formula similar to the DQM, is a localized method and numerically more
stable than the DQM for problems requiring a large number of grid points [80]. However, the
applications of the DSC method to vibrations of plates are limited in straight-sided quadrilateral
plates so far. It is noteworthy, recently, that some new exact solutions have been obtained by the
present authors using direct separation of variables for rectangular plates with any combinations
of simple support and clamp conditions [81, 82].

In this context, by incorporating the reformulated DQ rules into the DQFEM, the curvilinear
quadrilateral DQ finite element is also formulated in this paper. Therefore, the DQFEM is capable
of constructing curvilinear quadrilateral elements with any DOF and any order of inter-element
continuity. The performance of the DQFEM is demonstrated through free vibration analysis of thin
isotropic plates with sectorial, circular, triangular, pentagonal, trapezoidal and rhombic planforms.
In all numerical tests, the DQFEM results are found to be convergent, and in excellent agreement
with results in literature and of the FEM.

The outline of this paper is as follows. The DQ rule and Gauss–Lobatto quadrature rule are
reviewed briefly in Sections 2 and 3, respectively. The formulation of DQFEM is presented in
Section 4 where the QEM [50, 51] is also reviewed. In Section 5, the numerical results are compared
with available results. Finally, the conclusions are drawn.

2. THE DQ RULE

Details of the DQM can be found in literature, for example, the survey paper [18]. Only the
two-dimensional DQ rules used in the present study are given in a compact form as follows. The
r th-order, the sth-order and the (r+s)th-order partial derivatives of f (x, y) at point (xi , y j ) can
be expressed as:

�r f
�xr

∣∣∣∣
i j

=
M∑

m=1
A(r)
im fmj ,

�s f
�ys

∣∣∣∣
i j

=
N∑

n=1
B(s)
jn fin,

�r+s f

�xr�ys

∣∣∣∣∣
i j

=
M∑

m=1
A(r)
im

N∑
n=1

B(s)
jn fmn (1)
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The direct application of the DQ rules in Equation (1) is cumbersome. Here, they are written
in a compact form using a single index notation for grid points by defining the following vector
and matrices:

f̄= [ f11 . . . fM1 f12 . . . fM2 . . . f1N . . . fMN ]T (2)

Ā(r) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A(r) O . . . O

O A(r) . . . O

...
...

. . .
...

O O . . . A(r)

⎤
⎥⎥⎥⎥⎥⎥⎦

, B̄(s) =

⎡
⎢⎢⎢⎢⎢⎢⎣

B(s)
11 B(s)

12 . . . B(s)
1N

B(s)
21 B(s)

22 . . . B(s)
2N

...
...

. . .
...

B(s)
N1 B(s)

N2 . . . B(s)
NN

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

where Ā(r) and B̄(s) are (M×N )×(M×N ) matrices, B(s)
i j =diag(B(s)

i j , . . . , B(s)
i j )M×M and A(r) =

(A(r)
i j )M×M . Thus, Equation (1) becomes

�r f
�xr

∣∣∣∣
k
=

M×N∑
m=1

Ā(r)
km f̄m,

�s f
�ys

∣∣∣∣
k
=

M×N∑
m=1

B̄(s)
km f̄m,

�r+s f

�xr�ys

∣∣∣∣∣
k

=
M×N∑
m=1

F̄ (r+s)
km f̄m (4)

where k, m=( j−1)M+i , (i=1,2, . . . ,M; j =1,2, . . . ,N ). It is noteworthy that the two matrices
defined by Equation (3) can also be obtained by the standard tensor product as

Ā(r) =E⊗A(r) (5a)

B̄(s) =B(s)⊗E (5b)

where B(s) =(B(s)
i j )N×N , E is an N×N unit matrix for Equation (5a) and an M×M unit matrix

for Equation (5b). Denote F̄(r+s) = Ā(r)B̄(s), we have

F̄(r+s) = Ā(r)B̄(s) = B̄(s)Ā(r) =B(s)⊗A(r) (6)

The correctness of Equation (6) can be readily verified by substituting Equation (5) into Equation (6)
and using the theorem (A⊗B)(C⊗D)=AC⊗BD, where A, B, C and D are four generic matrices
with compatible dimensions. F̄(r+s), Ā(r) and B̄(s) are used in Section 4.

3. GAUSS–LOBATTO QUADRATURE RULE

The well-known Gauss–Lobatto quadrature available in most mathematics handbooks is the Gauss
integration with two endpoints fixed, but it is briefly introduced here to make the paper self-
contained. The Gauss–Lobatto quadrature rule with precision degree (2n−3) for function f (x)
defined within [−1,1] is ∫ 1

−1
f (x)dx=

n∑
j=1

C j f (x j ) (7)
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where the weights C j are given by

C1=Cn = 2

n(n−1)
, C j = 2

n(n−1)[Pn−1(x j )]2 ( j �=1,n) (8)

where x j is the ( j−1)th zero of P ′
n−1(x), and the Legendre polynomial Pn(x) of degree n has

the form

Pn(x)=
[n/2]∑
k=0

(−1)k(2n−2k)!
2nk!(n−k)!(n−2k)! x

n−2k (9)

The zeros of P ′
n−1(x) are the same as the eigenvalues of its companion matrix. The companion

matrix of a polynomial c1xn+c2xn−1+·· ·+cnx+cn+1 is

B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 . . . bn−1 bn

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where b j =−c j+1/c1( j=1,2, . . . ,n).

