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Identifying elastic wave polarization and bandgaps in periodic solid media 
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A B S T R A C T   

We present a new computational method to accurately identify the elastic wave propagation modes and po
larizations in periodic solid structures and metamaterials. The method uses the eigenvectors associated with each 
propagating wave solution to calculate the contribution of each translational and rotational component of the 
total mass-in-motion. We use this information to identify the dominant wave propagation mode by defining a 
relative effective modal mass vector. Then, we associate each wave solution with its correct polarization by 
defining a polarization factor that quantifies the relative orientation between the wave propagation and lattice 
motion directions and provides a positive numerical value between 0 (pure S-wave) and 1 (pure P-wave). 
Further, we suggest a graphical representational scheme for easier visualization of the wave polarization within 
traditional dispersion plots. To validate the method, we compare our predictions against previously published 
results for various elastodynamic problems. Finally, we use the proposed method to analyze the effect of various 
lattice and structural parameter perturbations on the elastic wave propagation and polarized bandgap behavior 
of a square planar beam lattice. Our analysis reveals the emergence of previously unobserved dynamic char
acteristics, including various polarized bandgaps, fluid-like behavior, and ultralow-frequency SH- and SV- 
bandgaps that extend to 0 Hz. Our proposed method provides an alternative computational approach to the 
typically employed visual mode inspection technique and provides a robust method for analyzing the elastic 
wave response of periodic solid media.   

1. Introduction 

Interest in phononic media and metamaterials stems from their novel 
bulk properties and from the possibility of controlling the flow of elastic 
energy through engineering structures [1–3]. Classically, research on 
these material systems has been focused on the emergence of wave 
attenuation bandgaps—frequency zones within which incident waves 
are spatially attenuated—as a function of their underlying substructure. 
In phononic media, this attenuation occurs because of substructural 
periodicity and the resultant Bragg scattering effects [1]; in meta
materials, the attenuation occurs due to localized substructural reso
nances sequestering the incident elastic energy [3,4]. While 
metamaterials do not strictly require a periodic substructure, this 
assumption is frequently made for the convenience of analysis and their 
eventual fabrication, leading to the appearance of both Bragg and local 
resonance attenuation effects [5–8]. 

The analysis of elastic wave propagation through such structures is 
mathematically complicated, vis-à-vis their photonic counterparts [4], 
because of the multiple wave modes or polarizations supported by 

elastic media [9,10], their propensity to couple at higher frequencies 
[11–14], and their interconversion during reflections at the substruc
tural interfaces [15–20]. Polarization is defined as the relative orienta
tion between the wave propagation direction—conveniently described 
by the wave vector orientation—and the oscillation direction of the 
elastic particles [21,22]. An unbounded homogenous elastic medium 
supports the propagation of three uncoupled wave polarizations [23, 
24]: one P-wave—also called dilatational, irrotational, longitudinal, 
compressional, voluminal, or primary (P) wave—wherein the particles 
oscillate parallel to the wave propagation direction; and two S-wave
s—also called distortional, equivoluminal, rotational, transversal, shear, 
or secondary (S) waves—wherein the particles oscillate perpendicular to 
the wave propagation direction. The two S-waves are further distin
guished as SH- or SV-waves if the particle motion occurs in-plane 
(horizontal) or out-of-plane (vertical), respectively, relative to the 
plane defined by the particle oscillation, wave propagation direction, 
and the global coordinate choice. Heterogenous or anisotropic un
bounded media support additional coupled waveforms with polariza
tions neither parallel nor perpendicular to the propagation direction 
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[24,25]. Depending on the dominant polarization, such coupled waves 
are classified as quasi-P or quasi-S waves; lacking a dominant polari
zation, such waves may be classified as hybrid [26]. Waveforms in 
bounded media are more commonly classified as longitudinal (equiva
lent to P-waves), flexural or bending or transverse (equivalent to 
SV-waves), shear (equivalent to SH-waves), and torsional waves where 
the particle motion comprises twisting or rotation about the propagation 
direction. 

Depending on their underlying substructure—periodicity [8], prop
erty contrast ratios [27], symmetry [28,29], and connectedness [30,31] 
all play an important role—phononic media and metamaterials exhibit 
distinct bandgaps that can be either classified based on their generation 
mechanism as Bragg or local resonance bandgaps, as explained earlier, or 
based on the waveform types they attenuate. Polarized bandgaps [32,33] 
restrict the propagation of waves only with specific polarizations; for 
example, a P-wave bandgap only attenuates incident P-waves. The su
perposition of all polarized bandgaps within the same frequency range 
results in a complete or full bandgap within which all waves, irrespective 
of their polarization, are attenuated [32]. In multidimensional structures, 
the bandgaps can be further classified depending on their directional 
nature. Directional bandgaps [34–36] are frequency ranges where 
only waves propagating along specific directions are attenuated; waves 
with other incident angles or propagation directions propagate unat
tenuated through the structure. The overlap of such directional bandgaps 
along all 4π radians results in absolute or omnidirectional bandgaps [37]. 
Thus, depending on their polarization and directionality, one may 
classify bandgaps as polarized-directional, polarized-omnidirectional, 
complete-directional, or complete-omnidirectional. Wave filtering, 
because of directional or polarized-directional bandgaps, forces incident 
waves to propagate in the other permitted directions [38,39]. This phe
nomenon has been harnessed by researchers to show the possibility of 
beaming or steering elastic waves along specific directions [35,36] and is 
also of interest for the inverse problem of non-destructively identifying 
damage by monitoring elastic energy flow [40,41]. Recently, researchers 
have also observed the appearance of polarization anomalies because of 
substructural heterogeneities [42–44], wherein the typically slower 
S-waves propagate faster than the P-waves. 

These phenomena are traditionally studied by deriving the spectral 
or dispersion relations of the structure under consideration. Over the 
years, various analytical and numerical techniques have been used to 
obtain these relationships, including using equivalent spring-mass ana
logs [45], Hamiltonian energy method [46,47], space-harmonic method 
[48], receptance technique [49,50], transfer matrix method [5,51], 
phased array method [6,52], finite element method [36,53–56], plane 
wave expansion [57,58], and the spectral element method [59,60]. In 
general, these methods use a representative unit cell in conjunction with 
the Floquet-Bloch periodicity boundary condition to extract the 
wavenumber-frequency relationships of waves propagating through the 
global structure. While analytical methods become intractable as the 
substructural complexity increases, the finite element method provides a 
reliable route for analyzing such structures. Regardless of the method 
choice, the obtained spectral curves or surfaces provide information 
about the dispersion behavior of the propagating waves. Omnidirec
tional and complete bandgaps are then easily identified as frequency 
regions with no real-valued solutions. However, associating each 
dispersion curve or surface with its polarization and consequently 
identifying individual polarized and polarized-directional bandgaps re
quires further analysis. These polarized bandgaps are most frequently 
identified by observing the mode shapes at the bandgap edge fre
quencies at the high-symmetry irreducible Brillouin zone (IBZ) points 
[31–33]. While this is easily done at lower frequencies where the wave 
polarizations are usually uncoupled, manually identifying the polari
zations gets complicated for coupled waves. Further, curve veering [12, 
13,61]—described by Manconi and Mace [12] as a phenomenon where 
“two or more eigenvalue loci of a system with a varying parameter veer away 
and diverge instead of crossing”—and the possible continuous variation of 

polarization as the wave vector sweeps the IBZ [22], further complicate 
the accurate wave polarization identification using mode shape obser
vation at high-symmetry points. Some researchers have employed 
alternative methods to identify polarizations. Focusing on sagittal 
acoustic waves, Manzanares-Martinez and Ramos-Mendieta [22] adop
ted a strain energy balance approach and obtained the averaged longi
tudinal and transversal displacement contributions for one-dimensional 
phononic crystal unit cells; for two-dimensional cases, the authors avoid 
defining a local wave vector by instead calculating the average 
compression and shear contributions and approximating them to lon
gitudinal and transversal vibrations. Similarly, Achaoui et al. [62] used 
the integrals of displacement field components as representative of wave 
polarization without considering the wave vector direction. A different 
approach, accounting for the wave vector direction, was adopted 
recently by Bacigalupo and Lepidi [26], who proposed a family of 
non-dimensional polarization factors to quantify the wave polarization 
and energy flow in periodic beam lattice materials and showed the 
coincidence between the energy and group velocities. To predict 
out-of-plane wave beaming in two-dimensional lattices, Zelhofer and 
Kochmann [36] distinguished the in-plane and out-of-plane wave modes 
using a scalar in-plane ratio calculated using the mass normalized ei
genvectors. Lee et al. [43] identified the polarization characteristics of a 
double-slit metamaterial showing polarization anomalies by calculating 
the absolute value of the relative angle between the polarization 
orientation and the wave vector orientation. 

