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Surface and interface play an important role on the overall mechanical behaviors of nano-
structured materials. We investigate the effect of surface/interface stress on the macro-
scopic plastic behaviors of nanoporous materials and nanocomposites, where both the
surface/interface residual stress and surface/interface elasticity are taken into account. A
new second-order moment nonlinear micromechanics theory is developed and then
reduced to macroscopically isotropic materials. It is found that the effect of surface/inter-
face residual stress is much more prominent than that of the surface/interface elasticity,
causing strong size effect as well as asymmetric plastic deformation for tension and com-
pression. The variation of yield strength is more prominent with smaller pore/inclusion
size or higher pore/inclusion volume fraction. For a representative nanoporous aluminum,
the surface effect becomes significant when the pore radius is smaller than about 50 nm.
When hard inclusions are embedded in a ductile metal matrix, the interface effect and
resulting size effect are much smaller than that of nanoporous materials. The results
may be useful for evaluating the mechanical integrity of nanostructured materials.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Nanostructured materials, such as nanoparticle composites (Balazs et al., 2006) and nanoporous materials (Russell et al.,
1997), have received increasing attentions owing to their attractive physical properties and wide potential applications. The
most dominant characteristics of nanocomposites (or nanoporous materials) are the ultra-small filler sizes (or pore diame-
ters) and the ultra-high specific interface areas (or surface areas). In nanocomposites, although the addition of strong/stiff
nanofillers could improve the overall strength/stiffness of the composite, however, the interface is often the ‘‘weakest link”
(Frogley et al., 2003; Gan et al., 2007; Moya et al., 2007; Thostenson et al., 2001). In nanoporous materials, the ultra-large
surface area is the basis for their applications in catalysis, hydrogen storage, molecular sieves, purification, energy absorp-
tion, actuation and energy harvesting, etc. (Chen et al., 2008b; Liu et al., 2008, 2009; Lu and Zhao, 2005; Morris and Wheat-
ley, 2008). In order to fulfill their promises, the unique surface/interface effects at the nanoscale must be sufficiently
understood; this is critical for the mechanical integrity and functional design of the nanostructured materials.

With the large surface/interface to volume ratio, the surface or interface energy has a significant impact on the overall
mechanical properties of nanostructured materials. Many past studies focused on the effect of surface/interface on the elastic
properties of nanostructured materials, such as the elastic moduli of materials with nanosized inclusions (Duan et al., 2005;
. All rights reserved.
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Yang, 2006), the diffraction of plane compressional waves around a nanosized circular hole (Wang and Wang, 2006a,b), the
surface effects on the near-tip stresses for mode-I and mode-III cracks (Wang et al., 2008) and the stress concentration
around nanosized voids (Ou et al., 2008; Sharma and Bhate, 2003; Wang and Wang, 2006b). In these studies, by incorporat-
ing the surface/interface effect, the elastic properties of nanostructured materials were found to be size-dependent. In addi-
tion, the presence of surface may also induce deformation instability of a thin film (Kornev and Sroloviz, 2004), as well as
affecting the vibration of nanobeams (Wang and Feng, 2007), and influencing the elastic properties of nanoparticles, nano-
wires, and nanofilms (Cao and Chen, 2007, 2008; Dingreville et al., 2005), among others.

The interface effect (or surface effect) is also widely referred to as the interface stress (or surface stress) that consists of
two parts, both arise from the distorted atomic structure near the interface (or surface): the first part is the interface (or sur-
face) residual stress which is independent of the deformation of solids, and the second part is the interface (or surface) elas-
ticity which contributes to the stress field related to the deformation. Duan et al. (2005) investigated the effect of interface
elasticity on the effective elastic moduli of materials with nano-inclusions (with sizes below several nanometers). However,
the influence of surface/interface elasticity becomes significant only when the characteristic dimension of a nano-phase is
below several nanometers (Zhang and Wang, 2007; Zhang et al., 2009), and thus the effect of the surface/interface residual
stress must be taken into account in most applications.1 This can be confirmed from the bending experiments of gold nano-
wires with diameters 40–250 nm (Wu et al., 2005), where the size effect of Young’s modulus of gold nanowire is insignificant,
yet the enhancement of the yield strength is remarkable when the nanowire becomes smaller – such phenomenon cannot be
explained if one only considers the surface elasticity. The prominent size effects of plastic properties also call for advances on
how does the surface or interface affects the plastic deformation and strength of nanostructured materials; this is particularly
important when nanostructured materials are used in structural components (Gleiter, 2000), MEMS or NEMS devices (Lee et al.,
2006; Teh et al., 2005), or for energy absorption (Chen et al., 2006; Qiao et al., 2009), where they may need to carry significant
loads over the elastic limit.

For freestanding nanowires, it was shown both experimentally and theoretically that the surface effect is prominent on
the plastic behaviors. Through molecular dynamics (MD) simulations, the tensile strength of gold nanowire was found to
increase with decreasing radius of the nanowires (Gall et al., 2004), and such size effect is consistent with the results of
experiments (Marszalek et al., 2000; Wu et al., 2005) and theory (Zhang et al., 2008), where the surface residual stress plays
a more dominant role than the surface elasticity (Zhang et al., 2008). The surface residual stress can also induce tension-com-
pression asymmetric yield strength (Diao et al., 2004; Marszalek et al., 2000; Zhang et al., 2008). However, for the techno-
logically important nanostructured materials (including nanocomposites and nanoporous materials), the effect of surface/
interface on the overall plastic behaviors is still not well understood, and the present study aims to close such gap.

Plastic deformation, in particular the initial yielding point (i.e. the yield surface), is sensitive to the local stress (or local
strain) of a heterogeneous material, which includes both the local (surface/interface) residual stress and local stress–strain
relationship. Aifantis and Willis (2005) presented a variational method to investigate the influence of the interface ‘‘energy”
on the overall yield strength of composites. However, the interface stress was neglected and the stress across the interface
was continuous, and the interface ‘‘energy” term in their work could only influence the high-order stress. Based on the en-
ergy average of the local deformation field, the second-order moment micromechanics approach (Hu, 1996; Qiu and Weng,
1995) could effectively capture these local heterogeneous properties. Other researches have developed a different version of
the second-order moment micromechanics theory based on rigorous mathematical variational principles (Ponte Castañeda,
1991; Suquet, 1993); in a follow-up work (Hu, 1996; Suquet, 1995), it was shown that these two second-order moment ap-
proaches were mathematically linked. There were few attempts of incorporating the surface/interface elasticity into such
micromechanics approach (Zhang and Wang, 2007), and the influence of interface elasticity on the overall plastic behaviors
of micropolar composites was estimated (Chen et al., 2008a). In those studies, the surface/interface residual stress was ne-
glected. However, as we have pointed out, the surface/interface residual stress cannot be neglected. Indeed, plastic deforma-
tion is determined by the stress state and thus it is significantly affected by the surface/interface residual stress. Ou et al.
(2008) found that the surface residual stress strongly affects the elastic stress concentration factor around a nano-sized sphe-
roidal cavity. Thus, one could suspect that the surface/interface residual stress must have a profound influence on the plastic
deformation of the nanostructured material.