4. FORMULATION OF THE DQFEM PLATE ELEMENT

4.1. The quadrature element method (QEM)

In general, the convergence of the p-version elements is more rapid than that of the h-version
elements in a finite element analysis using the same number of DOFs. One whole plate can be
modeled by just one p-version element satisfying the accuracy requirement. In the following,
the quadrature plate element [50, 51], a 25-node rectangular element with 49 DOFs as shown
in Figure 1, is recalled. The displacement field of the 49-DOFs quadrature plate element is
expressed in terms of polynomial-type shape functions such that the displacement of the element is
assumed as

w(x, y) = ∑
i=1,2,3,4

[Ni1wi +Ni2wi x +Ni3wiy+Ni4wi xy]+ ∑
i=17−25

[Ni1wi ]

+ ∑
i=5,6,7,11,12,13

[Ni1wi +Ni2wi x ]+ ∑
i=8,9,10,14,15,16

[Ni1wi +Ni2wiy] (11)

where wi , wi x =(�w/�x)i , wiy =(�w/�y)i and wi xy =(�2w/�x�y)i are the local DOFs of node i .
Then one can obtain the ordinary dynamic equations of thin plate by substituting the displacement
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Figure 1. The nodal configuration of a quadrature plate element.

function into the strain energy U and the work potential W and using the variational principle
�(U+W )=0. For thin plate, U and W have the forms as

U = D

2

∫ ∫
S

⎡
⎣(�2w

�x2

)2

+
(

�2w
�y2

)2

+2�
�2w
�x2

�2w
�y2

+2(1−�)

(
�2w
�x�y

)2
⎤
⎦dx dy (12)

W = −
∫ ∫

S
w

(
−�h

�2w
�t2

)
dx dy−

∫ ∫
S
wq dx dy (13)

Using the above QEM, quite accurate results were obtained [50, 51] with relative small number
of DOFs. It is notable that the QEM based on the trial function (11) is analogous to DQM due to
using deflections themselves at inner grid points, and to FEM due to using nodal shape functions
and slopes in trial functions as well as variational principle.

4.2. The DQ finite element method

To improve the computational efficiency and simplify the implementation of boundary conditions
of the QEM while maintaining its high accuracy motivate the development of a new method,
referred to as the DQ finite element method (DQFEM) in the present study. In this novel method,
the Lagrange polynomials are chosen as the trial function of C1 thin plate element as

w(x, y)=
M∑
i=1

N∑
j=1

li (x)l j (y)wi j (14)

It should be emphasized that there are no slopes and curvatures in expression (14), which differs
from the trial functions used in FEM, QEM and DQEM for thin plate.

Substituting the trial function into Equations (12) and (13) and using the DQ rules in conjunction
with the Gauss–Lobatto quadrature rule, one can have

U = D

2

K∑
k=1

Ck{[Ā(2)
k w̄]2+[B̄(2)

k w̄]2+2�[Ā(2)
k w̄][B̄(2)

k w̄]+2(1−�)[F̄(1+1)
k w̄]2} (15)
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W =
K∑

k=1
Ck

[
wk

(
�h

�2wk

�t2

)
−wkqk

]
(16)

where K =M×N , Ck =Cx
i C

y
j , Ā

(2)
k , B̄(2)

k and F̄(1+1)
k are the kth rows of Ā(2), B̄(2) and F̄(1+1),

respectively. w̄=(wm)K×1 is a column vector, here m=( j−1)M+i , i=1, . . . ,M , j =1, . . . ,N .
For brevity, let A= Ā(2), B= B̄(2), F= F̄(1+1), C=diag[Ck], then Equations (15) and (16) can be
rewritten as

U = D

2
w̄T[ATCA+BTCB+2�ATCB+2(1−�)FTCF]w̄ (17)

W = w̄T(�hC) ¨̄w+w̄TCq (18)

For imposing the inter-element compatibility conditions of any order, some modification on
the displacement vector w̄ is necessary. One choice of the displacement vectors satisfying the C1

inter-element compatibility conditions for rectangular thin plate element, as shown in Figure 2,
can be given by

w= [wm wmx wmy wmxy (i=1,M; j =1,N ), wm wmx (i=3, . . . ,M−2; j=1,N )

wm wmy (i=1,M; j =3, . . . ,N−2), wm (i=3, . . . ,M−2; j=3, . . . ,N−2)] (19)

which is similar to nodal parameters used in trial function (11). For a curvilinear quadrilateral
element as shown in Figure 3, the derivatives of w in Equation (19) should be defined with respect
to the normal and tangential of the edge. The vector w̄ is related to w by the DQ rules, as

w=Qw̄ (20)

where Q is not singular for any case, and a diagonal unit matrix for C0 element, this cause mass
matrix given below to be a diagonal matrix, see Equation (22). Substitution of Equation (20) into
Equations (17) and (18) yields the stiffness matrix, the mass matrix and the force vector of the
new rectangular thin plate, as

K= DQ−T[ATCA+BTCB+�(ATCB+BTCA)+2(1−�)FTCF]Q−1 (21)

M=Q−T(�hC)Q−1, R=Q−T(Cq) (22)

Apparently, both K and M are symmetrical matrices implying good numerical properties, but,
generally, they are unsymmetrical in DQEM. Moreover, the above formulations for DQFEM are
simpler and more adaptable, and hold for plates with irregular shape as shown below.