In this work, we propose a systematic approach to identify wave 
propagation modes and to accurately associate the dispersion curves 
with their respective polarizations. We adapt the concept of the modal 
participation factor [63,64], commonly used in vibration modal anal
ysis, to quantify the relative participation of each directional motion 
component to the wave mode associated with each dispersion solution. 
We then calculate the relative orientation between the wave propaga
tion and particle motion directions by defining a polarization factor 
which provides a positive numerical value between 0 and 1, where 
0 indicates a pure S-wave, 1 indicates a pure P-wave, and the interim 
values indicate quasi- or hybrid polarizations. Further, we suggest a 
graphical representational scheme for the easier visualization of the 
wave polarizations within traditional dispersion plots. Though our focus 
here is on utilizing existing eigenvector data that is calculated during the 
numerical calculation of the dispersion curves, the method is easily 
adaptable for use with other techniques that provide eigenvector data. 
The novelty of the proposed method lies in its ability to clearly elucidate 
the wave propagation mode and polarizations underlying each disper
sion solution; this clarity enables the identification of previously unob
served emergent behaviors in widely studied lattice geometries. 

2. Background and motivation 

In this section, we provide a detailed background on the computa
tional method used to obtain the elastic wave dispersion curves of pe
riodic structures. Specifically, we describe the numerical approach for 
calculating dispersion solutions of periodic structures by applying 
Floquet-Bloch boundary conditions on a representative unit cell and 
extracting eigenfrequency solutions corresponding to specific wave 
vectors. We then use the example of an infinite, planar square beam 
lattice to illustrate the need for a new approach to identify the wave 
propagation modes and polarizations by demonstrating the errors that 
can result from the currently used visual mode shape inspection method. 

2.1. Elastic wave dispersion relations 

The propagation behavior of elastic waves in phononic structures 
and metamaterials with substructural periodicity is conveniently stud
ied by applying Floquet-Bloch boundary conditions on a representative 
unit cell. The time-harmonic displacement field within an infinite pe
riodic structure can be represented as: 
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uA(r, t) = UA(r) e− iωt, (1)  

where UA is the complex displacement amplitude at point A with a po
sition vector r, t is the time variable, ω is the wave frequency, and i =

̅̅̅̅̅̅̅
− 1

√
. According to Floquet-Bloch theory, the response at any point A in 

a periodic structure is related to the response at the corresponding 
spatially periodic point A′ with position vector r′ through the complex 
wave vector k as: 

UA′ (r′ ) = UA(r) e− ik(r′ − r) (2) 

In this representation, the real component of the complex wave
number is the phase difference between points A and A′, the imaginary 
component—also called the wave attenuation factor—is the decay rate 
of the wave amplitude between the two points, and the wave vector 
direction indicates the propagation direction of the elastic waves. For 
non-dissipative linear materials, k is purely real for the propagating 
waves and becomes purely imaginary within wave attenuation bandg
aps: frequency regions where waves are spatially attenuated and do not 
propagate through the structure. The dispersion behavior of the prop
agating waves and the existence of bandgaps is studied by applying 
Floquet-Bloch boundary condition on the unit cell and then calculating 
the eigenfrequency solutions while sweeping over the wave vectors of 
interest. This approach, frequently referred to as the ω(k) approach, 
leverages the theorem that a structure which is periodic in the physical 
space with a periodicity L is also periodic in the wave vector space—also 
called the reciprocal space—with periodicity 2π/L. Thus, a unit cell with 
periodicity L1, L2, and L3 along the 1-, 2-, and 3-axis results in a recip
rocal space with wavenumber periodicity k1 → 2π/L1, k2 → 2π/L2, and k3 
→ 2π/L3. The unit cell representing this resultant reciprocal space is 
called the Brillouin zone. By choosing the reciprocal unit cell to be 
centered around the point k = 0 and allowing only positive k values, we 
can reduce the computational wave vector domain to k1 → [0, π/L1], k2 

→ [0, π/L2], and k3 → [0, π/L3]. This reduced domain—called the First 
Brillouin Zone—can be shrunk further by exploiting its symmetry to get 
the Irreducible Brillouin Zone (IBZ). As the name suggests, the IBZ is the 
smallest possible reciprocal unit cell which provides complete infor
mation about a periodic structure’s spectral behavior. Thus, the ω(k) 
approach involves sweeping over the IBZ while solving for the real-only 
frequencies allowed by the structure. 

For complicated geometries, the above technique is frequently 
implemented using the finite element (FE) method, where the unit cell is 
modeled using an appropriate mesh and the boundary nodes are con
strained using Eq. (2). While some commercial FE software (e.g., Comsol 
Multiphysics) allow the direct application of complex-valued boundary 
conditions, others (e.g., Abaqus CAE) only allow the application of real- 
valued displacements. Åberg and Gudmundson [55] showed that this 
limitation can be overcome by separating the model into two identical 
‘real’ and ‘imaginary’ mesh parts and by formulating the total 
complex-valued displacement at a lattice point A as: 

UA = UAre + i UAim (3)  

where UAre and UAim are the displacements of the corresponding nodes 
at point A of the real and imaginary models, respectively. Then, the 
complex Floquet-Bloch boundary conditions in Eq. (2) are implemented 
by applying Euler’s equation to get: 

UA′
re
= UAre cos(k(r′ − r))+UAim sin(k(r′ − r)) (4)  

UA′
im
= UAre ( − sin(k(r′ − r)))+UAim cos(k(r′ − r)) (5) 

The eigenfrequencies corresponding to the wave vector values 
within the IBZ are then extracted using a linear perturbation analysis 
procedure. The equations of motion for the free vibration of the unit cell 
with boundary nodes constrained using Eq. (4) and Eq. (5) are: 

Fig. 1. Dispersion curves for a square beam lattice with six degrees-of-freedom and the unit cell mode shapes at the specified dispersion points. The inset shows the 
curve veering phenomena occurring between the 3rd and 4th eigenfrequency curves. 
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Mü + Ku = 0 (6)  

where u and ü are the displacement and acceleration vectors, with ü 
signifying two time derivatives of u, and M and K are the global mass and 
stiffness matrices, respectively. Assuming the solution to be the time- 
harmonic displacement field given in Eq. (1) leads to the eigenvalue 
problem: 
(
K − ω2M

)
U = 0 (7) 

By introducing a constraint matrix Q, the equations can be rewritten 
in terms of the displacements of the unconstrained internal nodes, Uint, 
and the master boundary nodes, Ubdry, as: 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Uintre

Ubdryre cos(k(r′ − r)
)
+ Ubdryim sin(k(r′ − r)

)

Ubdryre

Uintim

Ubdryre ( − sin(k(r′ − r))
)
+ Ubdryim cos(k(r′ − r)

)

Ubdryim

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Q

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Uintre

Ubdryre

Uintim

Ubdryim

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)  

where the matrix Q is defined as: 

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 0 0
0 cos(k(r′ − r)) 0 sin(k(r′ − r))
0 I 0 0
0 0 I 0
0 − sin(k(r′ − r)) 0 cos(k(r′ − r))
0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9) 

The resulting eigenvalue problem is a function of the wave vector 
and is given as: 

([
K 0
0 K

]

− ω2
[

M 0
0 M

])

Q

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

UintRE

UbdryRE

UintIM

UbdryIM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(10) 

Solving this equation provides the eigenfrequency solutions corre
sponding to the specific wave vectors. The graphical representation of 
these solutions as ω v/s k plots provides a clearer understanding of the 
structure’s dispersion behavior and the presence of bandgaps. For a 
general three-dimensional case, the solutions can be plotted for the 
entire IBZ volume to obtain the dispersion volumes; plotting over a two- 
dimensional grid covering the two-dimensional IBZ provides dispersion 
surfaces; plotting along a one-dimensional path—typically chosen to 
traverse the IBZ boundaries—provides dispersion curves. The obtained 
information can be further processed to calculate the group and phase 
velocities and to study the structure’s wave directionality behavior 
[34–36,65]. 

