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Abstract

The energy release rate of a small crack in an infinite hyperelastic medium,
and subjected to large strain multiaxial loading conditions, is derived by
considering the balance of configurational stresses acting on two planes: one
cutting the center of the crack face, and the other at an infinite distance in
front of the crack tip. The analysis establishes that the energy release rate of
a small crack is always proportional to the size of the crack, irrespective of the
loading conditions and the crack orientation. The balance of configurational
stresses is illustrated for several benchmark cases including simple extension,
pure shear and equibiaxial extension, and for perpendicular and inclined
cracks.
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1. Introduction

Under arbitrary loading conditions, a microscopic inhomogeneity existing
in a material experiences forces that tend to drive its growth. One well-known
and classical approach to evaluate these forces is to idealize the inhomogene-
ity as a crack, and to calculate the energy release rate defined in the general
framework of Fracture Mechanics [1, 2]. Such an application may, for exam-
ple, be made via finite element analysis in which the crack is considered as
part of the meshed geometry. However, because small cracks may take place
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at any point and in any orientation, placing a crack at the most critical loca-
tion and with the most critical orientation requires information unavailable
at the outset of such an analysis. In this study, we are seeking an alternative
approach that addresses this problem directly: a continuum theory capable
to provide, for every material point in a body, the driving force acting on a
hypothetical idealized small crack. More specifically, we would like to com-
pute the energy release rate of an idealized crack per unit of crack length (so
that this parameter has unit of energy per unit of volume and quantifies the
energy density available at each point for driving crack growth) in terms of
stress and strain at each material point, and of the given orientation of the
idealized crack.

In the special context of fatigue of soft materials, several workers have al-
ready discussed or proposed heuristically-derived inexact solutions of the type
sought. For example, Roach [3] conducted various experiments to compare
crack response in simple tension and equibiaxial tension, emphasizing that
only a part of the strain energy density is available for driving small crack
growth. In order to address crack nucleation problems, Mars and Fatemi
[4] derived the Cracking Energy Density, a continuum parameter aimed at
a more general-purpose accounting of available strain energy density for the
growth of a crack in a given material plane. Recently, several authors have
also proposed novel continuum schemes, again with the aim of strengthen-
ing predictive capabilities for fatigue crack nucleation in rubber materials
[5, 6, 7, 8, 9]. To date, none of these quantities has enjoyed a fully rigorous
connection to a Fracture Mechanics solution, but they have provided valuable
insight and motivation towards the more complete solution, and a means to
move forward with engineering analysis tasks.

We have noticed the recent emphasize led on the Configurational Mechan-
ics theory, which seems well-adapted to our purpose. The interested reader
can consult the works of Maugin for a detailed and motivating review [10, 11].
Suffice it here to say that Configurational Mechanics is a restatement of the
basic physical conservation and balance laws: as classically stated, these laws
are written in terms of spatially-measured variables, i.e. stresses and physical
forces; however, in Configurational Mechanics, the laws are restated in terms
of variables measured in the material space, i.e. the abstract set of particles
that make up the body [12]. In this framework, basic quantities such as the
displacement and the force take on new meanings. For example, displace-
ment of a crack tip in the material space represents crack growth. Likewise,
the force that acts at this point in the material space represents the energy
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release rate of the crack. Although the general theory is new, it encom-
passes the classical theories of Fracture Mechanics and it has already started
to find successful application to hyperelastic fracture mechanics problems:
Steinmann et al. [13] has shown that finite element calculation procedures
for the energy release rate can be greatly simplified through this framework,
Verron [14] has shown that the framework provides a simple and new way
to understand the mechanics of the trousers tear specimen, and Kaliske and
coworkers [15] have used the framework to compute the energy release rates
in tires and rubber parts. The reader can refer to [16] for a review of the use
of Configurational Mechanics for rubber problems.

Our present objective is to use the tools of Configurational Mechanics
to derive the energy release rate of a center-cracked region under arbitrary
far-field homogeneous multiaxial loading conditions; for the sake of simplic-
ity only the 2D problem is investigated. We idealize the inhomogeneity as
a straight through-crack and only consider the case of steady-state crack
growth. We will show that, in general, the energy release rate can be under-
stood in terms of a balance between configurational stresses that are uniform
at the far-field and vary in the near-field due to presence of the crack. It
is seen that the near-field variations of configurational stress are associated
with unloading of crack faces.