4.3. Curvilinear quadrilateral plate element

Since the DQ rules cannot be used directly for irregular domain, the reformulated DQ rules
proposed by Bert and Malik [5] are employed in the present study. For completeness, reformulated
DQ rules are recurred below, but it is worth mentioning that they were used to discretize the
differential equation in Reference [5], where convergence problems were encountered when there
are high-order derivatives on the boundary, while they are used to discretize the functional U and
W here and the aforementioned convergence problems are avoided.
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Figure 2. A square parent region.

0 x

y

Figure 3. A sectorial region.

Let the interested domain be a curvilinear quadrilateral in the Cartesian x–y plane, as shown
in Figure 4(a). The geometric mapping of this domain can be accomplished from a square parent
domain, −1<�<1, −1<�<1 in the natural �−� plane, as shown in Figure 4(b), by using the
coordinate transformation

x=
Ns∑
k=1

Sk(�,�)xk, y=
Ns∑
k=1

Sk(�,�)yk (23)

where xk , yk ; k=1,2, . . . ,Ns are the coordinates of Ns grid points on the boundaries of the domain.
Since Sk has a unity value at the kth node and zeros at the remaining (Ns−1) nodes, the domain
mapped by Equation (23) matches with the given quadrilateral domain exactly at the nodes on the
boundaries.

Subsequently, we should express the derivatives of a function f (x, y) with respect to x and y
coordinates in terms of its derivatives with respect to � and � coordinates. Regarding f (x, y) as an
implicit function of � and � as f = f [x(�,�), y(�,�)], and using the chain rule of differentiation,
we have the following results:

� f

�x
= 1

|J|
(

�y
��

� f

��
− �y

��

� f

��

)
,

� f

�y
= 1

|J|
(

�x
��

� f

��
− �x

��

� f

��

)
(24)
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Figure 4. (a) A curvilinear quadrilateral region in Cartesian x-y plane and (b) a square
parent domain in natural �–� plane.

where the determinant |J| of J=�(x, y)/�(�,�) is

|J|= �x
��

�y
��

− �y
��

�x
��

(25)

Since the parent domain is regular, the partial derivatives of function f with respect to the
natural coordinates (�,�) at the pre-specified gird points can be obtained directly through the DQ
rules. Consider the parent domain with M×N grid points, as shown in Figure 2. The first-order
derivatives � f/�� and � f/�� at grid point (�i ,� j ) can be obtained by the DQ rules

� f

��

∣∣∣∣
i j

=
M∑

m=1
A(1)
im fmj ,

� f

��

∣∣∣∣
i j

=
N∑

n=1
B(1)
jn fin (26)

where fi j = f (�i ,� j ), A
(1)
im are the first-order �-derivative weighting coefficients associated with the

point �=�i , B
(1)
jn the first-order �-derivative weighting coefficients associated with the point �=� j .

Then the partial derivatives � f/�x and � f/�y at the gird point xi j = x(�i ,� j ), yi j = y(�i ,� j ) in
the mapped curvilinear quadrilateral domain, as shown in Figure 3, can be computed by inserting
Equation (26) into Equation (24), as

(
� f

�x

)
i j

= 1

|J|i j

[(
�y
��

)
i j

(
M∑

m=1
A(1)
im fmj

)
−
(

�y
��

)
i j

(
N∑

n=1
B(1)
jn fin

)]
(27)

(
� f

�y

)
i j

= 1

|J|i j

[(
�x
��

)
i j

(
N∑

n=1
B(1)
jn fin

)
−
(

�x
��

)
i j

(
M∑

m=1
A(1)
im fmj

)]
(28)

where the subscript ij refers to grid point (�i ,� j ) and its mapped point (xi j , yi j ). Equations (27)
and (28) define the DQ rules of the first order partial derivatives with respect to x and y coordinates
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for the irregular domain. Certainly, the reformulated DQ rules can also be written in a compact
form using a single index for grid points, as

� f

�x

∣∣∣∣
k
=

M×N∑
m=1

Ã(1)
km f̄m,

� f

�y

∣∣∣∣
k
=

M×N∑
m=1

B̃(1)
km f̄m (29)

for k,m=( j−1)M+i ; i=1,2, . . . ,M ; j =1,2, . . . ,N . Thus, the transformation is fulfilled with
an additional relation as follows:

dx dy=|J|d�d� (30)

its proof may be found in calculus books, and is not repeated here. In the similar way as in
Equation (3), we can formulated the matrices Ã(2), B̃(2). Let A= Ã(2), B= B̃(2), F= Ã(1)B̃(1),
C=diag[Ck Jk], where Jk =|J|i j , then the stiffness matrix K, mass matrix M and load vector R
for curvilinear quadrilateral plate element can be determined by substituting A, B, C and F into
Equations (21) and (22).