2.2. Elastic wave polarization 

As an illustrative example, consider the dispersion plot for an 
infinite, planar square beam lattice, as shown in Fig. 1, with six degrees- 
of-freedom, obtained using the procedure described in Section 2.1. We 
model the lattice in Abaqus CAE as an interconnected network of three- 
dimensional deformable wires, meshed using the shear-flexible beam 
elements with quadratic interpolation (B32). We assume that the unit 
cell lies in the 1–2 plane and that its lattice constants along the 1- and 2- 
axis are L1 = 1 m and L2 = 1 m, respectively. The lattice elements are 
assumed to have a square cross-section of 77 mm thickness. The 
dispersion curves obtained along the IBZ path O-X-M-O are shown in 
Fig. 1, where we normalize the frequency axis with respect to the fre
quency of the first in-plane bending mode occurring at the high- 

symmetry point X (k1 = π/L1, k2 = 0). The mode shapes at specific 
dispersion point locations are also shown 

Each continuous eigenfrequency curve in the dispersion plots, shown 
here using different colors, represents a solution to Eq. (6); each 
eigenfrequency represents a specific permitted wave propagation mode 
or polarization at that frequency. However, each continuous curve does 
not correspond to a single propagation mode; one must also pay atten
tion to the associated eigenvectors to determine this information. 
Traditionally, the associated polarizations are identified by visually 
inspecting the mode shapes at each eigenfrequency; to identify the 
attenuation bandgaps, attention is usually restricted to the bandgap start 
and stop eigenfrequencies [32,66]. For example, the mode shapes at the 
points a, b, and c along the high-symmetry point X show that their 
associated eigenfrequency curves, shown here in pink, blue, and red, 
respectively, are the propagating wave solutions for the first SV-, first 
SH-, and second SV-waves, respectively. However, further inspection of 
the mode shapes at points c1 and c2 along the third eigenfrequency (red) 
curve shows that while point c2 is indeed the second SV-wave, point c1 is 
a P-wave mode. This polarization change occurs because of the curve or 
mode veering phenomena [12,13,67] shown in the inset, where the 
dispersion curves associated with the P- and SV-waves abruptly switch 
polarizations and veer away and diverge instead of crossing over each 
other. Here, the eigenfrequency curves containing points c1 and c2, and 
the points d1 and d2 switch polarizations, as seen in the similarity of the 
mode shapes at points c1 and d2, and points c2 and d1. Such curve veering 
effects can lead to the incorrect identification of the wave polarizations 
associated with each dispersion curve. Another source of error in the 
visual mode shape inspection approach stems from the mode conversion 
effects, where the polarization associated with a single dispersion curve 
might vary continuously as a function of the wave vector [22]. For the 
square lattice, such mode conversion effects are seen in the 11th 
dispersion curve along O-X: the curve starts (e1) as a hybrid wave mode 
with similar contributions by the in-plane flexural motion in the vertical 
(P-mode) and horizontal (SH-mode) lattice elements but slowly coverts 
to an SH-wave mode, where the horizontal element’s in-plane flexural 
motion is the dominant response, as seen at point e2. A similar mode 
conversion occurs in the 3rd dispersion curve along the X-M path: the 
curve begins at point f1 with horizontal element dominated flexural 
motion along the 2-direction and gradually converts to a hybrid mode 
with in-plane flexural motion of the horizontal and vertical elements 
along the 2- and 1-directions, respectively. Besides the mode veering and 
conversion effects, the coupled mode shapes underlying the waves 
propagating in directions unaligned with lattice element orientations, as 
seen at point g, further complicate the accurate identification of the 
wave polarizations. Consequently, while the complete and omnidirec
tional bandgaps are easily identified as frequency regions with no real 
eigen solutions, relying on visual mode shape inspection can easily 
result in the misidentification of polarized bandgaps. 

3. Method 

In this section, we present a new method for associating the disper
sion curves with their respective polarizations. For a FE mesh, every 
eigenfrequency is associated with an eigenvector at each node. The 
proposed method uses these eigenvectors to calculate the relative 
effective translational and rotational masses-in-motion along the 
different coordinate directions at each eigenfrequency. This information 
is then used to identify the structural vibration mode associated with the 
wave propagation at each frequency. While this is sufficient for the 
correct polarization identification of waves with wave vectors oriented 
along the structural elements, we propose the use of a polarization factor 
to ensure the accurate polarization identification of waves with different 
wave vector orientations. Finally, we present a visualization scheme to 
allow the easier identification of various wave modes and polarized 
bandgaps. 
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3.1. Propagation mode identification 

The method described in Section 2.1 provides the eigenfrequencies 
corresponding to the specific wave vectors of interest. Each eigenfre
quency in the nth dispersion curve, ωn, is associated with an eigenvector, 
Un, at each FE node. The six eigenvector components 
Un

j̇ |j = 1, 2, ..6—where Un
j̇ |j = 1, 2,3 are associated with the three 

translational components un
1, un

2, un
3 along the 1, 2, and 3 coordinate 

directions, respectively, and Un
j̇ |j = 4, 5,6 are associated with the three 

rotational components θn
1, θn

2, θn
3 about the 1, 2, and 3 coordinate di

rections, respectively—provide information about the relative motion of 
each FE node at ωn. The relative influence of each eigenvector compo
nent on the overall mode shape can be estimated by calculating the 
associated modal participation factor, Γn, defined as: 

Γn =
UnT MR

mn (11)  

where M is the global mass matrix, and R and mn are the influence 
matrix and generalized mass, defined respectively as: 

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 (z − z0) − (y − y0)

0 1 0 − (z − z0) 0 (x − x0)

0 0 1 (y − y0) − (x − x0) 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(12)  

mn = UnT MUn (13) 

Here, R, represents the displacements resulting from any static unit 
ground displacement or rotation, where x, y, z are the nodal coordinate 
components, and x0, y0, z0 are the coordinates of the center of rotation 
along the 1-, 2-, and 3-axis, respectively. Note that by defining it this 
way, R degenerates into the identity matrix when the center of rotation 
coincides with the center of gravity. 

While the modal participation factor is routinely used during modal 
analysis to understand the participation of individual normal modes to 
the overall dynamic state of a structure at a given frequency [63,64, 
68–70], here, we propose using it to understand the relative participa
tion of each directional motion component to the mode shape associated 
with a given eigenfrequency. Thus, the modal participation factor 
component Γn

j describes the contribution of the jth directional motion 
component to the overall mode shape at ωn. The modal participation 
factor can then be used to quantify the portion of the translational (j = 1, 
2, 3) or rotational (j = 4, 5, 6) mass along each direction by calculating 
the modal effective mass as: 

mn
eff = Γn2mn (14) 

For convenience of comparison, we normalize the translational and 
rotational effective mass components as: 

cn
j =

mn
eff j

M
, for j = 1, 2, and 3 (translational mass) (15)  

cn
j =

mn
eff j
Ij

, for j = 4, 5, and 6 (rotational mass) (16)  

where M and Ij are the total translational and rotational mass of the 
structure. Note that while the translational mass is direction indepen
dent, the rotational mass (or moment of inertia) is directionally 
dependent and must be calculated about the appropriate axis. To better 
visualize the relative contribution of each effective mass component to 
the overall modal mass at ωn, we further normalize them with respect to 
the total translational and rotational effective masses as: 

qn
tj|j=1,2,3

=
cn

j
∑3

j=1cn
j

(17)  

qn
rj|j=4,5,6

=
cn

j
∑6

j=3cn
j

(18)  

where qn
tj and qn

rj 
are the relative effective translational and rotational 

mass components along the jth direction at ωn, respectively. This addi
tional normalization provides relative effective mass component values 
bounded between 0 and 1, where 0 indicates no mass motion along that 
coordinate direction and 1 indicates that all the mass is moving in that 
direction. Note that the eigenvectors, modal participation factor, and the 
unnormalized modal effective mass components associated with each 
eigenfrequency can be directly extracted from most FE packages, 
including Abaqus CAE and Comsol Multiphysics. Further normalization 
of the modal effective mass components to calculate the relative effec
tive translational and rotational mass components can be performed 
using any mathematical software; in this study, all calculations were 
performed using Matlab. 