2. Energy release rate of a small crack

The analysis is targeted to the specific case of a crack with known ideal
shape (straight-line through-crack in 2D), and with suitably restricted di-
mensions. In the following sections, we define the parameters considered
here, and describe the restrictions on crack geometry that we will adopt.
Then, the energy release rate is derived.

2.1. Definition of the energy release rate

In a deformed hyperelastic body containing a crack, the total strain en-
ergy U in the body is a function of the geometry of the body, of the loading
conditions and also of the crack characteristics. For two-dimensional prob-
lems, the crack is a line of length A (in the undeformed state) which is a part
of the boundary of the body (external or internal boundary). The crack line
is bounded by a point - the crack tip - which experiences mechanical fields ca-
pable of rupturing the material. When this happens, the crack tip advances
through the material, and the undeformed length of the crack increases. The
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tendency of the crack to propagate is characterized by the change of energy
induced by crack growth, via the energy release rate T defined as follows

T = −
∂ (U − V )

∂A
, (1)

where V is the work of external forces. Under conditions of constant bound-
ary displacement, external forces do not work and T reduces to

T = −
∂U

∂A

∣

∣

∣

∣

disp

, (2)

in which the subscript ·disp means that the boundary displacement is constant.
Rivlin and Thomas were the first to apply this quantity to the analysis of

cracks in rubber [2]. They showed experimentally that the energy release rate
uniquely characterizes the loading state of the crack tip and is independent
of the particular geometry of both the specimen and the crack. Because of
this, the energy release rate is a fundamental and convenient criterion for
describing the conditions that cause crack growth.

Different methods for the computation of energy release rates have been
developed, e.g. the stress and displacement correlation method, the crack
closure integrals, the nodal release method, etc [17, 18, 19, 20, 21]. Nev-
ertheless, an important early method for computing the energy release rate
consists in using the Rice’s J-integral [22]. For two-dimensional problems,
the J-integral is a contour integral that is evaluated on a path Γ that starts
on one of the crack faces and ends on the other

J = lim
Γ→0

∫

Γ

(

wn1 − nσ
∂u

∂x1

)

dΓ (3)

for small strain problems. In this equation, w stands for the strain energy
density, n is the outward normal vector to the contour, n1 is its component
in the crack direction (x1), σ is the Cauchy stress tensor and finally u is the
displacement vector. In the special case of elasticity, the integral is revealed
path-independent and the limit operator can be omitted. The previous re-
sult can be extended to large strain; the corresponding integral can then be
defined in the reference configuration and is expressed as [10]

J = q ·

∫

Γ

ΣNdΓ, (4)
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where q is the crack direction, N is the outward normal to the path Γ and
Σ is the configurational stress tensor defined as [23, 24, 25]

Σ = W I− FTP = W I−CS. (5)

In this equation, W is the strain energy density per unit of undeformed
volume, I is the identity tensor, F is the deformation gradient, C is the
right Cauchy-Green strain tensor, and P and S are respectively the first and
second Piola-Kirchhoff stress tensors. Note that Σ depends on the material
response through the constitutive equation which relates S, C and W .

Remark 1. Here it is assumed that a crack will grow in the direction aligned
with its direction: a straight-line through-crack will always grow in its existing
direction.

2.2. Definition of a small crack

The material is considered hyperelastic, isotropic, incompressible and ho-
mogeneous. We consider cracks which are often many orders of magnitude
smaller than the geometric features of the body under analysis, and we ide-
alize them as straight through-cracks. It is also assumed that at the scale
of the Representative Volume Element, the scale of Continuum Mechanics,
these idealized cracks (i) exist in every possible orientation with the same
probability, (ii) their density is sufficiently small to consider that they do
not interact with each other, (iii) they develop each at its own rate. Conse-
quently, we only study a single linear through-crack embedded in an infinite
region of homogeneously strained material. Moreover, we consider that this
crack ever remains a straight through-crack and grows in its length direc-
tion and that the far-field strain and stress considered match to the strain
and stress at the point under analysis in the macroscopic non-homogeneously
strained body. Finally, we restrict our attention to steady-state crack propa-
gation and consider that the configuration of the damage zone, i.e. in terms
of the near-fields, does not change during its relative motion induced by crack
growth. More precisely, it means that (i) we do not consider the early start
of crack growth during which the crack propagates and the damage zone
forms simultaneously, but the steady state for which the damage zone has
reached its equilibrium stage, and that (ii) the damage zone does not reach
the boundary of the domain because its configuration would become compli-
cated. Indeed, the latter requirement can be seen as a part of the definition of
a small crack, because our theory will apply only if a sufficiently large region
(in which the far-fields can be considered uniform) surrounds the crack.
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Figure 1: Coordinates system and contour for the evaluation of the J-integral