5. NUMERICAL COMPARISONS

This section aims to demonstrate the high accuracy and rapid convergence of the DQFEM through
free vibration analysis of thin isotropic plates with sectorial (Figure 5), elliptical (Figure 6), trian-
gular (Figure 7), pentagonal (Figure 8), trapezoidal (Figure 9) and rhombic (Figure 10) planforms.
The triangular and pentagonal plates are divided into three sub quadrilateral plates in the analysis,
as shown in Figures 7 and 8. The mappings of a square parent domain to the interested domains are
carried out via the quartic or cubic serendipity interpolation functions. Each table of the frequen-
cies includes the formula for �. Many available exact and numerical results in literature are used
for comparisons where the Poisson ratio is 0.3, the numbers of grid points N =M for numerical
convenience.

The frequencies are presented in Tables I–VIII, where various boundary conditions are taken into
account for a range of the grid points to show numerically the convergence behavior of DQFEM,
to five or six significant digits in order to show the convergence rate more evidently.

In Table I the results are for two types of sectorial plates, namely, a plate with four simply
supported (S) edges (SSSS), and a plate with two simply supported radial edges and twoclamped (C)

x

y

0

e a

b

c

Figure 5. An eccentric sectorial plate.
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Figure 6. An elliptic plate.

a

d

b0 x

y

(1)

(2)

(3)

Figure 7. A triangular plate.

x

y

0
(1)

(2)

(3)

(4)

(5)

Figure 8. A pentagonal plate.

circumferential edges (SCSC). Table I also includes the exact results [83] using the methodology of
Ramakrishnan and Kunukkaserll [84], the Rayleigh–Ritz solutions [83] using eight-term orthogonal
polynomials and the DQM results [23] using both cubic serendipity interpolation functions and
blending functions. It is shown that all numerical results except for the ones obtained through
cubic serendipity functions agree well with the exact results, mostly to five significant digits. The
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2b
2c

a

x

y

Figure 9. A symmetric trapezoidal plate.

2a

2b

x

y

Figure 10. A rhombic plate.

cubic serendipity interpolations exhibit some convergence and accuracy problems [23]. Apparently,
both quartic and cubic serendipity functions embedded in the DQFEM exhibit better convergence
than the blending-function and the cubic serendipity function in the DQM. Moreover, the DQFEM
results with the quartic interpolation functions and the DQM results with the blending functions
are closer to the exact results.

In Tables II and III, a sectorial plate with two eccentric circular arcs, and an elliptical plate with
ellipticities a/b=1 and 2 are investigated, respectively. Their planforms are more irregular than
that considered in Table I.

The eccentric sectorial plates in Table II have simple support, clamp and free edges, and at
least a straight edge is free. The DQFEM frequencies are compared only with the FEM results
computed by the authors using MSC/NASTRAN due to the lack of published results. In Bert and
Malik’s reformulated DQM formulation [5], the convergence of the solution for plates with free
edges was found to be severely slow, but the DQFEM solutions show excellent convergences for
the four cases with at least a free edge, this may attribute to the same imposing method of free
boundary conditions and symmetrical matrices in DQFEM as in FEM.

The DQFEM solutions for the clamped circular (a/b=1) and elliptic (a/b=2) plates are
compared, in Table III, with the exact solutions [85], the reformulated DQM solutions [5], and the
Rayleigh–Ritz solutions [86, 87] using orthogonal polynomials. It can be seen that the DQFEM
frequencies agree with the exact and Rayleigh–Ritz results, mostly to four significant digits, but
the reformulated DQM solutions do not show any convergence with the increase of grid points due
to the lower-order mapping function and unsymmetrical stiffness and mass matrices used there.
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Table I. The first four natural frequencies of sectorial plates
(a/b=2.0, e/b=0.0, �=450, �=�a2

√
�h/D).

Mode sequences

1 2 3 4 1 2 3 4

M=N SSSS plate SCSC plate

Exact solutions [83]
— 68.379 150.98 189.60 278.39 107.57 178.82 269.49 305.84

Eight-term orthogonal-polynomial Rayleigh-Ritz solutions [83]
— 68.379 150.98 189.60 278.39 107.57 178.82 269.49 305.84

DQFEM solutions with quartic serendipity interpolation functions
8 68.374 150.97 189.54 281.67 107.57 178.84 269.53 309.32
9 68.378 150.98 189.59 278.37 107.57 178.82 269.57 305.85
10 68.379 150.98 189.59 278.43 107.57 178.82 269.49 305.89
11 68.379 150.98 189.60 278.38 107.57 178.82 269.49 305.84
12 68.379 150.98 189.60 278.39 107.57 178.82 269.49 305.84
13 68.379 150.98 189.60 278.39 107.57 178.82 269.49 305.84

DQM solutions with blending functions [23]
11 68.379 150.98 189.60 278.17 107.57 178.82 269.51 305.63
12 68.379 150.98 189.60 278.42 107.57 178.82 269.49 305.88
13 68.379 150.98 189.60 278.38 107.57 178.82 269.49 305.84
14 68.379 150.98 189.60 278.39 107.57 178.82 269.49 305.84
15 68.379 150.98 189.60 278.39 107.57 178.82 269.49 305.84

DQFEM solutions with cubic serendipity interpolation functions
8 68.375 150.94 189.54 281.61 107.58 178.81 269.53 309.26
9 68.379 150.95 189.59 278.33 107.57 178.79 269.58 305.81
10 68.380 150.95 189.59 278.38 107.57 178.79 269.50 305.85
11 68.381 150.95 189.60 278.34 107.57 178.79 269.50 305.80
12 68.381 150.95 189.60 278.34 107.57 178.79 269.50 305.80