For clarity, reconsider locations c1, c2, d1, and d2 in the 3rd and 4th 
dispersion curves for the square planar lattice shown in Fig. 1 as an 
example. The wave vector direction for all four points is along the 1-axis. 
The modal effective mass vectors and the relative effective modal mass 
vectors for these four points calculated using the above procedure are 
given in Table 1, where ωn is the frequency and Ωn is the normalized 
frequency of each location. At c1 and d2, the dominant motion of the 
structural mass, as predicted by the modal mass vectors, is primarily the 
in-plane displacement along the 1-axis; conversely, the motion at c2 and 
d1 is dominated by displacement along 3-axis—i.e., out-of-plane—and 
rotation about the 2-axis, indicating that both these points are associated 
with the out-of-plane propagation mode. These predictions, verified by 
observing the mode shapes provided in Fig. 1, help in identifying the 
correct propagation mode at these four points that are affected by the 
curve veering phenomena. Similarly, the motion at locations g and h, 
studied further in Section 3.2, are also identified as in-plane. The modal 
effective mass vectors and the relative effective modal mass vectors for 
all locations shown in Fig. 1 are provided in the Appendix, Table A1. 

3.2. Polarization identification 

As defined previously, wave polarization is the relative orientation 
between the oscillation direction of the elastic particles and the wave 

Table 1 
The calculated modal effective mass vectors, relative effective modal mass vectors, and the identified propagation mode for the specific points shown in Fig. 1.  

Location Normalized frequency Ωn Modal effective mass vectors mn
eff Relative effective translational mass 

qn
t = 〈qn

t1 , qn
t2 , qn

t3 〉

Relative effective rotational  
mass qn

r = 〈qn
r4
,qn

r5
,qn

r6
〉

Propagation mode 

c1 3.41 〈14.4, 0, 0, 0, 0, 0〉 〈1, 0, 0〉 〈0.035, 0.996, 0.004〉 In-plane 
c2 3.40 〈0, 0, 0.183, 0, 0.292, 0〉 〈0, 0, 1〉 〈0, 1, 0〉 Out-of-plane 
d1 3.47 〈0, 0, 0.125, 0, 0.246, 0〉 〈0, 0, 1〉 〈0, 1, 0〉 Out-of-plane 
d2 3.49 〈13.2, 0, 0, 0, 0, 0〉 〈1, 0, 0〉 〈0, 0.994, 0057〉 In-plane 
g 2.98 〈7.21, 7.21, 0, 0, 0, 0.297〉 〈0.5, 0.5, 0〉 〈0, 0, 1〉 In-plane 
h 3.19 〈8.31, 8.31, 0, 0, 0, 0〉 〈0.5, 0.5, 0〉 〈0.195, 0.038, 0.767〉 In-plane  
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vector. While the wave vector direction is known a priori, the oscillation 
direction is captured by the modal participation factor, Γn, which 
quantifies the contribution of each directional motion component to the 
mode shape at any given eigenfrequency. Thus, the relative orientation 
between the two vectors can be calculated using a polarization factor, 
Φn, defined as: 

Φn = |cosφn| (19)  

where 

cosφn =

〈
Γn

t , kd
〉

‖Γn
t ‖‖kd‖

(20) 

Here, Γn
t and kd are the translational components of the modal 

participation factor and the local reciprocal lattice vector, and are given 
as: 

Γn
t =

〈
Γn

1, Γn
2, Γn

3

〉
(21)  

kd = 〈Δk1, Δk2, Δk3〉 (22)  

where, Δk1,Δk2,Δk3 are the increments of the wave vector components 
along the 1-, 2- and 3-axis, respectively. 

The polarization factor provides a positive numerical value between 
0 and 1, quantifying the relative angle between the wave propagation 
and lattice motion directions: 0 means that the oscillation is perpen
dicular to the wave propagation direction—indicating a S-wave; 1 
means that the oscillation is parallel to the wave propagation direc
tion—indicating a P-wave. For cases without pure polarizations, one 
may use the nomenclature ‘quasi-S’ if the polarization factor is less than 
0.1, and ‘quasi-P’ if it is greater than 0.9; waves with polarization values 
in between these bounds may be classified as ‘hybrid’ waves. 

For clarity, reconsider the locations c1, c2, d1, and d2 in Fig. 1 and as 
discussed above. The calculated modal participation factor, local 
reciprocal lattice vector, and polarization factor are given in Table 2. 
The polarization factors at locations c1 and d2 reveal that the oscillation 

Table 2 
The calculated translational modal participation factor, local wave vector orientation, polarization factor, and the identified wave polarization.  

Location Normalized frequency Ωn Translational components of the  
modal participation factor Γn

t 

Local wave vector kd Polarization factor Φn Wave polarization 

c1 3.4128 〈1.83, 0, 0〉 〈1, 0, 0〉 1 P-wave 
c2 3.4037 〈0, 0,  − 0.1160〉 〈1, 0, 0〉 0 SV-wave 
d1 3.4771 〈0, 0,  − 0.15〉 〈1, 0, 0〉 0 SV-wave 
d2 3.4954 〈1.35, 0, 0〉 〈1, 0, 0〉 1 P-wave 
g 2.9817 〈0.497,  − 0.497, 0〉 〈 − 1,  − 1, 0〉 0 SH-wave 
h 3.1927 〈0.566, 0.566, 0〉 〈 − 1,  − 1, 0〉 1 P-wave  

Fig. 2. Dispersion curves with overlaid relative effective modal mass vector components. Fig. 2(a) shows the translational components, Fig. 2(b) shows the rotational 
components, and Fig. 2(c) shows the color scales and symbols used for each component. Fig. 2(d) shows the polarization plot and the color scale used to identify the 
different polarization values. 
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direction of the structure at both locations is parallel to the wave 
propagation direction, thus correctly identifying the eigenfrequency at 
these locations as a P-wave solution. Similarly, the polarization factors 
at c2 and d1 correctly identify these locations as an S-wave solution; since 
the dominant motion for both these locations is along the out-of-plane 
axis, as shown in Table 1, the propagation mode can be further distin
guished as an SV-wave solution. 

The necessity of calculating the polarization factor is reinforced by 
considering points g and h—both are at the same wave vectors but at 
different frequencies. Identifying the polarizations of such locations is 
typically complicated since the wave vector is not oriented along a lat
tice element. As seen in Table 2, their polarization factors reveal that 
while oscillation direction at location g is perpendicular to the propa
gating wave direction, the oscillation direction at location h is parallel to 
the wave direction. Thus, the eigenfrequencies at locations g and h must 
be classified as SH- and P-waves, respectively. The calculated modal 
participation factors, local reciprocal lattice vectors, and polarization 

factors for all locations shown in Fig. 1 are provided in the Appendix, 
Table A2. 

3.3. Visualization schema 

For easier visualization of the contribution of each relative effective 
modal mass vector component to the overall motion of the structure at 
any given eigenfrequency solution, we represent each individual 
component using the following color scheme:  

• qn
t1 → solid blue squares  

• qn
t2 → solid green triangles  

• qn
t3 → solid red diamonds  

• qn
r1

→ hollow blue circles  
• qn

r2
→ hollow green circles  

• qn
r3

→ hollow red circles 

Fig. 3. The analyzed thin-walled cantilever beam with an open, symmetric channel cross-section. The figure shows the geometrical and material properties used by 
Noor et al. [71]. 

Table 3 
The first six natural frequencies, relative effective mass vector components, and the mode shapes obtained from the FE solver.  