2.3. Derivation of the small crack energy release rate

As suggested in Figure 1, we define a coordinates system in which the
crack direction remains fixed. The problem consists in deriving the energy
release rate of the crack, and to relate the energy release rate per unit of
crack length to the homogeneous strain taking place in regions far from the
crack.

As stated above, the energy release rate of the crack can be evaluated
through the J-integral calculated on a path surrounding the crack tip. In
order to isolate the variations of a specific component of the configurational
stress tensor in the expression of the energy release rate and to emphasize
in a very simple manner how the competition between the near-field and
the far-field quantities makes up for the energy release rate of the small
crack, it is judicious choice to consider the contour shown in Fig. 1 wherein
the small crack is aligned with e1 (shown in the undeformed configuration).
More precisely, this contour, denoted Γ, traces out a rectangular region with
arbitrarily height 2R and width D, starts at the center of the top crack face
and follows through the segments labeled Γ+, ΓA, ΓB, ΓC , and Γ−, and ends
at the center of the bottom crack face. Thus, the J-integral is written as the
summation of individual contributions of each segment

J =

∫

Γ+∪ΓA∪ΓB∪ΓC∪Γ−

e1 ·ΣNdΓ. (6)
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At this step of the calculation, there is no distinction between a small
crack and an ordinary crack: Eq. (6) applies whatever the size of the crack.
However a small crack is by definition embedded in an infinite medium where
far from the crack the mechanical fields are uniform and equal to those in
an homogeneous material subjected to the same state of stress and strain
at its boundary. Thus under the small crack assumption, infinite values are
considered for R/c and D/c. The segments ΓA, ΓB and ΓC then lie in the far-
field region wherein the configurational stress tensor is uniform and denoted
Σ∞.

Let us denote Σ11 (l) the 11-component of the configurational stress tensor
along the path Γ−∪Γ+ at an algebraic distance l from the center of the crack.
Then, the different contributions to the J-integral are given by

• Segment Γ+: N = −e1

∫

Γ+

e1 ·ΣNdΓ = −

∫ R

0

Σ11 (l) dl, (7)

• Segment ΓA: N = e2
∫

ΓA

e1 ·ΣNdΓ = Σ∞

12D, (8)

• Segment ΓB: N = e1

∫

ΓB

e1 ·ΣNdΓ = 2Σ∞

11R, (9)

• Segment ΓC : N = −e2

∫

ΓC

e1 ·ΣNdΓ = −Σ∞

12D, (10)

• Segment Γ−: N = −e1

∫

Γ−

e1 ·ΣNdΓ = −

∫ 0

−R

Σ11 (l) dl. (11)
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By summing all these contributions, we obtain the following expression of
the energy release rate of a small crack

J = lim
R→+∞

∫ R

−R

(Σ∞

11 − Σ11(l)) dl. (12)

Invoking now the central symmetry with respect to the crack center of
both the geometry and the boundary loading conditions, this expression of
J can be simplified. Consider the material point M located at XM in the
reference configuration that moves to xM in the deformed configuration, then
its symmetric counterpart M ′ located at XM ′ = −XM moves to xM ′ =
−xM . Thus, the deformation gradient F = ∂x/∂X is identical in M and
M ′; consequently, all strain and stress quantities are identical for these two
particles. Thus, the previous expression of J reduces to

J = 2

∫ +∞

0

(Σ∞

11 − Σ11(l)) dl. (13)

Remark 2. No problem occurs at infinity in the sense that Σ11(l) tends to
Σ∞

11 as l → ∞ and thus the integrand (Σ∞

11 − Σ11 (l)) vanishes as l → ∞.