DQM solutions with cubic serendipity interpolation functions [23]
11 68.364 150.94 189.62 279.31 107.57 178.79 269.52 305.58
12 68.378 150.91 189.57 278.38 107.57 178.79 269.49 305.84
13 68.376 150.95 189.60 278.12 107.57 178.79 269.50 305.80
14 68.379 150.95 189.60 278.34 107.57 178.79 269.50 305.80
15 68.378 150.95 189.60 278.35 107.57 178.79 269.50 305.80

In Table IV, comparison studies are carried out for rectangular plates with four combinations of
simply supported, clamped and free edges. It is shown that DQFEM solutions agree very closely
with the Kantorovich solutions [88] for CSCS and FSFS plates, with the double trigonometric
series solution [89] for CCCC plate, even to all available significant digits, and with FEM results
for FFFF plate to four significant digits, this implies that the DQFEM precision is independent of
boundary conditions.

Table V presents comparison studies of five triangular plates with five combinations of simply
supported, clamped and free edges, and one corner-supported triangular plate. CSS indicates that the
side (1), side (2) and side (3) of the triangle are clamped, simply supported and simply supported,
respectively, and so forth. DQFEM solutions are in excellent agreement, at least to three significant
digits, with the Rayleigh–Ritz solutions [62] and the superposition solutions [75]. The same
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Table II. The first four natural frequencies for eccentric sectorial plates
(a/b= 8

3 , e/b=1.0, �=450, �=�(a2/	2)
√

�h/D).

Mode sequences

1 2 3 4 1 2 3 4

M=N FSSS plate FSCS plate

Finite element analysis solutions
— 13.356 18.819 26.157 37.837 13.368 19.694 27.980 40.696

DQFEM solutions with quartic serendipity interpolation functions
8 13.359 18.821 26.165 38.528 13.371 19.700 28.003 42.212
9 13.358 18.819 26.165 37.857 13.369 19.696 27.989 40.717
10 13.357 18.819 26.163 37.856 13.369 19.695 27.986 40.736
11 13.357 18.819 26.162 37.842 13.369 19.695 27.985 40.700
12 13.357 18.819 26.162 37.842 13.369 19.695 27.985 40.700

DQFEM solutions with cubic serendipity interpolation functions
8 13.415 18.805 26.178 38.508 13.428 19.669 28.016 42.164
9 13.414 18.804 26.176 37.867 13.426 19.666 27.994 40.723
10 13.413 18.804 26.175 37.860 13.425 19.664 27.993 40.732
11 13.413 18.804 26.174 37.849 13.425 19.664 27.992 40.701
12 13.413 18.804 26.174 37.848 13.425 19.664 27.992 40.700
13 13.413 18.804 26.174 37.848 13.425 19.664 27.992 40.700

FSFS plate FFFF plate
Finite element analysis solutions
— 13.087 13.708 20.863 29.507 4.6382 6.7017 12.559 15.530

DQFEM solutions with quartic serendipity interpolation functions
8 13.090 13.712 20.877 29.521 4.6389 6.7042 12.569 15.561
9 13.087 13.712 20.868 29.522 4.6381 6.7041 12.569 15.534
10 13.087 13.711 20.867 29.514 4.6381 6.7040 12.558 15.535
11 13.087 13.711 20.867 29.514 4.6381 6.7040 12.558 15.534
12 13.087 13.710 20.867 29.514 4.6381 6.7040 12.558 15.534
13 13.087 13.710 20.867 29.514 4.6381 6.7040 12.558 15.534

DQFEM solutions with cubic serendipity interpolation functions
8 13.141 13.777 20.846 29.526 4.6379 6.7234 12.567 15.557
9 13.138 13.777 20.838 29.522 4.6372 6.7234 12.568 15.536
10 13.138 13.776 20.838 29.517 4.6372 6.7233 12.557 15.536
11 13.137 13.776 20.837 29.516 4.6372 6.7233 12.557 15.536
12 13.137 13.776 20.837 29.516 4.6372 6.7233 12.557 15.536
13 13.137 13.776 20.837 29.516 4.6372 6.7233 12.557 15.536

significant digits between the DQFEM results and the FEM results using T18 element citeg[56]
are only two, but the same conclusion can also be found in Reference [56] when its method was
compared with other methods.

In Table VI, the DQFEM solutions for six types of pentagonal plates agree with the p-version
FEM solutions [55] and the standard FEM solutions by present authors, at least to three significant
digits, and with the FEM solutions using T18 element [56] and the Fourier sine series solutions [90],
to the first two significant digits. FCCCC means that the edge (1) is free, and all other edges are
clamped, and so on.
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Table III. The first four natural frequencies of clamped circular and elliptic plates (�=�a2
√

�h/D).