The present paper extends the second-order theory to systematically explore the influences of surface/interface residual
stress and surface/interface elasticity on the elastoplastic properties of nanostructured materials.2 Within the context of con-
tinuum theory, the plastic deformation in the matrix should be regarded as a statistical average. In other words, although the
plastic deformation around a nano-inclusion is discrete, the statistical average in all sample space is continuous. Such a contin-
uum plasticity theory to be developed in this paper is more efficient (than discrete dislocation plasticity) of obtaining the mac-
roscopic mechanical properties, and the continuum theory could yield good agreements with discrete dislocation plasticity
(Needleman and Van der Giessen, 2001a).

The nonlinear micromechanics model is based on the secant moduli of nonlinear matrix and field fluctuation method, and
through representative numerical examples of nanoporous aluminum and SiC nanoparticle reinforced Al matrix, we demon-
strate that the effect of surface/interface residual stress is prominent on the shifting of yield surface and causing the size
1 The mechanical properties of nonlinear materials are coupled with the deformation field, and thus the surface/interface residual stress can influence the
deformation field or stress field.

2 To highlight the effect of surface/interface stress, we do not take into account the strain gradient effect in this study.



W.X. Zhang et al. / International Journal of Plasticity 26 (2010) 957–975 959
effect, and it also induces tension-compression asymmetry. The results may be useful for evaluating the mechanical integrity
and reliability of nanoporous materials and nanocomposites.
2. Model and methods

2.1. Surface/interface stress

Since nanoporous materials may be regarded as a special subset of nanocomposite where the inclusions are voids, in what
follows, the surface effect/energy/stress of nanoporous materials is also referred to as the interface effect/energy/stress. The
interface stress is related to the interface energy (Cammarata, 1994; Shuttleworth, 1950):
s ¼ cIð2Þ þ oc
oei

ð1Þ
where c is the excess free energy per unit interface area (Nix and Gao, 1998; Vermaak et al., 1968), I(2) is the second-order
unit tensor in two-dimensional space, and ei is the interface strain tensor. In this paper, the bold letter represents a tensor or
vector, and the superscript i denotes the interface property. In essence, c can be affected by the deformation of the interface
(Cammarata, 1994). To simplify the analysis, here we assume that s is invariant during plastic deformation. According to the
model introduced by Gurtin and Murdoch (1975), the interface stress is the summation of the interface residual stress and
interface elasticity:
s ¼ s0 þ si : ei ð2Þ
where s0 is the interface residual stress and si is the interface stiffness tensor. Physically, the interface residual stress and
interface elasticity are related to the crystal surface orientation and they are intrinsic properties of the interface; in general,
both s0 and si can be inhomogeneous and anisotropic.

In the special case where the interface property is isotropic, the interface constitutive equation is the following:
s ¼ s0Ið2Þ þ 2liei þ kiðtreiÞIð2Þ ð3Þ
where li and ki are the shear modulus and Lame’s constant of the interface, respectively. If the interface properties are homo-
geneous, the values of s0, li, and ki are the same everywhere on the interface.

Although the interface residual stress does not influence the effective Young’s modulus of nano-materials, its effect on the
plastic behaviors is significant (much more than the interface elasticity) (Zhang et al., 2008). Since the surface deformation is
usually small before plastic deformation occurs, the second term on the right side of Eq. (2) is relatively small.

For linear elastic ‘‘bulk” materials, the equilibrium and constitutive equations are:
r � rk ¼ 0 ð4Þ
rk ¼ sk : ek ð5Þ
whererg is the divergence operator, rk is the stress tensor, ek is the strain tensor, and sk is the stiffness tensor. In this paper,
when the subscript k takes 0 or 1, it represents the matrix property or inclusion property, respectively. Under small defor-
mation, the strain is defined as
ek ¼
1
2
ðr � uk þ uk �rÞ ð6Þ
where uk is the displacement and r is the gradient operator. In the special case where the material is isotropic, the consti-
tutive relationship is
rk ¼ kkðtrekÞIð3Þ þ 2lkek ð7Þ
where kk and lk are the Lame’s constant and shear modulus of the material (phase), respectively, and I(3) is the second-order
unit tensor in three-dimensional space.

The interface stress and the stress within each phase satisfy the generalized Young–Laplace equations (Sharma and Bhate,
2003):
n � ½r� � n ¼ �s : b

P � ½r� � n ¼ �ri � s
ð8Þ
where n is the unit normal vector on the interface whose positive direction is from the void (inclusion) to the matrix,
P = I(3) � n � n, ri � s is the interface divergence of the interface stress s, [r] is the stress jump across the interface from
the inclusion to the matrix (due to the existence of interface stress), and b is the curvature tensor (for the details of the com-
ponents of b, please refer to the work of Huang and Wang (2006)).
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2.2. Representative volume element (RVE)

The three-dimensional RVE includes a sufficiently large number of nano-sized inclusions (Fig. 1), where the inclusion
shape and distribution can be arbitrary in the general approach. When the sizes of inclusions are different, they must be ta-
ken as different inclusions since the influences of their interface stresses are different. For convenience, we first define the
terminologies for three configurations of RVE: the reference configuration, the initial configuration, and the current configu-
ration. In the reference configuration, the interface residual stress is assumed to be zero – at this stage there is no stress in
the material. Next, we add s0 on the interface and subsequently, the inclusion, interface, and matrix will deform until a new
equilibrium is reached, which is referred to as the initial configuration (in absence of any external load). When an external
load F is applied, the RVE will further deform to a new equilibrium configuration, which is the current configuration. Note
that during a real experiment, only the initial and current configurations may be experienced.

In this paper, the displacement uk and interface residual stress s0 are defined with respect to the reference configuration.
s0 is independent of deformation and it depends only on the crystal orientation for a given material. While these are ‘‘local”
quantities, for the RVE, the macroscopic stress �r and strain �e are defined as follows (Nemat-Nasser and Hori, 1993):
Fig. 1.
this pap
the solu
and iso
�r ¼ 1
V

R
Sout

X� FdS

�e ¼ 1
V

R
Sout

1
2 ðn� uþ u� nÞdS

ð9Þ
where X is the position vector of the outer boundary, n the outer unit normal vector of RVE, and u the displacement of the
boundary. These definitions are with respect to the reference configuration. Sout is the outer surface of the RVE; correspond-
ingly, the ‘‘inner” surface, or the interface, is denoted as Sin.

