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Improved Muller approximate solution of the pull-off of a
sphere from a viscoelastic substrate

M. Ciavarella

Politecnico di BARI. DMMM Department, Bari, Italy

ABSTRACT
The detachment of a sphere from a viscoelastic substrate is clearly
a fundamental problem. In the case viscoelastic dissipation is con-
centrated at the contact edge, and the work of adhesion follows
a quite popular simplified model, Muller has suggested an
approximate solution, which however is based on an empirical
observation. We revisit Muller’s solution and show it leads to very
poor fitting of the actual full numerical results, particularly for the
radius of contact at pull-off, and we suggest an improved fitting
of the pull-off which works extremely well over a very wide range
of withdrawing speeds, and correctly converges to the JKR value
at very low speeds.
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1. Introduction

The problem of viscoelastic dissipation during crack growth or contact peeling has
attracted much interest due to its fundamental importance in many areas of science
and technology. Many authors have applied fracture mechanics concepts and made
extensive measurements [1–8] postulating peeling involves an effective work of adhe-
sion w as the product of adiabatic value w0 and a function of velocity of peeling of the
contact/crack line and temperature, namely

w ¼ w0 1þ k aTvpð Þn
� �

(1)

where k, n are constants of the material, with n in the range 0:1–0:8 and aT is the WLF
factor [9] which permits to translate results at various temperatures T from measure-
ment at a certain standard temperature. The details of the derivation from crack mod-
els involving cohesive Barenblatt zones or models ‘truncating’ or ‘blunting’ crack tip
dissipation [2,6,8] vary, but the form (1) remains the most popular simple choice, and
therefore a baseline for comprehension of possible mechanics of contact and
crack problems.

In the case of adhesive contact of the fundamental spherical geometry, various
authors [3,6,10] have attempted to apply the fracture mechanics formulation with the
model (1), and some approximate results have been given in terms of explicit
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dependences of the pull off force or work, contact radius and approach at pull-off see
ref. [10], which we shall revisit here in comparison with full numerical simulation,
finding very significant discrepancies, and suggesting some improved fitting of the
numerical results, at least for the pull-off force which is the quantity of greater interest.

2. Spherical contact mechanics theory

The fracture mechanics formulation for the adhesive contact problem for a sphere is
classic, and we shall revisit here only the essentials. We consider the stress intensity fac-
tor at the contact edge is due to the difference between P1, the load required to main-
tain a contact radius a in the absence of adhesion

P1 að Þ ¼ 4
3
E�

R
a3 (2)

where E� ¼ E= 1� �2ð Þ is the plane strain elastic modulus (E being Young’s modulus
and � Poisson’s ratio) and P, the smaller load to maintain the same contact radius in
the presence of adhesion. So we find the strain energy release rate as1

G a,Pð Þ ¼ K a, Pð Þ2
2E�

¼ P1 að Þ � Pð Þ2
8pE�a3

(3)

In the adhesionless conditions, the remote approach is a1 að Þ ¼ a2
R , so in the adhe-

sive condition we have to decrease this by an amount given by a flat punch displace-
ment Da ¼ P1�P

2E�a (since in moving from the adhesionless to the adhesive solution we
keep the contact area constant) giving the general result for approach

a a,Pð Þ ¼ a2

R
� P1 að Þ�P

2E�a
(4)

from which we can obtain P a, að Þ using (2)

P a, að Þ ¼ P1 að Þ þ 2E�aa a,Pð Þ � 2E�
a3

R

¼ 2E�a
R

Ra a,Pð Þ � a2

3

� �
(5)

which corresponds to Muller [10] Equation (10), whereas using (3)

G að Þ ¼ P1 að Þ � Pð Þ2
8pE�a3

¼ E�

2paR2
Ra að Þ � a2
� �2

(6)

which corresponds to Muller [10] Equation 15 except for a factor 2 misprint. For the
elastic case, JKR[11] theory is obtained by using (6) and (4)
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P ¼ 4
3
E�

R
a3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pw0E�a3

p
(7)

Putting

f ¼ pw0

6RE�

� �1=3

(8)

we have at P ¼ 0 from (7) and (5)

a0 ¼ 9
2
pR2 w0

E�

� �1=3

¼ 3Rf (9)

a0 ¼ a20
3R

¼ 3Rf2 (10)

where there is a factor 3 misprint in Muller [10] Equation 19.