Mode sequences

1 2 3 4 1 2 3 4

M=N a/b=1.0 a/b=2.0

Exact solutions [85] Rayleigh–Ritz solutions [86]
— 10.2158 21.26 34.88 39.771 27.3773 39.4976 55.9773 69.8557

— Rayleigh–Ritz solutions [87]
— — — — — 27.377 39.497 55.985 69.858

DQFEM solutions with quartic serendipity interpolation functions
9 10.2159 21.336 34.967 39.882 27.381 39.788 57.615 70.502
10 10.2161 21.261 34.875 40.268 27.379 39.529 56.490 69.873
11 10.2159 21.263 34.881 39.774 27.377 39.508 56.071 69.895
12 10.2159 21.261 34.876 39.797 27.377 39.500 55.998 69.856
13 10.2159 21.261 34.876 39.772 27.377 39.500 55.980 69.856
14 10.2159 21.261 34.876 39.772 27.377 39.499 55.978 69.855
15 10.2159 21.261 34.876 39.772 27.377 39.499 55.977 69.855

DQFEM solutions with cubic serendipity interpolation functions
9 10.1999 21.304 34.983 39.828 27.310 39.775 57.677 70.277
10 10.2003 21.228 34.757 40.208 27.307 39.510 56.523 69.644
11 10.2001 21.230 34.778 39.713 27.305 39.488 56.099 69.663
12 10.2002 21.228 34.758 39.735 27.305 39.481 56.024 69.624
13 10.2002 21.228 34.759 39.710 27.305 39.480 56.006 69.624
14 10.2003 21.228 34.758 39.710 27.305 39.480 56.003 69.623
15 10.2002 21.228 34.759 39.710 27.305 39.480 56.003 69.623

DQM solutions with cubic serendipity interpolation functions [5]
17 10.211 21.196 34.882 39.687 27.260 39.488 56.120 69.872
19 10.193 21.249 34.538 39.674 27.349 39.454 55.987 69.821
21 10.196 21.237 34.889 40.661 27.294 39.486 55.978 69.849
23 10.205 21.253 34.886 39.730 27.212 39.481 56.052 69.367
25 10.211 21.243 34.891 39.755 27.273 39.482 56.029 69.687

In Table VII, a comparison studies have been given for symmetric trapezoidal plates with four
combinations of simply supported, clamped and free boundary conditions. CFFF indicates that
the edge at x=0 is clamped, and the like. The DQFEM solutions match with the DQM solutions
[5, 66] and the Ritz solutions [63], at least to four significant digits. In Table VIII, the DQFEM
solutions for clamped and simply supported rhombic plates with diagonal line ratio a/b=2.0
and 3.0 are compared with the DQM solutions [5], the DSC solutions [72] and the superposition
solutions [76]. One can obtain the same conclusions as above.

All in all, one can conclude that the DQFEM is capable of producing accurate and rapid
convergent solutions for free vibration of thin plates with arbitrary shapes.

6. CONCLUSION

The present study is undertaken to develop a highly accurate and rapidly converging differential
quadrature FEM and the corresponding curvilinear quadrilateral plate element by using DQ rules,
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Gauss–Lobatto integration rule and variational principle. The DQFEM is essentially equivalent to
the p-version FEM, while the DQFEM greatly simplifies the computations of the stiffness and mass
matrices due to not using shape functions, and is capable of constructing curvilinear quadrilateral
elements with any DOF and any order of inter-element compatibilities. The DQFEM precision is

Table IV. The first four natural frequencies of square plates (�i j =�i j a2
√

�h/D).

Mode shape

(1, 1) (2, 1) (1, 2) (2, 2) (1, 1) (2, 1) (1, 2) (2, 2)

M=N CSCS plate CCCC plate

Kantorovich method [88] Kantorovich method [88]
28.951 69.327 54.743 94.585 35.999 73.405 73.405 108.24

Double trigonometric series [89]
35.985 72.394 72.394 108.22

DQFEM solutions with cubic serendipity interpolation function
8 28.951 69.334 54.748 94.598 35.990 73.411 73.411 108.25
9 28.951 69.344 54.744 94.602 35.986 73.412 73.412 108.26
10 28.951 69.327 54.743 94.585 35.986 73.395 73.395 108.22
11 28.951 69.327 54.743 94.585 35.985 73.394 73.394 108.22
12 28.951 69.327 54.743 94.585 35.985 73.394 73.394 108.22

FSFS plate FFFF plate
Kantorovich method [88] Finite element analysis solutions

9.631 16.135 38.945 46.738 13.466 19.597 24.274 34.796

DQFEM solutions with cubic serendipity interpolation function
7 9.6314 16.135 39.113 46.897 13.469 19.596 24.270 34.805
8 9.6314 16.135 38.945 46.738 13.468 19.596 24.271 34.801
9 9.6314 16.135 38.946 46.739 13.468 19.596 24.270 34.801
10 9.6314 16.135 38.945 46.738 13.468 19.596 24.270 34.801
11 9.6314 16.135 38.945 46.738 13.468 19.596 24.270 34.801

Table V. The first four natural frequencies of triangular plates (�=�a2
√

�h/D).

Mode sequences

1 2 3 4 1 2 3 4

M=N CCC plate (d/a=b/a=0.5) SSS plate (d/a=b/a=0.5)

The finite element method using T18 element [56]
186.80 311.64 389.82 474.54 98.66 197.12 256.11 333.49

The Rayleigh–Ritz method [62]
187.58 315.57 389.64 486.02 98.70 197.39 256.79 335.67

The differential quadrature finite element method
10 187.50 317.10 390.16 487.02 98.54 197.34 256.58 335.32
12 187.54 316.23 389.79 486.19 98.62 197.37 256.59 335.45
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Table V. Continued.