2.3. Principle of virtual work (PVW) and Hill’s lemma of RVE

Denote the volume of matrix as V0 and the volume of inclusion as V1. First, the PVW can be applied to each individual
phase separately. For phase 0 (matrix),
Z

Sout

F � udSþ
Z

Sin

F0
in � udS ¼

Z
V0

r0 : e0 dV ð10Þ
where F0
in is the traction force at the interface whose positive direction is from the matrix to the inclusion. In phase 1 (inclu-

sion) we have
Z
Sin

F1
in � udS ¼

Z
V1

r1 : e1 dV ð11Þ
where F1
in is the traction force of the inclusion whose positive direction is from the inclusion to the matrix. Add these two

equations and note that �½r� � n ¼ F0
in þ F1

in (where n is the normal unit vector of the interface and its positive direction is
toward the matrix.):
Z

Sout

F � udS�
Z

Sin

½r� � n � udS ¼
Z

V
r : edV ð12Þ
The derived PVW of the RVE is valid for any inclusion size, distribution, and material properties. By using the PVW, the Hill’s
lemma for RVE with interface stress can be derived as the following (which is the foundation of the present paper, see
Appendix A for details):
V

iV
τ

τ

τ

τ
τ

τ
τ
iV

iV

iV

iV

iV

iV

Schematic of the general RVE model whose volume is V. Vi is the inclusion volume and interface/surface stress is s. In the general theory developed in
er, the material/interface properties can be inhomogeneous and anisotropic, and the inclusion shape/size can be different. In Section 2.5 and later
tions are specified for a macroscopically isotropic RVE, where the inclusions are spherical with same radius R, and they distribute homogeneously

tropically in the matrix.
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�r : �e� fi

V i

Z
oVi

s : ei ds ¼ hr : ei ð13Þ
where Vi is the volume enclosed by the interface and o Vi = Sin; note that Vi = V1 if there is only one kind of inclusion, yet we
denote it as Vi in Sections 2.3 and 2.4 because in the present general approach, multiple inclusions are allowed and their sizes
may vary. fi is the volume fraction of inclusion and for any variable U, hUi � 1

V

R
V UdV over the RVE. It should be pointed out

that the stress and strain in Eq. (13) can be arbitrary as long as they satisfy equilibrium (Eqs. (4) and (8)) with continuous
displacement (Eq. (6)).

The deformation field of the inclusions is contributed by both the external load and the interface residual stress. For linear
elastic material, by utilizing the superposition principle, the deformation field can be decomposed into the summation of
two parts: the one caused by the external load and that caused by the interface residual stress. In other words,
�e ¼ �er þ �es and ei ¼ ei

r þ ei
s. Here, �er is the macroscopic strain generated by the external load �r, and �es is the macroscopic

strain due to the interface residual stress s0. ei
r and ei

s are the interface strain caused by the external load and the interface
residual stress, respectively. Using Eq. (2), Eq. (13) becomes
�r : �er þ �r : �es �
fi

Vi

Z
oVi

s0 : ei
r þ s0 : ei

s þ ei : si : ei
� �

ds ¼ hr : ei ð14Þ
Recall the reciprocal theorem
�r : �es ¼ �
fi

V i

Z
oVi

s0 : ei
r ds ð15Þ
Eq. (14) can be simplified as
�r : �er þ 2�r : �es �
fi

V i

Z
oVi

s0 : ei
s þ ei : si : ei

� �
ds ¼ hr : ei ð16Þ
The effective compliance tensor of the RVE (corresponding to the external load) is C, i.e. �er ¼ C : �r. The residual stress at any
point in the interface is also constrained by the entire RVE, from which a compliance tensor Cs is defined as �es ¼

R
oVi

Cs : s0 ds;
note that for a general interface between two anisotropic solids, Cs may be inhomogeneous on the interface. The overall ef-
fect of s0 leads to the macroscopic strain �es. Also denote Cs as the compliance tensor of interface under the constraint of RVE
according to ei

s ¼ Cs : s0. Eq. (14) can now be rewritten as
�r : C : �rþ 2�r :

Z
oVi

Cs : s0 ds� fi

Vi

Z
oVi

s0 : Cs : s0 þ si : ci : si
� �

ds ¼ hr : c : ri ð17Þ
where si ¼ si : ei is the interface stress caused by the interface elasticity, and ei ¼ ci : si. And the material ‘‘local” compliance
tensor c = s-1, with c = c0 for matrix and c = c1 for inclusion, that satisfy ek ¼ ck : rk (k = 0,1).

2.4. Field fluctuation method

Several micromechanics methods are available to obtain the macroscopic properties of linear elastic heterogeneous mate-
rials, e.g. the Mori–Tanaka method (Chen et al., 1992; Kitazono et al., 2003), self-consistent method (Hill, 1965), Hashin-
Strikman variational method (Hashin and Shtrikman, 1963; Hashin, 1983), among others (Li and Wang, 2005). Such
approach can be extended to nonlinear heterogeneous materials, whose moduli are related to the deformation state: at a
given strain, the nonlinear material may be characterized by a linear comparison material whose properties are described
by the instantaneous secant moduli of the nonlinear material, and the secant moduli are strain dependent. Therefore, one
could focus on the macroscopic properties of the heterogeneous linear comparison material, which has the same configura-
tion as the nonlinear material at every deformation stage and thus provides a good estimation (Hu, 1996; Qiu and Weng,
1992, 1993, 1995). In this approach, one must first obtain the stress or strain so as to derive the instantaneous secant moduli.
Since the stress field is heterogeneous in a composite material, in principle, the secant moduli are also heterogeneous and
thus it is impossible to obtain the exact local stress/strain solutions of a heterogeneous material. In order to simplify the
analysis, we adopt the widely used assumption (Hu, 1996; Ponte Castañeda, 1991, 1996; Ponte Castañeda and Suquet,
1997; Qiu and Weng, 1992, 1993, 1995; Tandon and Weng, 1988) and assume that the secant modulus of any nonlinear
phase (e.g. within the matrix) is uniform.3 In this paper, we assume that the matrix material is nonlinear (i.e. plastic deforma-
tion occurs only in the matrix) whereas the inclusion in a nanocomposite material is elastic, which is a reasonable assumption
since the nanoparticle fillers are usually very hard; the inclusion is void in a nanoporous material. Of course, the overall behav-
ior of the composite is nonlinear.
e that the stress and strain are still heterogeneous within the present micromechanics approach, but instead we assume that the secant modulus of a
ar phase (e.g. the metal matrix) is a function of an averaged equivalent stress of this phase, and thus the secant modulus is uniform within this phase,
tion 2.5 for details.
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The local stress can be obtained by the following field fluctuation procedure. Under the constant stress boundary condi-
tion and constant interface residual stress, let the local compliance tensor c to undergo a small variation dc; this will lead to
stress perturbations dr and ds. The corresponding variations of C;Cs, and Cs are dC; dCs and dCs, respectively:
�r : dC : �rþ 2�r :

Z
oVi

dCs : s0 ds� fi

V i

Z
oVi

s0 : dCs : s0 þ 2dsi : ci : si
� �

ds ¼ hr : dc : ri þ 2hdr : c : ri ð18Þ
Using the Hill’s condition, Eq. (13), we have
� fi

V i

Z
oVi

2dsi : ci : si ds ¼ 2hdr : c : ri ð19Þ
Thus,
�r : dC : �rþ 2�r :

Z
oVi

dCs : s0 ds� fi

V i

Z
oVi

s0 : dCs : s0 ds ¼ hr : dc : ri ð20Þ
Eq. (20) shows that the fluctuation of local compliance leads the perturbation of macroscopic compliance. Utilizing Eq. (20)
one can obtain the relationship between the second moment of local stress and the macroscopic stress under the aforemen-
tioned assumption of uniform secant moduli in the nonlinear phase (matrix in this paper).