Mode 
number n 

Natural frequency 
ωn (Hz) 

Relative effective translational mass 
qn

t = 〈qn
t1 , qn

t2 , qn
t3 〉

Relative effective rotational mass 
qn

r = 〈qn
r4
,qn

r5
,qn

r6
〉

Deformed and undeformed mode shapes 

1 11.43 〈0, 0, 1〉 〈0.372, 0.628, 0〉

2 23.158 〈0, 1, 0〉 〈0, 0, 1〉

3 42.705 〈0, 0, 1〉 〈0.656, 0.344, 0〉

4 57.925 〈0, 0, 1〉 〈0.624, 0.376, 0〉

5 106.96 〈0, 0, 1〉 〈0.212, 0.788, 0〉

6 144.5 〈0, 1, 0〉 〈0, 0, 1〉
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We then overlay these components on the dispersion points and ac
count for each component’s contribution using color intensity scales, 
where for each individual component, the lowest color intensity in
dicates a numerical value of 0, i.e., the component does not contribute to 
the motion, and the brightest color intensity indicates a numerical value 
of 1 and the component’s dominance in the overall motion. For clearer 
visualization, we plot the translational and rotational relative effective 
modal mass vector components in two separate, adjacent plots. Simi
larly, to clearly distinguish the S- and P-waves, we separately plot the 
polarization factor at each eigenfrequency solution using the asterisk 
symbol with color intensity varying from cyan to black; cyan indicates a 
pure S-wave and black indicates a pure P-wave. 

An example application of this visualization scheme is shown in 
Fig. 2. Here, we plot the dispersion curves of the square lattice previ
ously shown in Fig. 1 using the visualization scheme explained above. As 
seen from the figures, the proposed visualization scheme makes it easier 
to accurately identify the wave propagation modes and clearly distin
guish the polarization associated with each wave solution. In turn, this 
makes the identification of the various bandgaps more straightforward 
and accurate than visually analyzing the mode shapes at each point. For 
the remainder of the paper, we use this scheme when analyzing the wave 
propagation behavior of various structures. 

4. Method validation 

In this section, we validate the presented method by comparing the 
propagation mode and polarization predictions to published results in 
the literature. First, we verify the method’s efficacy in correctly pre
dicting modal coupling by modeling the response of a beam that exhibits 
strong flexural-torsional coupling. Then, we use the method to identify 
the presence of local resonance and Bragg wave attenuation bandgaps in 
a locally resonant sandwich beam. Finally, we validate the presented 
methods ability to predict polarized bandgaps by modeling a 3D com
posite metastructure with periodically embedded inclusions that cause 
the emergence of longitudinal, flexural, and torsional bandgaps. 

4.1. Mode identification in a coupled beam 

Consider a prismatic thin-walled cantilevered beam with an open, 
symmetric channel cross-section, as shown in Fig. 3. Originally studied 
by Noor et al. [71] using a mixed 1D FE approach and verified using a 2D 

plate/shell model based on the Sanders-Budiansky shell theory, this 
beam exhibits strong flexural-torsional coupling that can be difficult to 
identify without visually analyzing the mode shapes. Here, to demon
strate the accuracy of the proposed method, we analyze the free vibra
tion behavior of the beam and compare the mode types predicted using 
the relative effective modal mass vectors with those obtained by Noor 
et al. and by visually inspecting the individual mode shapes. We model 
the beam as a 3D deformable solid using continuum solid shell elements 
(CSS8), with its prismatic cross-section in the 2–3 plane and the length 
along the 1-axis; the geometrical and material parameters are chosen to 
match those used by Noor et al. and are summarized in Fig. 3. 

We use a linear perturbation procedure to extract the first six eigen
frequencies and the corresponding eigenvectors, from which the corre
sponding relative effective modal mass vectors are calculated to help 
identify individual modes as flexural, torsional, or coupled (hybrid). The 
relative effective modal mass components and the mode shapes, as visu
alized in the solver (Abaqus CAE) are shown for each mode in Table 3. 

In accordance with Noor et al. and the extracted mode shapes, the 
relative effective modal mass vectors predict strong flexural-torsional 
coupling in all the modes except the second and sixth modes—these 
are the first and second horizontal flexural modes, as evidenced by the 
pure translation along the 2-axis (qn

t2 = 1) and rotation about the 3-axis 
(qn

r6
= 1). The coupled behavior of the remaining four modes is evi

denced by the vertical translation, qn
t3 , occurring in combination with the 

flexure-associated rotation about the 2-axis, qn
r5
, and the torsion- 

associated rotation about the 1-axis, qn
r1

. Further, the degree of partici
pation of the flexural and torsional motions in each coupled mode is seen 
by the relative values of the rotations associated with each motion: while 
the flexure-associated rotation dominates in modes one and five, the 
torsion-associated rotation dominates in modes three and four. This is 
also consistent with the strain energy based predictions obtained by 
Noor et al. Thus, the relative effective modal mass vector accurately 
identifies all six modes, including the coupled modes. 

4.2. Propagation mode and bandgap identification in a Timoshenko beam 

Consider a sandwich beam with periodically embedded internal res
onators, as studied previously by Sharma et al. [6]. The periodic insertion 
of spring-mass resonators results in the formation of flexural wave 
attenuation bandgaps due to local resonance and Bragg scattering effects. 

Fig. 4. Dispersion curves for the locally resonant sandwich beam, as studied in Ref. [6]. Fig. 4(a) shows the translational components and Fig. 4(b) shows the 
rotational components of the relative effective modal mass vectors. Fig. 4(c) shows only the flexural wave solution with translational motion along the 2-direction. 
The symbols and color scales are as shown in Fig. 2(c). 
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Here, we model the sandwich beam as a Timoshenko beam using the 
material and geometrical parameters as described in Ref. [6] and obtain 
the dispersion curves using the previously described unit cell approach; 
the unit cell is chosen such that the resonator is connected to the central 
node and the Floquet-Bloch boundary conditions are applied at the end 
nodes. We model the beam as a 3D wire with its length along the 1-axis, 
using shear-flexible beam elements with quadratic interpolation (B32). 
We extract the eigenvalues and eigenvectors using a linear perturbation 
procedure, carried out while sweeping the wave vector along the longi
tudinal (1-) direction. The extracted eigenvectors are then used to 
calculate the relative effective modal mass vectors using a Matlab script. 

The dispersion curves with the identified propagation modes, 
allowing for motion along all degrees-of-freedom, are shown in Fig. 4(a- 
b), where all frequencies are normalized with respect to the local reso
nance frequency (200 Hz). For easier comparison with the published 
result in [6], Fig. 4(c) shows the dispersion curves obtained when only 
flexural displacements along the 2-axis and rotations about the 3-axis 
are permitted, in accordance with the assumptions made by Sharma 
et al. [6]. As expected, the dispersion curves for the sandwich beam with 
no restrictions on the degrees-of-freedom show multiple wave modes 
within the frequency range. The periodic insertion of local resonators 
causes a low-frequency bandgap around their resonance frequency, and 
multiple Bragg bandgaps at higher frequencies. Since the resonator 
motion is restricted to the 2-direction, all the generated bandgaps are 
polarized, only attenuating flexural waves with displacements polarized 
in the 2-direction. The presence of these polarized flexural bandgaps is 
seen more clearly in Fig. 4(c), where all the modes except the classical 
Timoshenko beam modes (flexural and a higher-order mode accounting 
for the shear deformation and rotational inertia) are suppressed. The 
predicted bandgaps match exactly the results shown in Fig. 3(b) in [6]. 
Additionally, the presence of the second Timoshenko mode is accurately 
captured at Ω = 6.12, and clearly visualized by the hollow red circle, 
indicating the dominance of rotation about the 3-axis. Thus, the pre
sented method, coupled with the visualization scheme, allows for an 
easy identification of each propagating wave mode and, consequently, 
the accurate assessment of the bandgap polarizations. 

4.3. Composite 3D-printed metastructure with embedded resonant 
inclusions 

Finally, consider the wave attenuation behavior of the composite 3D- 
printed metastructure studied by Matlack et al. [32]. The metastructure 

consists of steel inclusions coated with a thin layer of polycarbonate and 
periodically embedded within a 3D printed polycarbonate cubic lattice. 
This design results in the generation of low-frequency attenuation 
bandgaps driven by the interactions between the local resonance and 
Bragg bandgaps. Here, we replicate this design using the parameters 
provided in Ref. [32] and compare the predicted bandgaps with those 
obtained by Matlack et al. for the high-stiffness case shown in Fig. 2(a) in 
Ref. [32]. The metastructure is modeled as an infinite beam using 
three-dimensional, ten-node tetrahedral elements (C3D10). The disper
sion curves along the O-X path are then overlaid by the relative modal 
effective mass vectors and shown in Fig. 5(a-c). For clarity, we plot the 
displacement components in Fig. 5(a), the rotations in Fig. 5(b), and the 
polarization factors in Fig. 5(c). We then mark the flexural bandgaps in 
Fig. 5(a), torsional bandgaps in Fig. 5(b), and longitudinal bandgaps in 
Fig. 5(c). The accuracy of the bandgap identification—performed 
without analyzing individual mode shapes for each ω(k) point—is 
established by comparing the bandgap predictions in Ref. [32], Fig. S4. 