Mode sequences

1 2 3 4 1 2 3 4

M=N CCC plate (d/a=b/a=0.5) SSS plate (d/a=b/a=0.5)

14 187.56 315.90 389.66 485.88 98.66 197.38 256.60 335.50
16 187.57 315.75 389.60 485.75 98.67 197.38 256.60 335.53
18 187.57 315.68 389.57 485.69 98.68 197.39 256.61 335.54
20 187.57 315.64 389.56 485.65 98.69 197.39 256.61 335.55

CSS plate (d/a=0,b/a=1) SCC plate (d/a=0,b/a=1)
The modified superposition method [75]

65.790 121.08 154.45 196.38 73.394 131.58 165.00 210.52

The differential quadrature finite element method
10 65.710 121.03 154.49 196.06 73.221 131.57 164.92 210.36
12 65.757 121.06 154.48 196.23 73.309 131.58 164.96 210.45
14 65.776 121.07 154.47 196.31 73.348 131.58 164.98 210.48
16 65.783 121.07 154.46 196.34 73.367 131.58 164.99 210.50
18 65.786 121.08 154.46 196.36 73.377 131.58 164.99 210.51
20 65.788 121.08 154.46 196.37 73.383 131.58 165.00 210.51

FFF plate (d/a=0,b/a=1) Corner-supported plate (d/a=0,b/a=1)
The Rayleigh–Ritz method [57]

19.07 29.12 45.40 49.51 5.804 14.04 23.59 38.06

The differential quadrature finite element method
10 19.057 29.118 45.359 49.474 5.8009 14.043 23.583 38.038
12 19.063 29.120 45.379 49.474 5.8024 14.043 23.588 38.050
14 19.065 29.122 45.387 49.475 5.8030 14.044 23.590 38.056
16 19.066 29.122 45.392 49.475 5.8033 14.044 23.591 38.058
18 19.067 29.122 45.394 49.475 5.8035 14.044 23.592 38.059
20 19.067 29.123 45.395 49.475 5.8036 14.044 23.592 38.060

Table VI. The first four natural frequencies of pentagonal plates (�=�(a2/2	)
√

�h/D).

Mode sequences

1 2 3 4 1 2 3 4

M=N CCCCC plate SSSSS plate

10 3.1426 6.5035 6.5037 10.508 1.7434 4.4165 4.4182 7.8286
12 3.1461 6.5036 6.5038 10.511 1.7466 4.4192 4.4202 7.8356
14 3.1476 6.5037 6.5038 10.513 1.7481 4.4204 4.4210 7.8384
16 3.1483 6.5037 6.5038 10.513 1.7488 4.4210 4.4214 7.8397
18 3.1487 6.5037 6.5038 10.513 1.7492 4.4214 4.4217 7.8405
20 3.1489 6.5037 6.5038 10.514 1.7495 4.4216 4.4219 7.8409∗ 3.1495 6.5054 6.5054 10.518 1.7492 4.4223 4.4223 7.8435
[55] 3.1493 6.5015 6.5015 10.512 — — — —
[90] 3.1623 6.5395 6.5558 10.550 — — — —
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Table VI. Continued.

Mode sequences

1 2 3 4 1 2 3 4

M=N CCCCC plate SSSSS plate

[56] 3.1526 6.4419 6.5102 10.406 1.7490 4.4017 4.4070 7.7651

FCCCC plate FSSSS plate
10 2.6697 4.0693 6.3812 7.0420 1.3747 2.8359 4.2696 5.6304
12 2.6686 4.0566 6.3806 7.0330 1.3760 2.8387 4.2715 5.6340
14 2.6684 4.0511 6.3804 7.0282 1.3766 2.8400 4.2724 5.6356
16 2.6684 4.0485 6.3804 7.0255 1.3770 2.8406 4.2728 5.6364
18 2.6685 4.0472 6.3805 7.0240 1.3771 2.8410 4.2731 5.6369
20 2.6686 4.0466 6.3805 7.0232 1.3773 2.8412 4.2733 5.6372∗ 2.6690 4.0470 6.3821 7.0238 1.3772 2.8406 4.2743 5.6377
[56] 2.621 4.063 6.358 7.068 1.378 2.846 4.259 5.621

FFFFF plate Corner-supported plate
10 1.5045 1.5052 2.4885 3.5604 0.8958 2.0804 2.0812 2.6884
12 1.5049 1.5052 2.4918 3.5605 0.8964 2.0807 2.0812 2.6888
14 1.5051 1.5052 2.4932 3.5605 0.8966 2.0809 2.0812 2.6889
16 1.5051 1.5052 2.4938 3.5605 0.8967 2.0810 2.0812 2.6891
18 1.5052 1.5052 2.4942 3.5605 0.8968 2.0811 2.0812 2.6891
20 1.5051 1.5052 2.4943 3.5604 0.8968 2.0812 2.0812 2.6891∗ 1.5050 1.5050 2.4952 3.5608 0.8967 2.0801 2.0801 2.6891

∗Calculated by present investigators using conventional FEM.

Table VII. The first four natural frequencies of symmetric trapezoidal plates (�=�(a2/	2)
√

�h/D).