3. Viscoelasticity

Now, for a viscoelastic material, the material dissipation at the crack tip/contact edge
requires that energy balance imposes the velocity of crack according to (1). Further, we
can write the velocity of the contact edge as

vp ¼ � da
dt

¼ v
da
da

(11)

where v is the remote pull-off rate imposed by the loading equipment. The
condition G að Þ ¼ w therefore defines a differential equation for a ¼ a að Þ obtained
using (6, 11)

1
k1=naTv

E�

2paR2w0
Ra að Þ � a2
� �2 � 1

	 
1=n
¼ da

da
(12)

By using the JKR values at zero load (9, 10) and the JKR values for pull-off for P0 ¼
3
2 pRw0, and finally the adiabatic work of adhesion for G, we obtain the dimensionless
variables

G0 ¼ G
w0

; P0 ¼ P
P0

; a0 ¼ a
a0

; a0 ¼ a
a0

(13)

If we now remove the (’) for simplicity in the following equations, we rewrite (12) as

da
da

¼ b�1 a3
a
3a2

� 1
� �2

� 4
9

" #1=n

(14)
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where we have introduced the only dimensionless factor in the problem, apart from n,
namely

b ¼ 6RE�

pw0

� �1=3 4k
9

� �1=n

aTv (15)

The latter two equation s correspond to Muller [10] Equation (23,24). The differen-
tial Equation (14) can be solved for initial conditions starting from a point on the load-
ing curve2, which is the JKR curve which in this dimensionless notation and in
parametric form is

P að Þ ¼ 4 a3 � a3=2ð Þ (16)

and

a að Þ ¼ 3a2 � 2a1=2 (17)

After a að Þ is obtained, we can compute the load which in dimensionless form is
obtained from

P a, að Þ ¼ 2a a� a2ð Þ (18)

Notice that the strain energy release rate in dimensionless form is

G ¼ 9
4
a3

a
3a2

� 1
� �2

(19)

3.1. Muller’s approximate solution

Muller [10] in searching for the pull-off as the minimum of the P að Þ curve, postulates
that this is close to the minimum of P að Þ þ G að Þ which is also 0 in the minimum.
There is no fundamental reason for this mix of the dimensionless load with the dimen-
sionless strain energy release rate to have any special property, and indeed we found
the two minima are not necessarily very close. Muller’s postulate anyway leads to
radius of contact, approach and load at pull-off,

am ¼ jbq (20)

am ¼ �j2b2q (21)

Pm ¼ Pminj j ¼ 4j3b3q (22)

where q ¼ n= nþ 3ð Þ and j ¼ 9=16
4n

� �1= nþ3ð Þ
. Notice obviously that this result at zero

velocity would give incorrect results as all values go to zero, rather than the asymptotic
values of JKR theory for thermodynamic equilibrium.
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Remark that the actual velocity of the crack line (recall a and a are dimensionless
here, not to be confused with Equation (11))

vp
v
¼ 1

f
da
da

� �
m
¼ 1

f
1

4am
(23)

and given am � 1 while f � 1, it is clear that vp
v � 1 so that the velocity at the contact

line can be much greater than the cross-head remote velocity, which permits to make
the approximation that the bulk may be essentially in a relaxed elastic state. Notice
however that, in concentrating the effect of dissipation at the crack tip, despite the dis-
sipation can occur very far from it, there is another possible approximation: indeed,
the form of solution we are using is unlikely to be reliable at extremely high speeds
anyway, also for thermal effects and other possible physical factors.

4. Numerical results and fittings

Here we report some results of the numerical solution of the differential equation,
comparison with Muller’s approximate solution, and some improved fitting results for
the pull-off, which is (perhaps) the most important quantity.