When the interface residual stress is homogeneous and isotropic, the formulation can be further simplified. Assuming
s0 ¼ s0Ið2Þ holds everywhere on the interface, Eq. (17) can be further simplified as
�r : C : �rþ 2s0�r :

Z
oVi

Cs : Ið2Þds� fis2
0

Vi

Z
oVi

Ið2Þ : Cs : Ið2Þ ds� fi

Vi

Z
oVi

si : ci : si ds ¼ hr : c : ri ð21Þ
By letting B ¼
R

oVi
Cs : Ið2Þds and D ¼

R
oVi

Ið2Þ : Cs : Ið2Þds,
�r : C : �rþ 2s0�r : B� fis2
0

Vi
D� fi

V i

Z
oVi

si : ci : si ds ¼ hr : c : ri ð22Þ
It should be noted that both B and D are compliance-like quantities, where B is the compliance tensor corresponding to the
macroscopic deformation of RVE caused by an unit interface stress, and D is the microscopic compliance corresponding to
the local interface strain induced by an unit interface stress. Note that the interface is constrained by the whole RVE as well,
and thus D is related to the whole RVE.

With the field fluctuation method the following relationship is obtained:
�r : dC : �rþ 2s0�r : dB� fis2
0

Vi
dD ¼ hr : dc : ri ð23Þ
The generic formulation presented above is valid as long as the interface residual stress is isotropic and homogeneous; all
other general material/interface properties can be inhomogeneous and anisotropic.

2.5. Solution for isotropic RVE

The microstructure of nanocomposites and nanoporous materials can be complex and affected by many factors (Banhart,
2001; Gleiter, 2000); it may be impossible to capture all the details of an irregular microstructure. The main emphasis of this
paper is to present a micromechanics approach to investigate the interface stress – macroscopic property relationship. In
what follows, we apply the developed theory to a composite whose matrix is elastoplastic and isotropic, and the inclusion
is linear elastic and isotropic. The interface properties are also assumed to be uniform. Therefore, the local compliance mod-
uli ci and c are taken to be homogeneous and isotropic. We assume all inclusions are spherical and of same radius R, and they
are distributed homogeneously and randomly in the matrix; in this case the interface residual stress only induces a macro-
scopic volumetric deformation, thus, B ¼ BIð3Þ ¼ �es=s0;D ¼ 1

s0

R
oVi

trðeiÞds, and the compliance moduli Cs; Cs; C, are homoge-
neous and isotropic.

With these simplifications, the macroscopic moduli B and D in Eq. (23) can be derived in closed form by the Hashin
sphere model (Hashin and Shtrikman, 1963):
B ¼ BIð3Þ ¼ 2f 1ð4l0 þ 3k0ÞIð3Þ

R l0ðf1 � 1Þk0 � 4
3 f1l0 þ k0
� �

1
2 l0kr

s � 3
4 k1

� �� � ð24Þ

D ¼ ð4l0f1 þ 3k0Þ
R2 l0ðf1 � 1Þk0 � 4

3 f1l0 þ k0
� �

1
2 l0kr

s � 3
4 k1

� �� � ð25Þ
The detailed derivation is given in Appendix B. The bulk modulus and shear modulus of the matrix are k0 and l0, respectively,
and that of the inclusion are k1 and l1. kr

s ¼ ki
=ðRl0Þ, where the bulk modulus of the interface is ki ¼ 2ðli þ kiÞ (see Eq. (3)). f1

is the volume fraction of the spherical nano-inclusion with radius R.
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The constitutive equation of the isotropic RVE is
�r ¼ K � 2
3

G
� �

ðtr�eÞIð3Þ þ 2G�e ð26Þ
where K and G are the bulk modulus and shear modulus of RVE, which should be regarded as the secant moduli for the non-
linear material. K and G can be derived by several methods, such as the self-consistent method (Christensen and Lo, 1979) or
Mori–Tanaka method (Tandon and Weng, 1988). Following the work of Duan et al. (2005), they can be obtained as:
K ¼ 3k1ð3k0 þ 4f 1l0Þ þ 2l0½4f 1l0kr
s þ 3k0ð2� 2f 1Þ þ kr

s�
3½3ð1� f1Þk1 þ 3f 1k0 þ 2l0ð2þ kr

s � f1kr
sÞ�

ð27Þ

G ¼ l0½5� 8f 1n3ð7� 5m0Þ�
5� f1ð5� 84n1 � 20n2Þ

ð28Þ
where
n1 ¼
15ð1� m0Þðkr

s þ 2lr
sÞ

4H
ð29Þ

n2 ¼
�15ð1� m0Þ

4H
½g1ð7þ 5m1Þ � 8m1ð5þ 3kr

s þ lr
sÞ þ 7ð4þ 3kr

s þ 2lr
sÞ� ð30Þ

n3 ¼
5

16H
f2g2

1ð7þ 5m1Þ � 4ð7� 10m1Þð2þ kr
sÞð1� lr

sÞ þ g1½7ð6þ 5kr
s þ 4lr

sÞ � m1ð90þ 47kr
s þ 4lr

sÞ�g ð31Þ

H ¼ �2g2
1ð7þ 5m1Þð4� 5m2Þ þ 7g1 �39� 20kr

s � 16lr
s þ 5m2ð9þ 5kr

s þ 4lr
sÞ

� �
þ g1m1 285þ 188kr

s þ 16lr
s � 5m2ð75þ 47jr

s þ 4lr
sÞ

� �
þ 4ð7� 10m1Þ �7� 11lr

s � kr
sð5þ 4lr

sÞ
�

þ m2 5þ 13lr
s þ kr

sð4þ 5lr
sÞ

� �	
ð32Þ
with lr
s ¼ li=ðRl0Þ and g1 ¼ l1=l0.