Eq. (13) reveals that the energy release rate of a small crack under arbi-
trary multiaxial loading conditions corresponds to the imbalance between the
uniform far-field configurational stress acting on the right-hand side bound-
ary of the integration path ΓB and the varying near-field configurational
stress acting on its left-hand side boundary Γ+. Indeed the right-hand side
boundary is loaded by the constant value Σ∞

11, whereas the left-hand side
boundary admits an equal and opposite asymptote to the value Σ∞

11 at an
infinite distance from the crack, but is unbalanced near the crack due to
the effects of crack face unloading. This imbalance of the configurational
stresses between the left and right contributions of the path-integral reveals
the physical origin of the energy release rate. Note that the relationship
between unloading of crack faces and the energy release rate of small cracks
under multiaxial loading conditions has been previously highlighted [3, 4].

2.4. A further result: proportionality of J with respect to the crack length

We recall that since the study of Rivlin and Thomas [2] based on dimen-
sional analysis, it is widely recognized that under uniaxial tension the energy
release rate of a small crack perpendicular to the tensile direction is propor-
tional to its length. More recently, Yeoh extended this result to the cases
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of equibiaxial tension and pure shear but still for a small crack aligned with
the principal stretch directions [26] . On intuitively assuming that this pro-
portionality relationship remains valid under any arbitrary multiaxial loading
conditions, [4] developed his predictor which has enjoyed some empirical suc-
cess for rubber fatigue. We point out here that although his intuition turns
out to be right in practice, it has never been rigorously demonstrated.

The objective of the present section is to make use of the expression of
the energy release of a small crack Eq. (13) and of a simple dimensional
analysis to demonstrate the proportionality of the energy release rate of a
small crack with respect to the crack length under any arbitrary multiaxial
loading conditions and thus definitely prove what all the above-mentioned
authors have postulated.

Let us consider two different small cracks: one with length c and the
other one with length kc where k is a strictly positive real number. Both are
subjected to the same far-field conditions. Using Eq. (13), the energy release
rate of the crack of length c is

J(c) = 2

∫ +∞

0

(Σ∞

11 − Σc
11(l)) dl, (14)

while the energy release rate of the crack of length kc is

J(kc) = 2

∫ +∞

0

(

Σ∞

11 − Σkc
11(l)

)

dl, (15)

where Σc
11 (respectively Σkc

11) denotes the configurational stress associated
with the crack of length c (respectively of length kc). By using the substitu-
tion l = kl′ and dl = kdl′, the latter integral becomes

J(kc) = 2k

∫ +∞

0

(

Σ∞

11 − Σkc
11(kl

′)
)

dl′ (16)

Let us focus now on the effect of multiplying the crack length by a factor k on
the transformation of the mechanical fields with respect to the original prob-
lem of a crack of length c. In this way, we consider a hyperelastic isotropic
domain Dc surrounding the crack of length c. The dimensions of the domain
are sufficiently large such that the crack is a small crack in the sense of
our previous definition in Sec. 2.2. Similarly, we introduce the proportional
replica of Dc by the scale factor k; it is denoted Dkc. Note that the present
derivation is valid if and only if the crack of length kc is also a small crack,
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i.e. if the domain Dkc is small as compared to the size of the Representative
Volume Element. If this assumption is satisfied, the two domains admit the
same boundary conditions: normal tractions σn at crack faces vanish and
tractions at the external boundary are equal to the far-field tractions. More-
over, as the material is elastic the stress far-field is unique and simply related
to the strain far-field by the constitutive equation. So, the boundary condi-
tions being identical, solving the equilibrium equation will lead to identical
solutions: denoting M c an arbitrary particle of Dc which position is Xc, and
Mkc its geometrical counterpart in Dkc which position is kXc, we have

σ
kc(Mkc) = σ

c(M c) (17)

where σ
c and σ

kc represent the Cauchy stress field in Dc and Dkc, respec-
tively. Obviously this result extends to all the tensorial fields, i.e. strain
tensors and other stress tensors, and particularly to the configurational stress
tensor. Thus, particularizing this result to the 11-component of the configu-
rational stress tensor on the segment Γ+ leads to

Σkc
11(kl) = Σc

11(l) on Γ+. (18)

Then, substituting Eq. (18) into Eq. (16) and recalling Eq. (14) give the
proportionality relationship

J(kc) = kJ(c). (19)

So, we have demonstrated that for a fixed far-field state of strain and stress,
the energy release rate of a small crack in a hyperelastic isotropic material
varies proportionally with the crack length. Note that this result is valid
under any arbitrary multiaxial loading conditions; in other words, even when
the small crack is not aligned with the principal stretch directions which was
a priori not obvious.

