
ES 240 Solid Mechanics Z. Suo 

 Homework   
 Due Friday, 31 October 
 
26. Stress-strain relations under the plane strain conditions 
 Starting from a familiar form of Hooke’s law in three dimensions, namely,  
  ( ) Ezyxx /νσνσσε −−= , ( ) Exyxy /12 σνγ += , etc.,  

show that under the plane strain conditions the stress-strain relation takes the following form: 
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27.  Getting weak:  derive weak statements from differential equations 
 Consider heat conduction in a three dimensional body. First recall the governing 
equations.  Let  be the temperature field, and ( tzyxT ,,, ) ( )tzyx ,,,J  be the vector field of 
heat flux (i.e., energy across unit area per unit time).   
 Material model.  Fourier’s law relates the heat flux to the temperature gradient: 
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where k is the heat conductivity. 
 Conservation of Energy.   Let ρ  be the mass density, and c be the heat capacity (i.e., 
the energy needed to increase the temperature per unit mass per degree).  For a unit volume of 
the body to change temperature by dT, the energy needed is dTcρ .  Energy balance requires 
that 
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in the volume of the body.   
 The body exchanges heat with the ambient by convection.  Let h be the convection 
coefficient (energy per area per time per degree).  Conservation of energy requires that 
  ( )azzyyxx TThJnJnJn −=++  

on the surface of the body.  Here ( )zyx nnn ,,  is the unit vector normal to the surface, and  

is the ambient temperature. 
aT

 Action items.  (a)  Start with a weighted residual and derive the equivalent 
statement.  Let φ  be an arbitrary scalar field (i.e., a test function).  Show that the energy 
balance equations are equivalent to requiring that the equation  
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hold true for every field φ .  The first integral is over the volume of the body.  The second 
integral is over the surface of the body. (b) Outline a finite element method for heat conduction.  
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28.  Potential energy and the Rayleigh-Ritz Method   
 Here is yet another way to do pretty much the same thing.  Applying a constant external 
force to a body is equivalent to hanging a weight.  For example, consider the structure in the 
figure.  Assume the rope that hangs the weight is inextensible.  When the node moves by 
displacement u, the weight P drops by the same distance, so that the potential energy of the 
weight changes by .  Now regard the body and the weights as a single system.  The 
potential energy of this system, , is the sum of the 
elastic energy in the body and the potential energy of the 
weights.  We will call the potential energy due to the 
fixed load the work potential. 

Pu−
Π

 Consider a three-dimension elastic body, subject 
to the body force b in the volume, and the traction t on 
one part of the surface of the body, .  On the other 

part of the surface, , the displacement is prescribed.  

The work potential is 

tS
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P 
 .   ∫∫ −−= dAutdVubWP iiii

The first integral extends over the volume of the body.  The second integral extends over the 
part of the surface , where the traction is prescribed.  Note that b and t are known external 

forces.  The displacement field, u, is unknown, except for its prescribed values on the part of 
the surface of the body, .  For any displacement field u, one can calculate the work 

potential.  A relation that maps a field to a number is known as a functional.  The work 
potential is a functional of the displacement field.  
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 The elastic energy in the body is 
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The integral extends over the volume of the body.  The elastic energy is also a functional of the 
displacement field. 
 Potential energy is a functional of displacement.  By definition, the potential 
energy is the sum of the elastic energy and the work potential: 

  ( ) ∫∫∫ −−
∂
∂

∂
∂

=Π dAutdVubdV
x

u

x
u

C iiii
q

p

j

i
ijpq2

1
u .  

The potential energy is a functional of the displacement field.  The body force is prescribed over 
the volume of the body, and the traction is prescribed on the surface .  The displacement 

need not be the actual displacement field occurring in the body, but can be any field that satisfies 
the prescribed displacement on the surface .  The first two integral extends over the volume 

of the body.  The third integral extends over the area .   