The macroscopic stress of the isotropic RVE as well as the local stress can be decomposed into deviatoric and spherical
parts:
�r ¼ �r0 þ �rmIð3Þ ð33Þ
r ¼ r0 þ rmIð3Þ ð34Þ
where �r0 is the macroscopic stress deviator and �rm ¼ 1
3 tr�r; r0 is the local stress deviator and rm ¼ 1

3 trr. The deformation of
RVE can also be resolved into two parts, i.e. the volume change and the shape variation. When the shear modulus of the ma-
trix, l0, undergoes a small variation, the relationship between the second moment of local deviatoric stress and the macro-
scopic stress can be established:
ð�r0 : �r0Þd 1
2G

� �
þ �r2

md
1
K

� �
þ 2s0�r : dB� f1s2

0

V1
dD ¼ ð1� f1Þd

1
2l0

� �
hr0 : r0iV0

ð35Þ
where V0 is the volume of matrix and V1 is the volume of inclusion. We assume that the matrix obeys the Mises yield cri-
terion and follows the isotropic harden rule. If we know the form of the macroscopic compliance in advance, which is a func-
tion of the compliance of the constituent phases, we can change the variation form to a differential form so as to correlate the
local stress with macroscopic stress. With r2

e ¼ 3
2 r0 : r0 and �r2

e ¼ 3
2 �r0 : �r0:
�r2
e

l0

G

� �2
oG
ol0
þ 3�r2

m
l0

K

� �2
oK
ol0
� 18�rms0l2

0
oB
ol0
þ 3

f1

V1
s2

0l
2
0

oD
ol0
¼ ð1� f1Þhr2

e iV0
¼ ð1� f1Þ�r2

e0 ð36Þ
where �r2
e0 ¼ hr2

e iV0
. Eq. (36) establishes the relationship between the macroscopic stress ð�re and �rmÞ and the ‘‘local stress”

(which is the averaged equivalent stress of the matrix, �re0) under any external load. When there is no interface residual
stress, i.e. s0 = 0, Eq. (36) reduces to that of Chen et al. (2008a) without micropolar.

During uniaxial loading, the macroscopic applied stress �r equals to the macroscopic Mises stress �re, and �rm ¼ �r=3. Thus,
�r2 l0

G

� �2
oG
ol0
þ 1

3
l0

K

� �2
oK
ol0

" #
� 6�rs0l2

0
oB
ol0
þ 3

f1

V1
s2

0l
2
0

oD
ol0
¼ ð1� f Þ�r2

e0 ð37Þ
For linear elastic materials, Eq. (37) gives a direct relationship between the macroscopic stress and local stress. For nonlinear
material, the moduli in Eq. (37) should be substituted by the instantaneous secant moduli of nonlinear material, which are
functions of local stress. For the nanocomposite or nanoporous material, the secant moduli of metal matrix are assumed to
depend only on the averaged von Mises stress �re0. Specifically, for a nonlinear matrix material whose uniaxial stress–strain
curve is r = r(e), the secant Young’s modulus is
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Es ¼
rðeÞ
e
¼ EsðreÞ ð38Þ
Since of the hydrostatic stress does not influence the plastic deformation of the metal matrix, we assume that the bulk mod-
ulus k0 is constant and deformation-independent. The secant shear modulus and secant Poisson’s ratio are, respectively:
l0s ¼
3k0E0s

9k0 � E0s
ð39Þ

m0s ¼
3k0 � E0s

6k0
ð40Þ
In this paper, the secant moduli are denoted by subscript s.
2.6. Solution procedure

The overall nonlinear response of composite can be obtained from the linear comparison material, following the proce-
dures: (i) Substituting �re0 into Eqs. (38) and (39) to obtain the secant Young’s modulus and secant shear modulus of the me-
tal matrix. (ii) Substituting Eqs. (24)–(32) into Eqs. (36) and (37), where the moduli of matrix (e.g. m0) is replaced by its secant
moduli (e.g. m0s). Thus, a nonlinear equation which correlates the macroscopic stress with �re0 (of the linear comparison mate-
rial) is obtained.

The conventional solution procedure (e.g. Qiu and Weng, 1992, 1995) is that for a given macroscopic stress �r, its equiv-
alent part �re and hydrostatic part �rm are first obtained and then substituted into Eq. (36), and iteration is required so as to
solve the averaged (matrix) equivalent stress, �re0. Such iteration procedure is often of low efficiency.

Since a �re0 can be always solved for a given macroscopic stress �r, that means for a given �re0 there may be a corresponding
�r (although sometimes, from a given �re0 the solution of �r may not exist). Thus, in Eq. (36) one may take �re0 as ‘‘known”, and
then solve for �re and �rm – any real solution could correlate �re0 with �r, and such algorithm does not need any iteration.

The macroscopic strain �e corresponding the reference configuration can be obtained from the macroscopic stress as fol-
lows. Substitute the secant moduli k0 and l0s into the expression of C, and the macroscopic secant compliance Cs is obtained.
Recall that,
�e ¼ �er þ �es ¼ C : �rþ Bs0 ð41Þ
Both macroscopic secant compliances, C and B, depend on �re0. In the initial configuration when there is no external load, due
to the interface residual stress s0, the RVE has a residual strain �e0 where �e0 ¼ B0ss0, with B0s the secant coupling compliance
tensor of the matrix at the initial state. After the external load is applied, the real (measurable) macroscopic strain is the
strain change from the initial configuration to the current configuration, as follows:
�ereal ¼ C : �rþ B� B0s
� �

s0 ð42Þ
The final results of strains presented in the next section are all with respect to �ereal unless otherwise denoted. Eq. (42) shows
that for nonlinear materials, the external load and the interface residual stress are coupled, in addition to the substitution of
the moduli with secant moduli; for a linear elastic material, B ¼ B0s and thus �ereal ¼ C : �r.

By following the steps outlined above, the overall stress–strain relationship of the composite RVE is obtained. The inter-
face has two main effects, the first one is that the interface residual stress contributes to the residual stress field in the RVE
which leads to an asymmetric tension-compression plastic deformation, the other one is that the interface moduli changes
the overall moduli of RVE. The results are discussed below for specific material examples. Although the formulation in this
section is specified for the macroscopically isotropic materials with nano-inclusions, it can be extended to macroscopically
anisotropic materials with different interface properties.
3. Results and discussion

3.1. Metal nanoporous materials

As an illustrative example, we analyze the effect of surface on the plasticity of nanoporous aluminum. From previous
experimental and atomistic simulations, the effective parameters of the aluminum surface are determined. The surface
residual stress is s0 = 1.25 (J/m2) (Cammarata, 1994). Two sets of surface parameters are used: type-A ([1, 0, 0] surface) with
ks = �5.457 N/m and ls = �6.2178 N/m, and type-B ([1, 1, 1] surface) with ks = 12.932 N/m and ls = �0.3755 N/m (Miller and
Shenoy, 2000; Sharma and Bhate, 2003). We remark that in general, these parameters depend on crystal orientation; in this
paper we assume the surface properties are homogeneous and isotropic. Thus, these parameters only serve as the order-of-
magnitude estimations that could illustrate the effects of surface stress.

The aluminum bulk material is assumed to satisfy the power law hardening rule:
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r ¼
Ee; r � ry

ry þ ry

E e1
3; r > ry

(
ð43Þ
The bulk parameters are E = 68.5 GPa and m = 0.35, with an initial yield strength ry = 250 MPa.

