IOSO Global Optimization software benchmarking from Japan

All examples are taken from two public sources (written in Japanese):

1) **Global Optimization by Generalized Random Tunneling Algorithm (2nd Report: Examination on the accuracy of solution and its efficiency)** Satoshi KITAYAMA and Koetsu YAMAZAKI Department of Human & Mechanical Systems Engineering, Kanazawa University 2-40-20, Kodatsuno, Kanazawa, Ishikawa, 920-8667, Japan

2) **Global Optimization by Generalized Random Tunneling Algorithm (5th Report: Approximate Optimization Using RBF Network)** Satoshi KITAYAMA, Masao ARAKAWA, Koetsu YAMAZAKI Department of Human & Mechanical Systems Engineering, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan

Example 1
Task formulation

\[
 f(x) = \frac{1}{2} \sum_{i=1}^{2} (x_i^4 - 16x_i^2 + 5x_i) \rightarrow \min
\]

\[
 g_1(x) = x_1^2 + x_2^2 - 9 \leq 0
\]

Position of global optimum is

\[
 (x_1, x_2)^T = (-2.121, -2.121)^T
\]

![Contour of functions and the position of global minimum](image)

Result given by IOSO

IOSO found the global solution easily and quickly

<table>
<thead>
<tr>
<th>Call No</th>
<th>x1</th>
<th>x2</th>
<th>f</th>
<th>g1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.42063373115</td>
<td>0.63422163265</td>
<td>-1.986211787</td>
<td>-3.6403675564</td>
</tr>
<tr>
<td>5</td>
<td>-1.85675453602</td>
<td>-1.76150023864</td>
<td>-4.4666061082</td>
<td>-2.3050377645</td>
</tr>
<tr>
<td>12</td>
<td>-0.00425447309</td>
<td>-2.90854894456</td>
<td>-4.3589722352</td>
<td>0.0000000004</td>
</tr>
<tr>
<td>18</td>
<td>-1.29290523876</td>
<td>-2.17861221672</td>
<td>-17.361290595</td>
<td>-5.6205815872</td>
</tr>
<tr>
<td>24</td>
<td>-2.57085463846</td>
<td>-1.53135628743</td>
<td>-57.2814629162</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>30</td>
<td>-2.23027778327</td>
<td>-1.89724732504</td>
<td>-48.1544657794</td>
<td>-3.5996122716</td>
</tr>
<tr>
<td>36</td>
<td>-2.25220441194</td>
<td>-1.90100340674</td>
<td>-0.0000000000</td>
<td>-0.0000000000</td>
</tr>
<tr>
<td>42</td>
<td>-2.11242287450</td>
<td>-2.13561063169</td>
<td>-62.3855865363</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>100</td>
<td>-2.11529528137</td>
<td>-2.12734455728</td>
<td>-62.3568912496</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>109</td>
<td>-2.121311073592</td>
<td>-2.12159931015</td>
<td>-0.0000000000</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>114</td>
<td>-2.122412043188</td>
<td>-2.12081504274</td>
<td>-8.3833901236</td>
<td>0.0000000000</td>
</tr>
</tbody>
</table>

Prepared by http://www.wavefront.co.jp/
Example 2
Task formulation

\[f(x) = -x_1 - x_2 \rightarrow \min \]
\[g_1(x) = -2 - 2x_1^4 + 8x_1^3 - 8x_1^2 + x_2 \leq 0 \]
\[g_2(x) = -36 - 4x_1^4 + 32x_1^3 - 88x_1^2 + 96x_1 + x_2 \leq 0 \]
\[0 \leq x_1 \leq 3, \quad 0 \leq x_2 \leq 4 \]

Position of global optimum is

\[(x_1, x_2)^T = (2.329, 3.178)^T \]

where \(f = -5.508 \)

Result given by IOSO
IOSO found the global solution easily and quickly

Fig 2 Contour of functions and the position of global minimum

<table>
<thead>
<tr>
<th>Call No</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(f)</th>
<th>(g_1)</th>
<th>(g_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.63189013734</td>
<td>2.25372877306</td>
<td>-3.8856189104</td>
<td>-0.4687678994</td>
<td>-0.7355785393</td>
</tr>
<tr>
<td>16</td>
<td>1.58154168824</td>
<td>2.47111825405</td>
<td>-4.0526599423</td>
<td>-0.4084647520</td>
<td>-0.2568732248</td>
</tr>
<tr>
<td>17</td>
<td>1.60666384127</td>
<td>2.77447623339</td>
<td>-4.3811644445</td>
<td>-0.0241974570</td>
<td>-0.0835678964</td>
</tr>
<tr>
<td>22</td>
<td>2.32289975470</td>
<td>2.70969061478</td>
<td>-5.0324903772</td>
<td>-0.4156066977</td>
<td>-0.4957794967</td>
</tr>
<tr>
<td>35</td>
<td>2.38958640969</td>
<td>2.87585881098</td>
<td>-5.2657522820</td>
<td>-0.8576484453</td>
<td>-0.0022354797</td>
</tr>
<tr>
<td>39</td>
<td>2.34775799208</td>
<td>2.97097386686</td>
<td>-5.3187348589</td>
<td>-0.8621725895</td>
<td>-0.1200428625</td>
</tr>
<tr>
<td>41</td>
<td>2.32949976931</td>
<td>3.17933480005</td>
<td>-5.5088046894</td>
<td>0.0000795869</td>
<td>0.0007157982</td>
</tr>
</tbody>
</table>
Example 3 (Infeasible region)