tS
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 Principle of minimum potential energy.  The principle of minimum potential 
energy states that, of all displacement fields that satisfy the prescribed values on the surface of 
a body, the displacement field corresponding to equilibrium minimizes the potential energy. 
 Proof.  Let u be the displacement field corresponding to equilibrium, and h be a 
variation in the displacement field.  The variation is arbitrary, except that h = 0 on .  For 

the virtual displacement u + h, the strain is calculated by inserting u + h in the usual 
displacement relation.  A direct calculation shows that 

uS
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Because u is the equilibrium displacement, qpijpqij xuc ∂∂= /σ .  According to the weak 

statement, the last three terms cancel each other.  Consequently, 
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This difference is always positive unless h vanishes everywhere in the body. 
 Rayleigh-Ritz Method.  The principle of minimum potential energy calls for a search 
of the winner among all displacement fields that satisfy the displacement boundary conditions.  
Now if we limit the scope of the search to a subset of the admissible displacement fields, we will 
not find the real winner, i.e., the actual displacement field, but an approximate.  Of the 
displacement fields in the subset, the displacement field that we select minimizes the potential 
energy. 
 Here is the Rayleigh-Ritz method that implements the idea.  For simplicity, we assume 
that the boundary condition that the displacements vanish on .  Let huS 1, h2,… hn be a set of 

known virtual displacement fields.   A linear combination is also a virtual displacement field: 
  nnaaa hhhu +++= ...2211 , 

where  are arbitrary numbers.  This gives us a family of functions.  In the jargon 

of linear algebra, we say that h
naaa ,...,, 21

1, h2,…, hn is a set of bases, and all their linear combinations form 
a space.  This is a subspace in that there are other functions that cannot be represented this 
way.   Inserting this expression of u into the potential energy, we express the potential energy 
as a function of .  We will select the coefficients to minimize the 

potential energy. 
naaa ,...,, 21 naaa ,...,, 21

 Action items.  An infinite body has a spherical cavity, radius R and subject to an 
internal pressure p.   
(a)  Express the potential energy of the body as a functional of the radial displacement field 

.  (b)  Functions like  are all virtual displacement fields.  Assume a virtual 
displacement field 

( )ru ,..., 21 −− rr

  2r

A
u = . 

Use the Rayleigh-Ritz method to determine A. 
(c)  Calculate the corresponding stress field.  Compare with the exact solution to the problem.  
Explain your findings. 
 
29.  Constant strain triangle 
 We want to formulate the finite element method to solve a plane elasticity problem.  
Divide the body in the  plane into triangular elements. ( yx, )
 (a) Shape functions.  Consider one triangle.  Label its three nodes, 
counterclockwise, as 1, 2, 3.  The three nodes have coordinates ( ) ( ) ( )332211 ,,,,, yxyxyx .  Map 

a triangle on a different plane, ( , )ξ η , to the triangle in the ( )yx,  plane.  The following 

functions map a point in the ( , )ξ η  plane to a point in the ( )yx,  plane: 
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  332211 xNxNxNx ++=   

  332211 yNyNyNy ++=  

Show that the shape functions are 
  ξ=1N ,   η=2N ,   ηξ −−= 13N . 
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 (b) The Jacobian matrix.  Calculate the Jacobian matrix of the transformation, 
namely, 
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Also calculate and . Jdet 1−J
 (c) Displacement field and its gradient.  Let the displacements at the three nodes 
be , , .   Interpolate the displacement (u,v) of a point inside the triangle 

as  

( )11,vu ( )2 2,u v ( 3 3,u v )

  332211 uNuNuNu ++=  

  332211 vNvNvNv ++=  

Calculate the displacement gradients in the ( )yx,  plane:  yvxvyuxu ∂∂∂∂∂∂∂∂ /,/,/,/ .   
 (d)  Strain field.  The strain column of a point in the element is linear in the nodal 
displacement column.  We write 
  ε = Bq . 
Work out the entries to the matrix B.  You will find the strain field in this element is constant.  
This element is known as the constant-strain triangle. 
 (e)  Stress field.  The stress column is also linear in the displacement column: 
  σ = Dε. 
Give the stiffness matrix D.   
 (f)  Stiffness matrix.  Calculate the stiffness matrix of the element. 
 (g)  Force column.  Calculate the force column of the element. 
 
30.  Gaussian quadrature 
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(a) Determine the points and weights of the three-point Gaussian quadrature.  
Compare your results with the values listed in a reference.  Please list your 
reference. 

(b) Use the three-point Gaussian quadrature to evaluate the following integral  

 .   ∫
π

0

sin xdx

Compare with the exact result. 
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