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 Homework   
 Due Friday, 10 October 
 
This set of homework relies on a few elementary facts of the algebra of vectors and tensors.  If 
you are vague about these facts, see some old notes I wrote when I taught ES 240 in 2006:  
http://www.imechanica.org/node/205/revisions/1385/view  
   

11.  Positive-definite elastic energy density 

 For many materials the elastic energy density may be taken as a positive-definite 

quadratic form of the strain tensor.  That is, 0>w  for any state of strain, except that 0=w  

when the strain tensor vanishes.  For an isotropic, linearly elastic solid, confirm that this 
positive-definite requirement is equivalent to require that 0>E  and 2/11 <<− ν . 

 

12.  The coefficient of thermal expansion (CTE) is a second-rank tensor. 

 When an anisotropic solid is subject to a change in temperature, all components of the 

strain tensor can change.  Consequently, the coefficient of thermal expansion (CTE) is a second-

rank tensor.  For a crystal of cubic symmetry, show that the CTE is the same in all directions.   

 

13.  Hooke's law for anisotropic, linearly elastic solids 
 Hooke's law connecting stresses ijσ  and strains ijε  for a generally anisotropic solid can 

be written in one of the following forms 
  pqijpqijpqijpqij CS εσσε == ,  

  pipipipi cs εσσε == ,  

The usual correspondence is adopted, i.e. 
  xyzxyzzzyyxx εεεεεεεεεεεε 2,2,2,,, 654321 ======  

  xyzxyzzzyyxx σσσσσσσσσσσσ ====== 654321 ,,,,,  

The fourth-order tensors S and C are the compliance and stiffness tensors, respectively.  The 6 

by 6 matrices s and c (s = c-1) are conventional compliance and stiffness matrices. 

 i)  Confirm that 

   c11 = C1111, c14 = C1123, c44 = C2323  

   s11 = S1111, s14 = 2S1123, s44 = 4S2323  
 ii)  Let m = miei be a unit vector.  Show that when the solid is under a uniaxial stress in 

the direction m, Young's modulus in this direction is given by 

  

1
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 iii)  For a cubic solid show the Young's modulus in direction m is given by 
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 iv)  Find the orientations for a cubic solid which attain minimum or maximum Young's 

modulus. 

 
14.  Invariants of a tensor   
 When the basis changes, the components of a vector change, but the length of the vector 
is invariant.  Let f be a vector, and if  be the components of the vector for a given basis.  The 
length of the vector is the square root of  
  ii ff . 
The index i is dummy.  Thus, this combination of the components of a vector is a scalar, which is 
invariant under any change of basis.  For a vector, there is only one independent invariant.  Any 
other invariant of the vector is a function of the length of the vector. 
 This observation can be extended to high-order tensors.  By definition, an invariant of 
a tensor is a scalar formed by a combination of the components of the tensor.  For 
example, for a symmetric second-rank tensor ijσ , we can form three independent invariants: 

  kijkijijijii σσσσσσ ,, . 

In each case, all indices are dummy, resulting in a scalar.  Any other invariant of the tensor is a 
function of the above three invariants. 
 Actions:  

(a) For a nonsymmetric second-rank tensor, give all the independent invariants.  Write 
each invariant using the summation convention, and then write it explicitly in all its 
terms. 

(b) Give all the independent invariants of a third-rank tensor.  Use the summation 
convention. 

 
15.  A “derivation” of the Mises (1913) yield criterion   
 Given a metal, we determine its yield strength, Y, by subjecting the metal to a tensile 
force, and recording the tensile stress at which the material starts to deform plastically.  We can 
also subject the same material to a shear stress, and record the shear stress at which the material 
starts to deform plastically.  In this experiment, we measure the yield strength in shear.  Of 
course, we can subject the metal to any other types of stress state, say biaxial tension, and record 
yet another yield strength. Clearly, for the given metal, the yield strength is specific to the type of 
the stress state. It is impractical to determine the yield condition experimentally for all types of 
stress state. How do we obtain the yield condition under a given stress state? 
 Mises provided the following answer.  The Mises criterion is not an exact law of nature.  
Rather, it is a compromise between obtaining the truth and the amount of work you need to do.  
It is comforting that the Mises criterion can be derived from a few reasonable assumptions.   
 Isotropy.  For an isotropic material, the stresses can affect the yield condition only 
through the invariants:   
  A = σ ii = σ11 +σ 22 +σ33  
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11 222 σσσσσσσσσσσ +++++== ijijB  

  kijkijC σσσ= . 

 No Bauschinger effect.  If the stress state σ ij  causes yielding, so does −σ ij .  We would 

like our yield condition to be quadratic in stress components.  This is not necessary in order to 
avoid the Bauschinger effect, but is a simple way to do so.  Any quadratic invariant can be 
expressed as a linear combination of A2 and B.  Thus, the yield condition is 
  ( ) constant2 =+ ppijij σασσ  

where � is a number. 
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 Hydrostatic stress does not affect yielding.  Experiments by Percy W. Bridgeman and 
others have long shown that superimposing any hydrostatic stress q does not affect yielding.  
Thus, if the stress state ijσ  causes yield, so does ijij qδσ + .   

 Actions: 
 (a) Show that 3/1−=α .  Consequently, the yield condition is 

  ( ) constant
3
1 2 =− ppijij σσσ . 

This is the same as the Mises condition.   
 (b) Determine the constant in terms of the yield strength Y measured under the uniaxial 
tension. 
 
 
 
 