In agreement with Ref. [32], the high-stiffness composite beam 
design results in distinct polarized bandgaps, which overlap to form a 
complete-directional bandgap ranging from 6400 Hz to 8400 Hz. While 
the predicted flexural bandgaps coincide with those identified in 
Ref. [32], some additional information is obtained using the relative 
modal effective mass vectors. First, we identify the presence of two 
additional torsional bandgaps—as evidenced by the dominant rotation 
about the axial direction—occurring at higher frequencies; these 
bandgaps would otherwise be difficult to identify using mode shape 
visualization. Secondly, the frequency range of the longitudinal 
bandgap, identified here using the polarization factors, is narrower than 
that identified in Ref. [32]. Using mode shape observation, the authors 
incorrectly identify the cut-on frequency of a higher-order longitudinal 
mode as the bandgap cut-off frequency. In actuality, the longitudinal 
mode cuts-on at a lower frequency, as correctly predicted by the po
larization plot and verified by the mode shapes at locations a and b, as 
shown in Fig. 5(c). Thus, the presented method can help avoid the 
misidentification of propagation modes and bandgaps, especially due to 
the complex mode shapes occurring at higher frequencies. 

5. Method application 

In this section, we provide an example application of the developed 
method. We study the elastic wave propagation behavior of square 
planar lattices; specifically, we focus on the existence of polarized 

Fig. 5. Dispersion curves along the O-X wave vector direction for the composite 3D metastructure studied in Ref. [32]. Fig. 5(a) shows the translational components 
and Fig. 5(b) shows the rotational components of the relative effective modal mass vectors. Fig. 5(c) shows the polarization factors and the mode shapes at locations a 
and b. The shaded regions in Figs. 5(a), (b), and (c) are the identified flexural (blue), torsional (red), and longitudinal (orange) bandgaps. 
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bandgaps and the effect of lattice parameter perturbations on the indi
vidual bandgaps. We choose the square lattice previously studied in 
Section 2.1, and shown in Fig. 1, as the base lattice and systematically 
perturb its side length ratio (ε), internal angle skewness (ϴ), vertical 
strut cross-section (Ѵ), and the joint connection type. We model all the 
lattices in Abaqus CAE using B32 beam elements with six degrees-of- 
freedom—i.e., out-of-plane modes are permitted—and the dispersion 
relations and mode identification information are extracted using the 
proposed method. For consistency of comparison, the mass of all lattices 
is maintained the same throughout. In the interest of clarity, we discuss 
the evolution of polarized bandgaps only along the O-X wave vector 
direction. Here, all eigenfrequencies are normalized with respect to the 
eigenfrequency of the first in-plane bending mode occurring at high- 
symmetry point X. 

5.1. Effect of side length ratio 

We define the side length ratio as ϵ = L2/L1, where L2 and L1 are the 
unit cell lattice constants along the 2- and 1-axis, respectively. We 
modify the square lattice by incrementally increasing ε while main
taining all the other lattice parameters, including its total mass, as 

constants. The dispersion curves with the identified propagation modes 
and the associated polarization factors are plotted as a function of ε 
along the O-X direction in Fig. 6. We plot the translational components 
in Fig. 6(a), rotational components in Fig. 6(b), and the polarization 
factors in Fig. 6(c). For clarity, the cut-on and cut-off frequencies for the 
SV-bandgaps are marked in Fig. 6(a) using symbols vi, the SH-bandgaps 
are marked in Fig. 6(b) using symbols hi, and the P-bandgaps are marked 
in Fig. 6(c) using symbols pi. Here, we vary ε from 1 (i.e., square lattice) 
to ε = 1.75; an extreme case of ε = 3 is also shown. 

Within the considered frequency range, the dispersion curves for the 
square lattice, ε = 1, show the presence of two SV-polarized bandgaps 
(v1-to-v2 and v3-to-v4), two SH-polarized bandgap (h1-to-h2 and h3 and 
beyond), and one P-polarized bandgap (p1-to-p2) along the O-X direc
tion. The SV- and SH-bandgaps overlap between Ω = 1 to 1.748, indi
cating that only P-waves can propagate through the lattice along O-X 
within this frequency range. This behavior is akin to the “fluid-like” 
behavior recently demonstrated by Ma et al. [33] for a 
three-dimensional elastic metamaterial with an anisotropic locally 
resonant unit cell. As the side length ratio is increased, the reduction in 
lattice symmetry lifts the degeneracy between the SV- and SH-eigenm
odes occurring at the high-symmetry point X at Ω = 1 for the square 

Fig. 6. Effect of variation of side length ratio, ε, on the dispersion behavior and bandgap evolution along the O-X wave vector direction. The relative effective 
translational mass and cut-on and cut-off frequencies for SV-bandgaps (vi) are marked in Fig. 6(a); the relative effective rotational mass and cut-on and cut-off 
frequencies for SH-bandgaps (hi) are marked in Fig. 6(b); the polarization factors and the cut-on and cut-off frequencies for P-bandgaps (pi) are marked in Fig. 6 
(c). Curves marked as t in Fig. 6(b) indicate standing waves with motion dominated by rotations about the 1-axis. 
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lattice. As ε increases, the lower bound of the first SV-bandgap, v1, 
gradually shifts to a lower frequency while the upper bound, v2, shifts to 
a higher frequency, causing an increase in the first SV-bandgap width 
with increasing ε. On the other hand, while the lower bound of the first 
SH-bandgap, h1, remains stationary because it is the normalization fre
quency, the upper bound, h2, gradually shifts to a lower frequency and 
results in a reduction in the first SH-bandgap width with increasing ε. 
While these changes in the first SH- and SV-bandgap widths may be 
considered insignificant, the changes observed in the higher order 
bandgaps are more pronounced. Increasing ε reduces the width of the 
second SV-bandgap while shifting it to a comparatively lower frequency 
range. Similarly, the second SH-bandgap shifts to lower frequencies with 
increasing ε; however, in contrast with the second SV-bandgap, the 
width of this bandgap increases with increasing ε and an ultrawide 
SH-bandgap emerges for the extreme case of ε = 3. Further, the 
comparative beginning and end locations of the bandgap bounding 
curves indicate that for both SH- and SV-polarizations, the first bandgaps 
are driven by Bragg effects while the second bandgaps occur due to 
lattice resonance effects [6]. These observations align with the fact that 
increasing ε does not alter the lattice periodicity along O-X, but it re
duces the effective lattice stiffness along the 2- and 3-axis, thus reducing 
the lattice structural resonance frequencies responsible for the second 
bandgaps. For the extreme case of ε = 3, the first SV-bandgap changes 
into a resonance-driven gap while the second SV-bandgap changes into a 

Bragg bandgap. Interestingly, a nearly flat band, marked as t in Fig. 6(b), 
with dominant rotations about the 1-axis appears at ε = 1.25 and shifts 
to lower frequencies with increasing ε; two such bands are observed for 
ε = 3. The flatness of these bands indicate that these are rotational 
standing waves resembling torsional behavior in finite structures. 

The effect of this stiffness reduction is also observed on the P- 
bandgap, which is generated due to the first structural resonance 
occurring in the vertical lattice struts oriented perpendicular to the wave 
propagation direction, as evidenced by the behavior of the upper and 
lower bounding curves. As ε increases, the reduction in the effective 
stiffness reduces the resonance frequency, p1, and shifts the P-bandgap 
to a lower frequency. Eventually, for the case of ε = 1.75, the P-bandgap 
overlaps with the first SV- and SH-bandgaps between Ω = 1.75 to 2.5, 
resulting in the emergence of a complete-directional bandgap where all 
waves along O-X are spatially attenuated, irrespective of their polari
zations. For the extreme case of ε = 3, the interactions between the in
dividual resonance and Bragg effects result in the uncoupling of the first 
SV- and SH-bandgaps, but an overlap of the P- and SV-bandgaps results 
in the emergence of a frequency region where only waves with SH-po
larization can propagate through the lattice. 