Task formulation

\[
\begin{align*}
 f(x) &= -(x_1 - 10)^2 - (x_2 - 15)^2 \rightarrow \min \\
 g_1(x) &= (x_2 - \frac{5.1}{4\pi^2} x_1^2 + \frac{5}{\pi} x_1 - 6)^2 \\
 + 10(1 - \frac{1}{8\pi}) \cos x_1 + 5 \leq 0 \\
 -5 \leq x_1 &\leq 10 \\
 0 \leq x_2 &\leq 15
\end{align*}
\]

Global solution

\[x_G = (3.271, 0.0496)^T\]

where

\[f(x_G) = -268.788\]

Result given by IOSO

IOSO found the global solution without any problem

<table>
<thead>
<tr>
<th>Call No</th>
<th>x1</th>
<th>x2</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>3.55730732552</td>
<td>0.2987872894</td>
<td>-251.6945353699</td>
<td>-0.9842157029</td>
</tr>
<tr>
<td>26</td>
<td>3.30729610143</td>
<td>0.10828977845</td>
<td>-266.5257000117</td>
<td>-0.3068396462</td>
</tr>
<tr>
<td>35</td>
<td>3.20327450040</td>
<td>0.0473017926</td>
<td>-266.6967101012</td>
<td>-0.0124714240</td>
</tr>
<tr>
<td>47</td>
<td>3.27348659581</td>
<td>0.0488416175</td>
<td>-268.7830434764</td>
<td>-0.000753050</td>
</tr>
<tr>
<td>68</td>
<td>3.27329731730</td>
<td>0.04874772389</td>
<td>-268.7888772972</td>
<td>0.0000632778</td>
</tr>
<tr>
<td>79</td>
<td>3.28014793070</td>
<td>0.04559708170</td>
<td>-268.7905782967</td>
<td>0.00005596130</td>
</tr>
</tbody>
</table>
Example 4 (to minimize weight of spring-coil)

Task formulation

\[f(x) = (2 + x_1)x_1^2x_2 \rightarrow \min \]

\[g_1(x) = 1 - x_2^2x_3/(71785x_4^4) \leq 0 \]

\[g_2(x) = 4x_3^2 - x_1x_2 \left/ \left(12566(x_2x_1^3 - x_1^4) + 5108x_1^2\right) \right. - 1 \leq 0 \]

\[g_3(x) = 1 - 140.45x_1/(x_2^2x_3) \leq 0 \]

\[g_4(x) = (x_1 + x_2)/(1.5) - 1 \leq 0 \]

0.05 ≤ x₁ ≤ 2.00
0.25 ≤ x₂ ≤ 1.30
2.00 ≤ x₃ ≤ 15.0

Result given by IOSO

IOSO easily found the global solution that is the same as given by Hu

Table 1 Comparison of the results

<table>
<thead>
<tr>
<th>Variables</th>
<th>Arora (18)</th>
<th>Coello (19)</th>
<th>Ray (20)</th>
<th>Hu (21)</th>
<th>Kitavan (22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁ (d)</td>
<td>0.053396</td>
<td>0.051480</td>
<td>0.050417</td>
<td>0.051466</td>
<td>0.052062</td>
</tr>
<tr>
<td>x₂ (D)</td>
<td>0.399180</td>
<td>0.351661</td>
<td>0.321532</td>
<td>0.351384</td>
<td>0.337205</td>
</tr>
<tr>
<td>x₃ (N)</td>
<td>9.185400</td>
<td>11.632201</td>
<td>13.979915</td>
<td>11.608659</td>
<td>13.831074</td>
</tr>
<tr>
<td>g₁(x)</td>
<td>0.000019</td>
<td>-0.002080</td>
<td>-0.001926</td>
<td>-0.003336</td>
<td>-0.005994</td>
</tr>
<tr>
<td>g₂(x)</td>
<td>-0.000018</td>
<td>-0.000110</td>
<td>-0.001294</td>
<td>-0.000110</td>
<td>-0.062925</td>
</tr>
<tr>
<td>g₃(x)</td>
<td>-4.123832</td>
<td>-4.026318</td>
<td>-3.899430</td>
<td>-4.026318</td>
<td>-3.649392</td>
</tr>
<tr>
<td>g₄(x)</td>
<td>-0.698283</td>
<td>-0.731239</td>
<td>-0.752034</td>
<td>-0.731324</td>
<td>-0.740489</td>
</tr>
<tr>
<td>f(x)</td>
<td>0.012730</td>
<td>0.012705</td>
<td>0.013060</td>
<td>0.012667</td>
<td>0.014469</td>
</tr>
</tbody>
</table>

Various results are presented by various scientists for comparison (the result found by Hu is the best one)