Moreover, Eq. (19) signifies that it is sufficient to know the value of the
J-integral for one given crack length to calculate J for all crack lengths:
assuming that the value of J is known for a given crack of length c0, the
value of J for another crack length c is simply given by

J (c) =
J (c0)

c0
c. (20)

Equation (20) proves that the energy release rate of a small crack embedded
in a hyperelastic isotropic material and subjected to arbitrary multiaxial
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loading is always proportional to the crack length. Indeed, Eq. (19) means
that for a fixed far-field state of strain and stress the factor J (c) /c is strictly
independent from the crack length. This remark leads us to conclude that
J (c) /c only depends on the far-field properties to which the small crack is
subjected. Denoting P this quantity, it can be summarized by

J (c)

c
= P (far-field). (21)

3. Results and discussion

In this section, we first validate the previous derivation, i.e. the expression
J in terms of the configurational stress Eq. (13) and its proportionality with
respect to the crack length Eq. (19), and second we analyze more specifically
the near-field Σ11(l) in order to investigate the relationship Eq. (21).

In the following, we consider a square domain that contains an inclined
small crack of length c as shown in Figure 2. The plane stress assumption
is adopted; thus the incompressibility of the material is simply handled.
The far-field multiaxial straining is imposed through the set of parameters

θ

c

λ

λ
B

e1

e2

λ

λ
B

Figure 2: Domain with an inclined center crack

(λ,B, θ) where:

• λ is the maximum principal stretch ratio in the plane (e1, e2),

• λB is the second principal stretch ratio in the plane (e1, e2),
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• and θ is the crack orientation with respect to the second principal
stretch direction.

The 2D method developed in [27] is used: this simple method easily accounts
for the case in which the crack is not aligned with the principal stretch
directions (θ 6= 0◦ and θ 6= 90◦) which makes it ideally suited for finite
element analysis of the response of a small crack near-field and for calculation
of the energy release rate.

The finite element Abaqus was used for all numerical computations. The
features of our finite element model can be summarized as follow.

• Constitutive equation. The theoretical conclusions drawn above are
not based on the hyperelastic constitutive equation considered, for the
sake of simplicity the incompressible neo-Hookean constitutive equation
is chosen to model the behaviour of the rubber-like material,

W = C(I1 − 3), (22)

where I1 is the first invariant of the right Cauchy-Green strain tensor,
and C is the unique material parameter set to 1 MPa.

• Domain. For convenience, the far-field boundary is considered as a
circular region surrounding the crack. In order to comply with the small
crack assumption, a scale factor equal to 40 between the diameter of
the far-field circular geometry and the crack length has been chosen.
The crack size is set to c = 10 mm.

• Loading conditions. The homogeneous multiaxial strain far-field
is prescribed through a DISP subroutine that consists calculating the
displacement of boundary nodes that leads to the chosen strain far-field
(see [27] for details).

• Modeling the crack. The straight through-crack is modeled by a
”seam” which is an Abaqus tool that permits to place overlapping
duplicate nodes along a face in a model that is originally closed but
can open during an analysis.

• Finite elements and mesh. 4-node linear 2D shell element (CSP4)
finite elements are employed. The model is meshed and the mesh den-
sity is increased near the crack. The final mesh contains 32988 elements
and 33093 nodes.
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• Computation of J. The configurational stress tensor was evaluated
by implementing Eq. (5) in Abaqus (version 6.8) via the UVARM user-
defined subroutine. Moreover, because of the necessarily finite dimen-
sion of the model, we have to settle for the evaluation of improper
integral on an unbounded domain (Eq. 13) with the help of an integral
on the bounded domain Γ+ that starts from the center of the crack and
ends on the far-field boundary. Note that Σ∞

11 is approximated here by
the value of Σ11(l) at the intersection of Γ+ with the far-field boundary.
The integral of Σ∞

11 −Σ11(l) is calculated by the trapeze method where
the two trapeze vertices correspond to two successive nodes along the
path Γ+ at which the value of Σ11 is computed.

