ES 240
Solid Mechanics



Homework  


Due Friday, 12 October
11.  Positive-definite elastic energy density


It is reasonable to require that the elastic energy density be a positive-definite quadratic form of the strain tensor. That is, 
[image: image1.wmf] for any state of strain, except that 
[image: image2.wmf] when the strain tensor vanishes. For an isotropic, linearly elastic solid, confirm that this positive-definite requirement is equivalent to require that 
[image: image3.wmf] and 
[image: image4.wmf].

12.  The coefficient of thermal expansion (CTE) is a second-rank tensor.


When an anisotropic solid is subject to a change in temperature, all components of the strain tensor can change.  Consequently, the coefficient of thermal expansion (CTE) is a second-rank tensor.  For a crystal of cubic symmetry, show that the CTE is the same in all directions.  
13.  Hooke's law for anisotropic, linearly elastic solids

Hooke's law connecting stresses ij and strains ij for a generally anisotropic solid can be written in one of the following forms




[image: image5.wmf]



[image: image6.wmf]
The usual correspondence is adopted, i.e.




[image: image7.wmf]



[image: image8.wmf]
The fourth-order tensors S and C are the compliance and stiffness tensors, respectively.  The 6by6 matrices s and c (s = c-1) are conventional compliance and stiffness matrices.


i)  Confirm that



[image: image9.wmf]


[image: image10.wmf]

ii)  Let m = miei be a unit vector.  Show that when the solid is under a uniaxial stress in the direction m, Young's modulus in this direction is given by



[image: image11.wmf]

iii)  For a cubic solid show the Young's modulus in direction m is given by



[image: image12.wmf]

iv)  Find the orientations for a cubic solid which attain minimum or maximum Young's modulus.

14.  Invariants of a tensor  


When the basis changes, the components of a vector change, but the length of the vector is invariant.  Let 
[image: image13.wmf]be a vector, and 
[image: image14.wmf] be the components of the vector for a given basis.  The length of the vector is the square root of 




[image: image15.wmf].

The index i is dummy.  Thus, this combination of the components of a vector is a scalar, which is invariant under any change of basis.  For a vector, there is only one independent invariant.  Any other invariant of the vector is a function of the length of the vector.


This observation can be extended to high-order tensors.  By definition, an invariant of a tensor is a scalar formed by a combination of the components of the tensor.  For example, for a symmetric second-rank tensor 
[image: image16.wmf], we can form three independent invariants:




[image: image17.wmf].

In each case, all indices are dummy, resulting in a scalar.  Any other invariant of the tensor is a function of the above three invariants.


Actions:

(a) For a nonsymmetric second-rank tensor, give all the independent invariants.  Write each invariant using the summation convention, and then write it explicitly in all its terms.

(b) Give all the independent invariants of a third-rank tensor.  Use the summation convention.
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