3.1.1. Overall trend of surface effect
We first investigate the variation of the uniaxial yield strength of the nanoporous solid with respect to different types of

surface, inclusion radius (R), and inclusion volume fraction, shown in Fig. 2. Here, the classical (reference) result refers to that
without the size effect (in the limit R ?1). The positive and negative yield strength curves represent that under tension and
compression, respectively. With the assistance of surface stress, the uniaxial yield strength is size-dependent and tension-
compression asymmetric. For both types of surfaces, the yield stress is smaller than that without the surface effect, and
the yield stress also decreases with the increase of the volume fraction of voids. With the current sign of the surface stress,
the tensile yield strength is higher than the magnitude of the compressive yield strength. However, the difference between
type-A surface and type-B surface is relatively small at R = 10 nm (the difference is even smaller if a larger R value is taken),
which indicates that the effect of surface elasticity is less prominent than the surface residual stress.

3.1.2. Effects of surface elasticity and surface residual stress on yield surface
Since the surface effect includes both the surface residual stress and surface elasticity, in order to clarify their different

roles, we may decouple these two effects and first focus on the effect of surface elasticity, by temporarily neglecting the sur-
face residual stress. In Fig. 3 the yield surface is given as a function of nanopore radius to show its size effect. For type-A
surface (Fig. 3a), the surface elasticity decreases the yield surface as the radius of nanopore is reduced, and such effect is
more obvious along the Mises stress axis (y-axis). For type-B surface, the surface elasticity enlarges the yield surface, espe-
cially along the hydrostatic stress axis (x-axis in Fig. 3b). The difference between Fig. 3a and b illustrates the different surface
elasticity of type-A and type-B surfaces. It is important to note that for both surfaces, the effect of surface elasticity becomes
prominent only when R is below about 10 nm; otherwise, the yield surface at larger R values is close to that of the reference
yield surface without surface effect. Another significant phenomenon is that the effect of surface elasticity on the yield
strength is symmetric with respect to tension and compression.

Next, the surface residual stress is taken into account along with surface elasticity. Fig. 4a shows the nanoporous material
with type-A surface, where with the decrease of R, the yield surface shifts significantly along the hydrostatic stress axis. At
the same time the shape of the yield surface also changes a little bit (similar to that in Fig. 3a). The yield surface shift is
caused by the surface residual stress. The surface residual stress combining with the curvature of surface causes a normal
traction force on the surface. With the decreases of radius of pores, the traction force becomes more and more significant,
hence the size effect. In the current model, the effect of normal traction force of the spherical void surface on the plastic
deformation of matrix can only be counterbalanced by a macroscopic hydrostatic load. That is the reason why the surface
residual stress can shift the yield surface along the hydrostatic axis. Due to the surface residual stress, the yield surface is
no longer symmetric about the Mises stress axis. For material with type-B surface, the trend of yield surface variation is sim-
ilar (Fig. 4b). Since the residual stress is identical for these two types of surfaces, the shift of both yield surfaces is identical in
Fig. 4a and b.
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Fig. 3. Variation of the yield surface of nanoporous aluminum, as the pore size is varied with void volume fraction of 30%. Only the surface elasticity is taken
into account. (a) Type-A surface and (b) type-B surface.
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In a short summary, the surface elasticity and surface residual stress play very different roles affecting the yield surface of
nanoporous materials. The surface elasticity can change the size and shape of yield surface, and its effect is tension-compres-
sion symmetric. By contrast, the surface residual stress may shift the yield surface along the hydrostatic stress axis, inducing
asymmetry. It should be noted that such conclusion holds only for the isotropic matrix with spherical voids.
3.1.3. Size-dependent and asymmetric properties of tension and compression
The uniaxial yield strength of nanoporous materials is size-dependent as shown in Fig. 5, where the volume fraction of

void is fixed at 30%. It is verified again that the effect of surface elasticity (i.e. the difference between type-A and type-B sur-
faces) is small, and the size effect is mainly due to the surface residual stress. The main reason for the dominance of surface
residual stress is that the effect of surface elasticity comes through surface deformation, which is usually very small. In addi-
tion, the surface residual stress causes different effects on the yield strength upon tension and compression. With the re-
duced inclusion size, the magnitude of compressive yield strength decreases more quickly than that under tension. When
the radius of nanovoid is sufficiently small, the yield strength may become 0, which means that the surface stress alone
can cause the matrix to yield. When R > 50 nm, the result approaches to that of the reference solution with tension-compres-
sion symmetry, and that implies the surface stress effect is more prominent if the void radius is smaller than about 50 nm in
the current example.

Now we consider the effect of surface stress on the overall stress–strain curves of the nanoporous material. It should be
pointed out that the interface model of Eq. (2) is only valid for small deformation and the strain in Eq. (2) should be elastic
(Vermaak et al., 1968). At the onset of yielding, the deformation of the surface is still small and elastic, and thus the surface
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Fig. 4. Variation of the yield surface of nanoporous aluminum, as the pore size is varied with void volume fraction of 30%. Both surface elasticity and surface
residual stress are taken into account. (a) Type-A surface and (b) type-B surface.
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elasticity term must be considered when studying the yield strength of nanoporous materials. When the overall deformation
is finite and plastic, since the surface energy c is almost invariant with strain, the contribution of surface elasticity is small
(with respect to Eqs. (1) and (2)). In addition, previous analyses have already shown that the effect of surface elasticity is
small compared with that of surface residual stress, thus, we may neglect the surface elasticity when studying the whole
uniaxial stress–strain curves of the nanoporous solid.

Fig. 6 shows the stress–strain curves of the nanoporous aluminum. With the decrease of void radius, plastic flow becomes
easier, and the elastic deformation range is smaller and smaller. When R is smaller than about 10 nm, a small external load
can cause plastic deformation, whereas when R is larger than about 50 nm, the effect of surface on the overall stress–strain
curve of the nanoporous solid becomes negligible.

One may define a nominal Poisson’s ratio, as the negative ratio between the transverse strain and the axial strain during
deformation (even when the deformation is plastic). From the results in Fig. 7, the surface stress has a significant influence on
the nominal Poisson’s ratio. Contrary to the classical porous material model, with the surface/size effect, the nominal Pois-
son’s ratio is tension-compression asymmetric. And the surface stress causes the nominal Poisson’s ratio to decrease upon
compression and to increase when stretched.