3.1. Validation of the derivation

3.1.1. The imbalance of configurational stress yields to the energy release rate

Our first objective is to verify that the right-hand side term of Eq. (13) is
equal to the energy release rate associated of the problem considered. Given
that Abaqus has a tool that permits the direct evaluation of the J-integral,
we compute the energy release rate with this feature on the one hand and
the area enclosed in a plot of the integrand quantity (Σ∞

11 − Σ11(l)) as a
function of distance from the crack between l = 0 and l = +∞ on the
other hand. These two values are then compared. Moreover, as the values
of the energy release rate of a small crack aligned with the principal stretch
directions (θ = 0◦ and θ = 90◦) are known under uniaxial extension, pure
shear and equibiaxial extension [26], it is wise to begin the investigation with
these simple cases. The verification will continue afterwards by considering
the same three previous far-field loading cases but with non-trivial crack
orientations (θ ∈]0◦, 90◦[).

Tables 1 and 2) provide the energy release rate of a small crack under
uniaxial tension (B = −0.5) for various crack orientations for ”small” strain
(stretch ratio equal to 1.1) and large strain (stretch ratio equal to 2.5), re-
spectively. The relative discrepancy between our method and the J-integral
computed by Abaqus never exceeds 4 %. Given that the improper integral
is estimated on a bounded domain, this discrepancy turns out to be very
satisfactory.

Similar computations have been carried out in the cases of a small crack
under pure shear (B = 0) and equibiaxial tension (B = −1) and for the
same values of far-field parameters θ and λ and for B = 0. Once again, the
relative discrepancy remains always smaller than 4 %.
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Table 1: Energy release rate (kJ/mm2) of a small crack of length c = 10 mm under uniaxial
tension (λ = 1.1) for various crack orientations

Uniaxial tension (B = −0.5) and λ = 1.1

Crack orientation θ J by Abaqus 2

∫ +∞

0

(Σ∞

11 − Σ11(l)) dl

0◦ 0.81891 0.80973
15◦ 0.7525 0.73390
30◦ 0.60428 0.59712
45◦ 0.40137 0.40454
60◦ 0.19935 0.20596
75◦ 0.05306 0.05583
90◦ 0.00000 0.00000

Table 2: Energy release rate (kJ/mm2) of a small crack of length c = 10 mm under uniaxial
tension (λ = 2.5) for various crack orientations

Uniaxial tension (B = −0.5) and λ = 2.5

Crack orientation θ J by Abaqus 2

∫ +∞

0

(Σ∞

11 − Σ11(l)) dl

0◦ 78.7453 75.97629
15◦ 73.4208 70.89085
30◦ 59.05740 57.04331
45◦ 39.41430 38.11648
60◦ 19.76130 19.18989
75◦ 5.30489 5.19568
90◦ 0.00000 0.00000

All these numerical results prove and validate the theoretical expression
Eq. (13) of the energy release rate of a small crack under arbitrary multiaxial
loading.

3.1.2. The energy release rate is proportional to crack length

The general nature of the proportionality relationship Eq. 19 needs to be
numerically verified. Indeed in the case where the crack is not aligned with
one of the principal stretch directions, this result is not so obvious. Remem-
bering the derivation carried out in [2], we wonder whether the dimensional
considerations made there remain valid when the crack is not perpendicular
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to the maximum principal stretch ratio direction.
Our validation consists in considering two different sizes for small crack

c1 and c2 under the same far-field loading conditions and then in comparing
the ratio with their respective energy release rate for the widest possible
range of far-field parameters λ, B and θ. For the first crack length, we reuse
the results of the previous section (c1 = 10 mm); and the second crack is
chosen to be half the size of c1: c2 = c1/2 = 5 mm. The finite element
models used for each crack size admit exactly the same features (see above)
except for the arrangement of mesh elements. Indeed, in order to improve the
accuracy of the comparison between the two cases, it is judicious to mesh the
vicinity of the two small cracks with meshes that are related by a scale factor
equal to the ratio between these two crack lengths. The near-crack geometry
was discretized with a very regular mesh (right-angled quadrilaterals) that
permits to control the elements sizes along with their distribution throughout
the mesh. Thus, at the scale of the crack, the mesh density in the vicinity of
the crack was the same for both finite element models.