Mode sequences

1 2 3 4 1 2 3 4

M=N CCCC plate (a/b=3.0,b/c=2.5) SSSS plate (a/b=3.0,b/c=2.5)

10 10.428 15.568 21.484 23.908 5.3888 9.4180 14.662 15.908
12 10.427 15.563 21.476 23.906 5.3889 9.4208 14.676 15.908
14 10.427 15.563 21.476 23.905 5.3890 9.4216 14.679 15.908
16 10.427 15.563 21.476 23.905 5.3890 9.4219 14.681 15.908
[5] 10.427 15.563 21.476 23.905 5.3890 9.4219 14.680 15.908
[66] 10.427 15.563 21.476 23.905 5.3891 9.4223 14.682 15.908

SCSC plate (a/b=3.0,b/c=2.5) CFFF plate (a/b=2,b/c=2)
10 9.4411 14.382 19.842 22.459 0.4237 1.4791 2.2957 4.2512
12 9.4427 14.385 19.883 22.470 0.4236 1.4788 2.2955 4.2503
14 9.4430 14.386 19.892 22.472 0.4236 1.4787 2.2954 4.2500
16 9.4431 14.386 19.895 22.472 0.4236 1.4787 2.2954 4.2499
[5] 9.4431 14.386 19.897 22.472 — — — —
[63] — — — — 0.4236 1.4788 2.2955 4.2504
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Table VIII. The first four natural frequencies of rhombic plates (�=�a2
√

�h/D).

Mode sequences

1 2 3 4 1 2 3 4

M=N a/b=2.0 a/b=3.0

SSSS plates
10 5.6543 11.457 16.781 17.852 4.5810 8.1820 11.937 14.597
12 5.6602 11.457 16.810 17.857 4.5853 8.1813 11.935 14.624
14 5.6628 11.457 16.821 17.859 4.5857 8.1812 11.936 14.634
16 5.6643 11.457 16.826 17.860 4.5852 8.1812 11.936 14.637
18 5.6652 11.457 16.829 17.861 4.5845 8.1812 11.937 14.637
20 5.6658 11.457 16.831 17.861 4.5838 8.1812 11.936 14.637
DQM [5] 5.6776 11.457 16.854 17.865 4.6198 8.1812 11.947 14.707
DSC [72] 5.678 11.455 16.859 17.862 4.621 8.183 11.950 14.712
[76] 5.640 11.46 16.78 17.86 4.507 8.178 11.91 14.50

CCCC plates
10 10.581 18.026 24.719 25.840 8.7940 13.504 18.345 21.758
12 10.579 18.026 24.697 25.822 8.7822 13.489 18.178 21.589
14 10.579 18.026 24.694 25.822 8.7788 13.489 18.173 21.562
16 10.579 18.026 24.694 25.821 8.7777 13.489 18.173 21.555
18 10.579 18.026 24.693 25.821 8.7773 13.489 18.172 21.552
20 10.578 18.026 24.693 25.821 8.7771 13.489 18.172 21.551
DQM [5] 10.578 18.026 24.693 25.821 8.7770 13.489 18.172 21.550
DSC [72] 10.580 18.036 24.697 25.823 8.776 13.489 18.173 21.557
[76] 10.58 18.03 24.69 25.82 8.774 13.49 18.18 21.56

validated through the eigenvalue problem analysis of freely vibrating plates with different types of
regular and irregular planforms. The DQFEM solutions were found, in general, to be in excellent
agreement with the exact and numerical solutions in literature.

The DQFEM can be directly applied to the static and dynamic analysis of beams, shells the
in-plane and out-of-plane problems of plates and 3D problems. Malik and Civan’s comprehensive
comparison study [91] has shown that the DQM stands out in numerical accuracy as well as
computational efficiency over FDM and FEM. DQFEM has overcome the limitations of the DQM
pointed out by Bert and Malik [18], and is hoped to be a competitive method with FEM for analysis
of large-scale problems.

NOTATION

A(r), B(s) weighting coefficient matrices of the partial derivatives
Ā(r), B̄(s) the assemblages of A(r) and B(s) according to f̄
Ã(r), B̃(s) weighting coefficient matrices of partial derivatives for curvilinear domain
A(r)
i j , B

(s)
i j elements of A(r) and B(s)

Ā(r)
kp , B̄

(s)
kp elements of Ā(r) and B̄(s)

a, b, c, d , e dimensions of plates with different planforms
Cx
i , C

y
j Gauss–Lobatto weights with respect to x and y directions, respectively
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D D=Eh3/12(1−�2) is bending rigidity of plate
E diagonal unit matrix
E Young’s modulus
F̄(r+s) weighting coefficient matrix of mixed partial derivatives
F̄ (r+s)
kp elements of F̄(r+s)

f̄ vector with elements fi j
fi j function values of f (x, y) at grid point (xi , y j )
h thickness of plate
i , j , k, m, n integers
J Jacobian matrix
K element stiffness matrix
l j Lagrange polynomials
M element mass matrix
M the number of gird points in the x or � direction
N the number of grid points in the y or � direction
Ni j shape functions
Q transformation matrix from w̄ to w
q distributed surface force vector
q transverse distributed surface force
r , s the order of partial derivatives with respect to x and y coordinates, respectively
R element load vector
S the area of actual plate
Sk serendipity interpolation functions defined in the natural �−� plane
U strain energy
W work potential
w, w̄ element displacement vectors
w deflection of plate
wi j deflection at grid point (xi , y j )
x , y, z Cartesian coordinates
�,� natural Cartesian coordinates defined on the square parent domain
� volume density
� the Poisson ratio
� angular frequency
� dimensionless frequency
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