3.2. Nanocomposites with metal matrix and hard nanoparticle inclusions

To study the effect of interface stress, we focus our attention on a metal matrix composite (MMC), the SiC nanoparticle
reinforced aluminum matrix. This MMC is widely used in industry and many researchers reported the size effect of MMC
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Fig. 6. Uniaxial stress–strain curves of nanoporous aluminum (f1 = 30%) with varying pore sizes. The surface elasticity effect is ignored.
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when the inclusion size falls below several microns, and such an effect was explained by the strain gradient plasticity (Xue
et al., 2001). Here we assume that the matrix and the particles are perfect bonded and there is no separation and slip during
plastic deformation. When the particle size further decreases into nanoscale, the interface effect needs to be taken into ac-
count owing to the increased surface to volume ratio. Due of the lack of interface parameters, we continue to use the same
surface parameters mentioned in the last section (for both types of interface), so as to gain some useful qualitative insights.
The Young’s modulus of the hard SiC particle is 250 GPa, and its Poisson’s ratio is 0.25; the nanoparticle deforms elastically.
During the whole deformation process, there is no debonding at the interface. The deformation of interface is also elastic
since the nanoparticle is elastic. Both the interface residual stress and the interface elasticity are considered.

The effect of interface stress is coupled with particle volume fraction. For a given particle size, the more particle volume
fraction, the larger the interface area and thus lead to a more significant effect, which are shown in Fig. 8a and b for tensile
and compressive yield strengths, respectively. With the increase of f1, the yield strength of the nanocomposite is significantly
increased. Consistent with previous results, with the surface effect the yield strength is smaller than that without (i.e. clas-
sical), and the surface effect is more prominent as R reduces – this is due to the fact that the interface area is larger at smaller
R (when the inclusion volume fraction is fixed). The effect of interface elasticity (difference between two types of surfaces)
can be neglected, which is because of the deformation around hard particle is very small (much smaller than that around the
nanopores in Section 3.1, and thus the contribution of interface elasticity is even smaller). Therefore, the size dependence of
the yield strength of the RVE mainly comes from the interface residual stress. Comparison between Fig. 8a and b also reveals
the tension-compression asymmetry, and the size effect of yield strength of the nanocomposite is more prominent upon
tension.
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Fig. 8. The yield strength of SiC nanoparticle–Al matrix nanocomposite, as the inclusion volume fraction f1 and radius R are varied, and for type-A and type-
B surfaces. (a) Tensile strength and (b) compressive strength.
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The uniaxial yield strength is size-dependent due to the effect of interface stress, as shown in Fig. 9 when f1 is fixed at 30%.
The radius of particle varies from 3 to 50 nm. Due to the interface stress (in particular the sign of the present interface resid-
ual stress), the tensile yield strength decreases with the decrease of particle radius. The effect of interface stress on the com-
pressive yield strength is not monotonic: with the decrease of R, its magnitude first increases slightly and then decreases.
Again, the effect of interface elasticity is very small and can be neglected even for very small hard inclusions.

Why is the effect of interface stress on the compressive yield strength not monotonic? The reason can be found by explor-
ing the yield surface, Fig. 10, where f1 = 30%. The effect of interface elasticity is almost none and thus all influences come from
the interface residual stress. The interface residual stress shifts the yield surface along the negative direction of the hydro-
static stress axis and the shape is basically unchanged. Whether the compressive yield strength is increased or decreased by
the interface stress should depend on such shift amount. Note that on Fig. 10, the loading path of uniaxial compression can
be represented by a straight line with slope (ratio between Mises and hydrostatic stresses) of �3. Thus, when the shift of
yield surface is very small, the compressive yield strength increases slightly; when the shift amount is very large, the com-
pressive strength decreases. However, regardless of the shift amount, the tensile yield strength always decreases. By com-
paring Fig. 10 with Fig. 4b, it can be seen that the effect of interface stress on the shifting of yield surface is opposite, for
the cases of hard particle reinforced nanocomposite and nanoporous solid.
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The uniaxial stress–strain curves are shown in Fig. 11 (with f1 = 50%), from which the effect of interface stress is found to
be relatively small for hard particle reinforced composites, even when the particle size is as small as 3 nm. Note that the
scales used in the plots in Figs. 8 and 9 are different than that used in Fig. 11. The effect of interface stress is mainly reflected
along the hydrostatic direction (Fig. 10), and the deformation of the interface between hard particle and matrix is much
smaller than the free surface of a nanoporous material. Therefore, the effect of interface stress on plasticity of MMC is smaller
than the surface effect on nanoporous metal. When the inclusion becomes softer, the stress concentration around the inclu-
sion could cause a larger local deformation to enhance the effect of interface stress.

The interface stress can also make the nominal Poisson’s ratio to decrease during tension and increase during compres-
sion (comparing with the classical results without interface stress), as shown in Fig. 12. However, such effect is also relatively
small due to the aforementioned reasons.

For the nanocomposites studied in the present paper, the effect of interface energy becomes important when the size of
nanoparticle inclusion is below several tens of nanometers. In other words, if in a hard particle reinforced MMC the size of
particle is on the order of microns, the influence of interface is negligible. In this case, the size effect induced by micron-sized
hard particles (e.g. the size effect of SiC reinforced MMCs reported by Lloyd (1994)) should not be attributed to the interface
energy, instead it can be well explained by the strain gradient plasticity (Huang et al., 2004).
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3.3. Applying the continuum theory at the nanoscale

The present nonlinear micromechanics theory is based on continuum mechanics, yet we have attempted to apply the the-
ory to explore the effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites.
At the nanometer scale, the deformation is discrete and the application of continuum theory at this level is still controversial.

For metals, some researchers argued that at the nanometer scale, the deformation is characterized by discrete dislocation,
which cannot be homogenized and represented by a continuum plasticity theory (Huang et al., 2004). Several discrete dis-
location plasticity models have been suggested (Balint et al., 2008; Needleman and Van der Giessen, 2001b). It is true that
when we study the local deformation characteristics (at the nanometer resolution), the discrete theory as well as molecular
dynamics simulation (Potirniche et al., 2006) can obtain accurate results and reveal the nanoscopic deformation mechanism.
However, during practical application, in many cases only the overall macroscopic mechanical behavior is important (and
discrete dislocation and molecular dynamics simulations may be expensive). When we explore the overall response of het-
erogeneous materials (including the nanoporous and nanocomposite materials studied herein), the macroscopic mechanical
behaviors are indeed the statistic average of the local deformation characteristics. For that matter, the micromechanics ap-
proach adopted in the present study is still plausible because it mainly concerns with the statistical average of the micro-
scopic deformation, instead of pursuing the accurate high-resolution information of the local deformation (which is
unnecessary in this case). In the current paper, the matrix around the nano-inclusion is assumed to satisfy the continuum
theory. The local deformation obtained by the present method should be regarded as the average deformation of the matrix
around all inclusions. Although the true local deformation is discrete (governed by dislocations), the statistic average of all
local deformation can still be modeled as continuum.

Another important note is that the present paper is not limited to metals. The present theory can be applied to polymer
materials whose deformation is not controlled by dislocation. Of course, there is no doubt that future investigations need to
be carried out to clarify the link between the nanoscale deformation and the macroscopic response, and the micromechanics
theory needs to be improved such that it is based more on deformation mechanisms.