All the results obtained demonstrate that, for B increasing from -0.5 to 1
by increments of 0.25, for λ increasing from 1.1 to 5.0 by increments of 0.1,
and for θ increasing from 0◦ to 90◦ by increments of 15◦ we always verify

J(B, λ, θ, c1 = 10 mm)

J(B, λ, θ, c2 = 5 mm)
= 2. (23)

Considering these numerical results, we are henceforth convinced that the
energy release rate of a small crack is proportional to the crack length what-
ever the far-field in which the small crack is embedded. In other words, the
proportionality relationship is proven valid even when the crack is not aligned
with one of the principal stretch directions.

3.2. Analysis of the configurational stress imbalance

On referring now to the mechanical interpretation of Eq. (13) stated
above, we know that the J-integral of a small crack corresponds to the im-
balance between the uniform configurational stresses acting on the vertical
right-hand side boundary ΓB and the varying configurational stresses acting
on the vertical left-hand side boundary Γ+ of the contour Γ (see Fig. 1).
We now attempt to make an account of how the near-crack variations of the
function l 7→ Σ11 (l) make up for the energy release rate of a small crack.
After computing expression Eq. (13) under uniaxial tension, pure shear and
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equibiaxial tension for various crack orientations and different stretch ratios,
we noticed a remarkable feature in the plot of l 7→ Σ11 (l): all these plots
have the same aspect. Indeed, it turns out that whatever the values of the
far-field parameters λ, B and θ, this function always first decreases and then
increases up to the far-field value with a minimum that occurs at l ≈ c/2.
The position of this minimum approaches l = 0 as the stretch ratio increases.
Figures 3, 4 and 5 concretely illustrate this property by providing examples
of plots of l 7→ Σ11 (l) for different values of biaxiality B (uniaxial tension
B = −0.5, pure shear B = 0 and equibiaxial tension B = 1) and crack
orientation θ at a stretch ratio λ = 1.5.
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Figure 3: Function l 7→ Σ11 (l) under uniaxial tension for a small crack. Left-hand side:
the crack is perpendicular to the maximum principal stretch ratio direction; right-hand
side: the crack that is slanted with respect to the principal stretch ratio directions

All these plots highlight three characteristic values:

• Σ0
11: Σ11 (l = 0), i.e. the value of Σ11 at the intersection of Γ+ with the

crack face,

• Σmin
11 : minl∈[0,∞[ {Σ11 (l)}, i.e. the minimum value of Σ11 reached at a

distance from the center of the crack on the order of c/2,

• Σ∞

11: liml→∞Σ11 (l), i.e. the asymptotic value of Σ11, which is actually
equal to that in the crack-free problem (far-field).

By gradually refining the mesh of the finite element model, we have been
verified that the values of Σ0

11 and Σmin
11 always converge, i.e. they are both

independent from the mesh. Thus, it permits to conclude that, in addition
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Figure 4: Function l 7→ Σ11 (l) under pure shear for a small crack. Left-hand side: the
crack is perpendicular to the maximum principal stretch ratio direction; right-hand side:
the crack that is slanted with respect to the principal stretch ratio directions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

Normalized distance from the center of the crack, l

c

Σ
1
1

al
on

g
Γ

+
(M

J
/m

3
)

Equibiaxial tension: λ = 1.5 and θ = 30◦

Σ∞

11
Σ0

11

Σmin
11

Figure 5: Function l 7→ Σ11 (l) under equibiaxial tension for a small crack. This result is
the same for all crack orientations

to Σ∞

11, Σ
min
11 and Σ0

11 depend on the far-field loading conditions only; in other
words, they only depend on the far-field parameters λ, B and θ. Actually
this result was predictable because singular values (infinite values) of the
mechanical fields can take place only at crack tip. Therefore, at any point
along Γ+, all the mechanical fields are regular and it is legitimate to claim
that the features noticed in the plots of l 7→ Σ11 (l) are general properties
that intrinsically characterize a small crack whatever the principal stretch
ratios λ and λB of the multiaxial far-field in which the crack is embedded
and whatever its orientation θ with respect to the principal stretch ratio
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directions.
Figure 6 illustrates the balance of configurational stresses acting on a