5.2. Effect of lattice internal angle 

The variation in the dispersion curves and the wave polarizations 

Fig. 7. Effect of variation of lattice internal angle, ϴ, on the dispersion behavior and bandgap evolution along the O-X wave vector direction. The relative effective 
translational mass and cut-on and cut-off frequencies for SV-bandgaps (vi) are shown in Fig. 7(a); the relative effective rotational mass and cut-on and cut-off fre
quencies for SH-bandgaps (hi) are shown in Fig. 7(b); the polarization factors are shown in Fig. 7(c), where the elliptical markings show examples of mode conversion 
between P- and S-wave propagation modes. 
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along the O-X direction as a function of the lattice internal angle, ϴ, are 
shown in Fig. 7. Here, we vary ϴ by changing the orientation of the 
vertical strut with respect to the horizontal lattice strut. In contrast to 
the variation in ε, a change in ϴ drastically changes the dispersion 
behavior of the lattice, indicating that the elastic wave propagation 
behavior of the lattice is significantly more sensitive to rotational sym
metries in the lattice. Given the high number of low frequency modes for 
the skewed lattices, we restrict the analysis in this case to Ω = 2.5. 

Altering the square lattice (ϴ = 90◦) to a skewed lattice with ϴ = 80◦

results in the disappearance of the previously observed Bragg SV- and 
SH-bandgaps originating at Ω = 1, marked as v1-to-v2 and h1-to-h2, 
respectively. Instead, the angular distortion results in the appearance of 
multiple new SV-propagation modes, different from those observed 
within the same frequency range for the square lattice—the new modes 
are dominated by out-of-plane motion coupled with torsion-like rota
tions about the 1-axis. As the angular distortion is increased, a low- 
frequency SV-bandgap reappears for the cases of ϴ = 60◦ and 45◦. 
Altering the orientation of the vertical struts also introduces additional 
stiffness in the horizontal direction, as evidenced by the increase in the 
slope of the first SH-curve. Further, the relative orientation of the lattice 

struts with respect to the wave vector orientation causes in-plane 
coupling and mode transitions in the P- and SH-modes. These coupled 
in-plane propagation modes are more clearly observed in the polariza
tion angle plots, Fig. 7(c), where the darker dispersion points indicate a 
higher contribution of lattice motion parallel to the wave vector direc
tion—representative cases of transitions between the two modes within 
the same propagation band are marked in Fig. 7(c). Thus, the polari
zation plots allow an easier identification of the P-wave solutions and 
the corresponding identification of frequency regions where such waves 
cannot propagate. 

5.3. Effect of vertical strut cross-section width 

In this case, we modify the lattice by changing the cross-sectional 
shape of the vertical strut; the vertical strut is altered by changing the 
ratio of the cross-sectional widths along the 1- and the 3-directions. 
Assuming the cross-sectional width ratio equal to 1 as the base lattice 
configuration—i.e., a square lattice made using square horizontal and 
vertical struts—we alter the vertical strut shape by increasing its cross- 
sectional width ratio while maintaining its cross-sectional area, and 

Fig. 8. Effect of variation of vertical strut cross-sectional width ratio, Ѵ, on the dispersion behavior and bandgap evolution along the O-X wave vector direction. The 
relative effective translational mass and cut-on and cut-off frequencies for SV-bandgaps (vi) are shown in Fig. 8(a); the relative effective rotational mass and cut-on 
and cut-off frequencies for SH-bandgaps (hi) are shown in Fig. 8(b); the polarization factors and the cut-on and cut-off frequencies for P-bandgaps (pi) are marked in 
Fig. 8(c). Curves marked as t in Fig. 8(b) indicate standing waves with motion dominated by rotations about the 1-axis. 
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consequently the overall lattice mass, as a constant. We use the symbol 
Ѵ to denote the rectangularity of the vertical strut. All the other lattice 
parameters, including the lattice constants L1 and L2 are kept constant. 

The dispersion curves and the wave polarizations along the O-X di
rection as a function of Ѵ, are shown in Fig. 8. Overall, the first SV- 
bandgap remains unaffected by the changes in Ѵ since this bandgap is 
generated due to the Bragg effects and is bounded by the out-of-plane 
motion of the horizontal struts. While the lower bounding frequency 
of the first SH-bandgap (h1) is similarly unaffected by changes in Ѵ, the 
upper bounding frequency (h2) increases with increasing Ѵ, resulting in 
widening this bandgap. 

By contrast, the second SV-bandgap (v3-to-v4), generated by struc
tural resonance effects, shifts to a lower frequency with increasing Ѵ 
because of the accompanying reduction in the out-of-plane stiffness of 
the vertical struts. This gap eventually overlaps with the first SH- 
bandgap and forms a directional S-bandgap where only P-waves can 
propagate (Ѵ = 2.5). Note that a similar bandgap was observed when 
increasing ε in section 5.1; however, in that case, the overlapping SV- 
and SH-bandgaps are both generated by Bragg effects. 

Further, increasing Ѵ increases the vertical strut’s in-plane stiffness 
and causes the first P-bandgap (p1-to-p2)—driven by vertical strut res
onances—to shift to higher frequencies. A propagation mode dominated 
by rotations about the 1-axis, marked as t in Fig. 8(b) and similar to that 
observed in Section 5.1, is seen around Ω = 5 for Ѵ = 2. This rotational 
mode with significant coupling between the P- and SV-modes, likely 
results from the vertical strut cross-sectional asymmetry and shifts to 
lower frequencies with increasing Ѵ, eventually converting into a 
propagation mode that transitions from a pure P-mode to a pure SV- 
mode for the extreme case of Ѵ = 4. 

5.4. Effect of change in lattice joint 

Here, we consider the effect of changing the nature of the joint 
connecting the horizontal and vertical struts of a square lattice. Previ
ously, Wang et al. [30] have considered the effect of joint connectivity 

on the wave propagation behavior of triangular and hexagonal 
Euler-Bernoulli lattice structures. Their results demonstrate that altering 
the connectivity induces local resonance effects which may or may not 
result in the generation of complete bandgaps, depending on the global 
lattice topology. 

The dispersion curves and wave polarization plots of the square 
lattices with welded and pinned joints are compared in Fig. 9. In line 
with the observations by Wang et al. [30], altering the joint connectivity 
of the square lattice to a pinned joint significantly changes its dispersion 
behavior; specifically, two flat dispersion curves (marked as f1 and f2)— 
indicating standing waves or structural resonances—absent in the wel
ded lattice are observed for the pinned lattice. Interestingly, the pinned 
lattice shows multiple, wide S-bandgaps, including ultralow-frequency 
SH- and SV-bandgaps that extend to 0 Hz—indicating a propagation 
cut-on frequency below which all S-waves are spatially attenuated. The 
cut-on frequency for SH-waves (h1) is lower than that for the SV-waves 
(v1), i.e., the pinned lattice predominantly behaves as a fluid-like me
dium, by only supporting the propagation of P-waves below the first 
lattice element flexural resonance frequency. A P-bandgap (p1-to-p2) is 
also observed above this resonance frequency, which overlaps with the 
SV-bandgap and results in a frequency zone where only SH-waves can 
propagate through the structure. The second SH- and SV-bandgaps are 
caused due to Bragg effects, and both terminate at the second structural 
resonance (v3 and h3 are located on the flat band f2). The overlap be
tween these bandgaps generates a second fluid-like behavior frequency 
region extending between v2 and v3. It should be noted that the presence 
of an ultralow S- bandgap can also be seen in the results by Wang et al. 
(see Fig. S8(d) in Supplementary Information accompanying [30]); the 
presented visualization scheme makes it easier to identify this and other 
emergent behaviors, such as fluid-like behavior of square lattices with 
pinned joints, which may otherwise be easily missed. 

6. Conclusion 

In this paper, we presented a new method for accurately identifying 

Fig. 9. Effect of changing lattice joint type from welded to pinned on the dispersion behavior and bandgap evolution along the O-X wave vector direction. The 
relative effective translational mass and cut-on and cut-off frequencies for SV-bandgaps (vi) are shown in Fig. 9(a); the relative effective rotational mass and cut-on 
and cut-off frequencies for SH-bandgaps (hi) are shown in Fig. 9(b); the polarization factors and the cut-on and cut-off frequencies for P-bandgaps (pi) are marked in 
Fig. 9(c). Curves marked as f1 and f2 in Fig. 9(a) indicate standing waves or structural resonances in the pinned joint lattice. 