The present study concerns with nanometer sized inclusions/voids, and we have shown that the surface/interface stress
can cause the size effect of macroscopic plastic behaviors. Note that the size-dependent mechanical properties of materials
may be originated from multiple factors, and another well-known cause is due to the strain gradient plasticity. The strain
gradient effect is important for metal plasticity at the micron/sub-micron scale (Huang et al., 2004). Our investigation shows
that the effect of interface energy of hard particle-reinforced MMC is relative small until the characteristic length scale is
below several tens of nanometers. However, it still remains unclear whether there is an overlap between the effects of sur-
face/interface energy and strain gradient. And further studies are needed to identify the transition from the nanoscale inter-
face stress effect to microscale strain gradient effect.4

4. Concluding remarks

In this paper, we establish a new micromechanical framework to investigate the effect of interface stress on the plastic
deformation of materials with nanosized inclusions. Both the interface residual stress and interface elasticity are considered.
The theoretical approach is based on the second-order stress moment and the field fluctuation method of the secant moduli
of nonlinear materials. The nonlinear coupling between the interface stress and external load is incorporated, and the results
are simplified for a macroscopically isotropic RVE.

The interface stress causes size-dependency of the plastic properties of nanostructured materials, as well as tension-com-
pression asymmetry – such contribution comes mainly from the interface residual stress instead of interface elasticity. In
general, the interface/surface stress starts to affect the overall macroscopic mechanical behavior of the nanocomposite/nano-
porous material if the characteristic particle/void size is below several tens of nanometers.

For nanoporous materials, the surface residual stress has a significant effect on the plastic deformation. It shifts the yield
surface along the hydrostatic stress axis but does not change the shape and size of yield surface. The effect of surface elas-
ticity on the plastic behavior is small, and it only changes the shape and size of yield surface slightly. With the surface effect,
the variation of yield strength is more prominent with smaller nanopore size and higher pore volume fraction. With the pres-
ent surface/material parameters of a nanoporous aluminum, the effect of surface elasticity starts to kick in only when the
nanopore is smaller than about 10 nm, whereas the effect of surface residual stress becomes noticeable when the pore is
smaller than about 50 nm. If the nanopore is small, the large surface effect could yield the overall material at very low exter-
nal load, and below a critical size the nanoporous material yields under surface residual stress itself. There is a strong asym-
metric behavior of the yield strength upon tension and compression, in terms of the yield stress, uniaxial stress–strain curve,
and nominal Poisson’s ratio.

For hard particle reinforced nanocomposite, since the deformation of interface is very small, the effect of interface elas-
ticity is even smaller than that of the nanoporous material, and such effect can be neglected even for very small inclusions.
4 Another reason for not considering the strain gradient effect in the present paper is because our micromechanics approach can be applied to polymer
materials, for which the validity of strain gradient plasticity is controversial. At this moment, there is no unified theory that could incorporate all relevant size
effects (e.g. surface/interface stress effect and strain gradient effect) across multiple scales. The relevant fundamental exploration, from theoretical, numerical,
and experimental aspects, needs to be implemented in future.
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For the same reason, the effect of interface residual stress on the overall plasticity is also not very significant (comparing with
the nanoporous material counterpart), except the shift of yield surface along the hydrostatic axis. It is expected that if the
nano-inclusion is softer (more compliant), the effect of interface will become more prominent.

The theoretical framework established in this paper is versatile and can be extended to anisotropic material properties
and heterogeneous inclusions. The results will be compared with available experiments in future. It is expected that the
micromechanics model is useful for the evaluation of mechanical reliability of nanostructured materials.
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Appendix A. Proof of the Hill’s lemma for RVE with interface stress

From Eq. (12), we can obtain the Hill’s condition of material with interface stress as following:
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where un ¼ n � n is the normal displacement at the interface. By utilizing the equilibrium equation of interface (Eq. (8)):
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where rsn ¼ b and s � n ¼ 0. Thus,
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In several earlier works, the last term in Eq. (A.3) was directly assumed to be zero. However, this is not so straightforward.
Now we prove that the last term in Eq. (A.3) equals to 0. The surface divergence follows the generalized Gauss theorem (Yin,
2005):
Z
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Z
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2Hn � Tds ðA:4Þ
where T is an arbitrary continuous vector field, H is the mean curvature and m is the unit normal vector of the boundary
curve which is in the tangent plane of the surface. For a closed surface, the first term of the right side of Eq. (A.4) is zero.
From the above equation,
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Thus,
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Which is Eq. (13) in the text.

Appendix B. Derivation of the macroscopic moduli

The tensor B and scale D can be derived from the Hashin sphere model (Hashin and Shtrikman, 1963). Each composite
sphere (with radius r2) consists of a spherical core (of radius r1, which equals to R) that is surrounded by a matrix shell whose
outer radius is r2. Between the matrix and the inclusion there is an interface stress. The volume fraction of the core in the
composite sphere is identical to the volume fraction of the inclusion in the real composite, i.e. f1 = (r1/r2)3. Thus, the real



974 W.X. Zhang et al. / International Journal of Plasticity 26 (2010) 957–975
composite material can be modeled by filling the composite space by the sphere model (the size of the spheres may be dif-
ferent but the configuration is the same). Hence, the effective composite properties can be obtained by analyzing the sphere
model. When there is an interface stress s = sI(2), the sphere will expand in an isotropic manner.

The displacement of the inner sphere (spherical core) is
u1
r ¼ ar ðB:1Þ
where a is an undetermined constant related to interface stress s. The displacement of the outer shell is
u2
r ¼ br þ c

r2 ðB:2Þ
Where b and c are also undetermined constants related to s, and they also need to satisfy the traction-free boundary con-
dition on the outer surface. The strain components are
err ¼
ur

r
ðB:3Þ
At the interface the displacement is continuous and the stress jump is equal to 2s/R, i.e.
u1
r ðr1Þ ¼ u2

r ðr1Þ;r2
rrðr1Þ � r1

rrðr1Þ ¼ 2s=R ðB:4Þ
s ¼ s0 þ kserr ðB:5Þ
The macroscopic strain caused by s is �err ¼ u2
r ðr2Þ=r2. For the spherical core, the strain by s is err1 ¼ u1

r ðr1Þ=r1. Utilizing the
constitutive equations and boundary conditions, the strains �err and err1 can be obtained by solving Eqs. (B.1)–(B.5). Note that
�err and err1 are functions of the interface stress, and thus they depend on the interface residual stress s0. With �es ¼ �errI

ð3Þ we
can obtain B:
B ¼ BIð3Þ ¼ 2f 1ð4l0 þ 3k0ÞIð3Þ
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From tr ðesÞ ¼ 2err1;D can be obtained:
D ¼ ð4l0f1 þ 3k0Þ
R2 l0ðf1 � 1Þk0 � 4

3 f1l0 þ k0
� �

12l0kr
s � 3

4 k1
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They correspond to Eqs. (24) and (25) in the text.
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