small crack. As established in Eq. (13), we only need to consider the con-

Figure 6: Configurational force balance

figurational stress component associated with the crack growth direction. In
the figure, the projection onto the crack plane of the configurational force
vector J acting at crack tip, with magnitude equal to the energy release rate
of the crack, is obtained by simply summing the configurational stress that
act on the left- and right-hand side cutting planes: (i) a uniform configura-
tional stress acts on the right-hand side plane, located far from the crack;
and (ii) the left-hand side plane, which cuts the center of the crack, is acted
on by a distribution of configurational stress (l 7→ Σ11 (l)), which admits an
asymptote to the far-field value and varies in the near-field due to the effects
of crack face unloading.

4. Conclusions

The energy release rate of a small crack can be computed by considering
the balance of configurational stress acting on two planes: one cutting the
center of the crack face, and another at an infinite distance in front of the
crack tip. The computation can be made for arbitrary multiaxial loading
conditions, and it provides a means of bridging between continuum mechan-
ics, through far-field quantities, and fracture mechanic, through the energy
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release rate, views of crack evolution in hyperelastic solids; it is particularly
suited to the requirements of critical plane analysis classically adopted in
fatigue problems.

The relevance of this approach to the problem was demonstrated through
its ability to frame and prove the widely held view that the energy release
rate of a small crack is proportional to the size of the crack, irrespective of
the state of loading or the orientation of the crack.

There is a significant difference between the near-field configurational
stress and the far-field value. This difference is associated with unloading of
the crack face, and it is balanced by the concentrated material force at crack
tip, which magnitude is equal to the energy release rate of the crack.

We have plotted the configurational stress balance for the benchmark
cases of uniaxial tension, pure shear and equibiaxial tension, and for cracks
inclined with respect to the axis of loading. First, energy release rates com-
pared well with previously known results. Second, in all cases, the configura-
tional stress balance exhibits the same characteristic features: an asymptote
to the far-field value, a non-zero value at crack face, and a locally minimum
value at some distance ≈ c/2 from the crack face.
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[15] M. Kaliske, B. Näser, C. Meiners, Inelastic fracture mechanics for tire
durability simulations, Tire Sci. Technol. 35 (3) (2007) 239–250.

[16] E. Verron, Configurational mechanics: a tool to investigate fracture and
fatigue of rubber, Rubber Chemistry and Technology 83 (2010) 270–281.

20



[17] D. Parks, The virtual crack extension method for nonlinear material
behavior, Comp. Meth. Appl. Mech. Engrg. 12 (1977) 353–364.

[18] C. Shih, B. Moran, T. Nakamura, Energy release rate along a three-
dimensional crack front in a thermally stressed body, Int. J. Fracture 30
(1986) 79–102.

[19] K. N. Shivakumar, P. W. Tan, J. C. Newman, A virtual crack-closure
technique for calculation stress intensity factors for cracked three-
dimensional bodies, Int. J. Fracture 36 (1988) 7371–7971.

[20] P. Steinmann, Application of material forces to hyperelastostatic frac-
ture mechanics.I.Continuum mechanical setting, Int. J. Solids Struct. 37
(2000) 7371–7391.

[21] R. Mueller, G. A. Maugin, On material forces and finite element dis-
cretizations, Comput. Mech. 29 (2002) 52–60.

[22] J. R. Rice, A path independent integral and the approximate analysis
of strain concentration by notches and cracks, J. Appl. Mech. 35 (1968)
379–386.

[23] J. D. Eshelby, The force on an elastic singularity, Phil. Trans. R. Soc.
Lond. A. 244 (1951) 87–112.

[24] J. D. Eshelby, The elastic energy-momentum tensor, J. Elast. 5 (3-4)
(1975) 321–335.

[25] P. Chadwick, Applications of an energy-momentum tensor in non-linear
elastostatics, J. Elast. 5 (3-4) (1975) 249–258.

[26] O. H. Yeoh, Relation between crack surface displacements and strain
energy release rate in thin rubber sheets, Mech. Mater. 34 (8) (2002)
459–478.
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