M. Carrillo-Munoz and B. Sharma                                                                                                                                                                                                          



International Journal of Mechanical Sciences 252 (2023) 108363

14

the propagation mode and polarization of elastic waves traveling in 
periodic structures and architected metamaterials. Proposed as an 
alternative to the commonly used visual mode inspection technique, our 
method adapts the concept of the modal participation factor to quantify 
the relative participation of each directional motion component to the 
overall mode shape associated with a given eigenfrequency. This in
formation is used to calculate the normalized relative effective trans
lational and rotational mass components of the structure at each 
propagation mode, which are then used to identify the wave propaga
tion mode associated with each dispersion solution. While this infor
mation is sufficient for identifying the associated polarization of low- 
frequency elastic waves in structures oriented along the wave vector, 
we propose the use of a new polarization factor to avoid misidentifica
tion of polarizations for more complex cases. Further, we propose a new 
visualization scheme where the relative effective mass and polarization 
factors are superposed over the conventional dispersion curve to quickly 
identify the presence of directional and polarized wave attenuation 
bandgaps. 

The robustness of the proposed method was demonstrated by 
comparing our predictions against previously published results. First, 
we validated the method’s ability to identify mode shapes by simulating 
the free vibration behavior of a beam with an open, symmetric channel 
cross-section which exhibits strong flexural-torsional coupling. Our re
sults show that the method accurately identifies the pure as well as the 
coupled mode shapes and is consistent with visual and strain energy 
based predictions. Next, we validated the method’s ability to identify 
wave propagation modes and the presence of attenuation bandgaps by 
modeling a locally resonant sandwich beam with periodically embedded 
internal resonators. The method accurately predicts the existence of 
bandgaps generated by local resonance and Bragg effects and shows that 
the generated bandgaps only attenuate flexural waves polarized along 
the active spring direction while allowing all other waves to propagate 
through the structure. Finally, we demonstrated the effectiveness of the 
method and the proposed visualization scheme by investigating the 
directional-polarized bandgaps of a composite 3D printed metastructure 
with embedded resonant inclusions. Specifically, we showed that the 
relative effective mass and polarization factor accurately predict the 
polarizations of the propagation solutions and that the visualization 
scheme makes it easier to correctly identify the emergent bandgaps, 
especially those associated with the complicated mode shapes occurring 
at higher frequencies. 

Finally, to demonstrate the effectiveness of the developed method, 
we used it to study the effect of lattice and structural parameter per
turbations on the wave propagation behavior of a planar square beam 
lattice. Despite being widely studied, our analysis using the presented 
method reveals previously unobserved emergent behaviors and disper
sion properties. Our analysis shows that breaking the underlying 
geometrical symmetry of the square lattice causes the emergence of 

various polarized bandgaps, whose frequency range depends on the 
specific geometrical parameter being altered. The overlap between the 
SH- and SV- bandgaps results in the formation of a frequency region 
within which the solid lattice demonstrates a “fluid-like” behavior 
wherein only P-waves propagate through the structure. Overall, the 
dispersion behavior of the square lattice is significantly more sensitive to 
changes in the internal lattice angle and any alterations in the relative 
orientation of the lattice struts causes in-plane coupling and mode 
transitions in the P- and SH- modes. Furthermore, altering the connec
tivity of the vertical and horizontal struts from a welded joint to a pinned 
joint results in the emergence of ultralow-frequency SH- and SV- 
bandgaps that extend to 0 Hz, indicating that the pinned square lattice 
predominantly behaves as a fluid-like medium at frequencies below the 
first flexural resonance frequency of the pinned lattice struts. 

Thus, the presented method provides a robust computational 
approach for studying the elastic wave propagation behavior of periodic 
media such as phononic structures, architected materials, layered 
composites, and metamaterials without resorting to the visual inspec
tion of individual mode shapes. 
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Appendix 

Table A1, Table A2 

Table A1 
The calculated modal effective mass vectors, relative effective modal mass vectors, and the identified propagation mode for the locations marked in Fig. 1.  

Location Normalized frequency Ωn Modal effective mass vectors mn
eff Relative effective translational  

mass qn
t = 〈qn

t1 , qn
t2 , qn

t3 〉

Relative effective rotational  
mass qn

r = 〈qn
r4
,qn

r5
,qn

r6
〉

Propagation mode 

a 0.978 〈0, 0, 20.931, 0, 0.010, 0〉 〈0, 0, 1〉 〈0, 1, 0〉 Out-of-plane 
b 1.000 〈0.0, 21.202, 0, 0, 0, 0.002〉 〈0, 1, 0〉 〈0, 0, 1〉 In-plane 
c 1.738 〈0, 0, 0.146, 0, 0.985, 0〉 〈0, 0, 1〉 〈0, 1, 0〉 Out-of-plane 
c1 3.412 〈14.390, 0, 0, 0, 0, 0〉 〈1, 0, 0〉 〈0.003, 0.996, 0〉 In-plane 
c2 3.402 〈0, 0, 0.183, 0, 0.292, 0〉 〈0, 0, 1〉 〈0, 1, 0〉 Out-of-plane 
d1 3.481 〈0, 0, 0.125, 0, 0.246, 0〉 〈0, 0, 1〉 〈0, 1, 0〉 Out-of-plane 
d2 3.493 〈13.239, 0, 0, 0, 0, 0〉 〈1, 0, 0〉 〈0, 0.994, 006〉 In-plane 
e1 10.079 〈0, 0.02, 0, 0, 0, 0〉 〈0, 1, 0〉 〈0, 0, 1〉 In-plane 
e2 10.985 〈0, 1.233, 0, 0, 0, 0〉 〈0, 1, 0〉 〈0, 0, 1〉 In-plane 
f1 2.692 〈0, 0.013, 0, 0, 0, 1.260〉 〈0, 1, 0〉 〈0, 0, 1〉 In-plane 
f2 1.866 〈14.4, 0, 0, 0, 0, 0〉 〈1, 0, 0〉 〈0, 0, 1〉 In-plane 
g 2.985 〈7.21, 7.21, 0, 0, 0, 0.297〉 〈0.5, 0.5, 0〉 〈0, 0, 1〉 In-plane 
h 3.193 〈8.309, 8.309, 0, 0, 0, 0〉 〈0.5, 0.5, 0〉 〈0.195, 0.038, 0.767〉 In-plane  
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Table A2 
The calculated translational modal participation factor, local wave vector orientation, polarization factor, and the identified wave polarization for the locations marked 
in Fig. 1.  

Location Normalized frequency Ωn Translational components of the  
modal participation factor Γn

t 

Local wave vector kd Polarization factor Φn Wave polarization 

a 0.978 〈0, 0, 0.691〉 〈1, 0, 0〉 0 SV-wave 
b 1.00 〈0, 0.976, 0〉 〈1, 0, 0〉 0 SH-wave 
c 1.738 〈0, 0, 0.143〉 〈1, 0, 0〉 0 SV-wave 
c1 3.412 〈1.827, 0, 0〉 〈1, 0, 0〉 1 P-wave 
c2 3.402 〈0, 0,  − 0.116〉 〈1, 0, 0〉 0 SV-wave 
d1 3.481 〈0, 0,  − 0.150〉 〈1, 0, 0〉 0 SV-wave 
d2 3.493 〈1.346, 0, 0〉 〈1, 0, 0〉 1 P-wave 
e1 10.079 〈0,  − 0.013, 0〉 〈1, 0, 0〉 0 SH-wave 
e2 10.985 〈0, 0.493, 0〉 〈1, 0, 0〉 0 SH-wave 
f1 2.692 〈0, 0.007, 0〉 〈1, 0, 0〉 0 SH-wave 
f2 1.866 〈0.156, 0, 0〉 〈0, 1, 0〉 0 SH-wave 
g 2.985 〈0.497,  − 0.497, 0〉 〈 − 1,  − 1, 0〉 0 SH-wave 
h 3.193 〈0.566, 0.566, 0〉 〈 − 1,  − 1, 0〉 1 P-wave  
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