From Figure 1 we see the withdrawing curves for an example case of low n ¼ 0:25,
and (b) an example showing that initial conditions seem to very weakly affect the actual
pull-off, as Muller had remarked. From Figure 2 we see that the contact radius at pull-
off is very poorly predicted by Muller’s approximate solution (20), and it is much more
weakly dependent on b: In particular, at high b, Muller’s solution predicts very large
am which do not make much sense. Indeed, as we have seen there is not much depend-
ence on the initial condition, we expect am < 1 as when we are unloading from equilib-
rium condition at zero load, and since we expect the radius to further decrease, a
fortiori we obviously end up with a smaller radius that at zero load, which is ai ¼ 1:
An exception, where we see am > 1 but not by a large factor, is when there is some
weak dependence on initial conditions and we start from very high loads (see example
of Pi ¼ 5 of Figure 2(a,c)). At low b, Muller’s prediction underestimates the radius at
pull-off, particularly at high b:

(a) (b)

Figure 1. Dimensionless load P dimensionless approach a (a) for various b ¼ 2� 10�5�15i ,
i ¼ 1, 10ð Þ and for n ¼ 0:25: The inner black curve is the adiabatic JKR curve. (b) very weak
dependence of pull-off on initial conditions (initial load P ¼ 0, 5) for an example case b ¼ 0:0675:
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Also not very good predictions, but perhaps better than for contact radius, are those
for the approach at pull-off (Figure 3). Here, the actual results tend to be higher than
Muller’s prediction (21), at all speeds, and start off with a value near am ¼ �0:5 rather
than from 0.

Considering these poor performances on am and am, the results for the pull-off load
vs Muller’s prediction (see Figure 4) are relatively good (blue line vs the markers of the
numerical simulations), which is probably why he was satisfied in his paragraph
‘comparison with exact calculation’ where he has only comparison with pull-off load or
work for pull-off, but still we find them only rough ‘estimates’. It is easy to obtain
much better fit of the results, considering we have only two independent dimensionless
parameters, n and b of course, so we improve Muller’s prediction in two respects:

1. We add a crossover towards the JKR value P ¼ 1, by adding ‘1’ to Muller’s
Equation (22) the JKR load;

2. We improve the power law exponent at large b with a corrective factor to
Muller’s Equation (22) in the form

Pm ¼ Pminj j ¼ 1þ 4j3b3q=c nð Þ (24)

where

c nð Þ ¼ 1:1þ n=1:65 (25)

This improvement shows clearly a much better fit with respect to detailed numerical
calculations in the entire range of realistic values for n and of b covering 10 orders of

(a)

(c)

(b)

Figure 2. Dimensionless contact radius at pull-off am for n ¼ 0:25 (a) n ¼ 0:5 (b), n ¼ 0:75 (c) as
a function of the dimensionless speed factor b: (initial load in the figure P ¼ 0 or 5).
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(a)

(c)

(b)

Figure 3. Dimensionless absolute value of approach at pull-off amj j for n ¼ 0:25 (a) n ¼ 0:5 (b),
n ¼ 0:75 (c) as a function of the dimensionless speed factor b: (initial load in the figure P ¼ 0
or 5).

(a)

(c)

(b)

Figure 4. Absolute value of the dimensionless load at pull off Pm for n ¼ 0:25 (a) n ¼ 0:5 (b), n ¼
0:75 (c) as a function of the dimensionless speed factor b: (initial load as indicated by different col-
ors in the markers in the figure Pi ¼ 0, 3, 5). Blue power law curve is the Muller [10] prediction
(22), while the thick black solid line is our proposal (24).
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magnitude in b which is probably more than enough considering the other approxima-
tions made in the model, namely the form of the work of adhesion, that there is no
viscoelasticity in the bulk, no thermal effects, and so on.

Notice that Violano and Afferrante [12] have numerically solved the Muller equa-
tion s, and found good correlation with experimental results. This suggests that our
solution would be very valuable for an analytical fitting of experiments such as those of
Violano and Afferrante [12].

5. Conclusions

We have revisited the Muller approximate solution for the pull-off of sphere from a
flat viscoelastic material, finding significant errors in the approximate solution, which
stem from the rather arbitrary assumption that the pull-off condition occurs when the
sum of a dimensionless load and a dimensionless strain energy release rate has a min-
imum. We have added a ‘cross-over’ towards the JKR solution for very low velocities,
and corrected the power law enhancement of pull-off with velocity of withdrawal. The
solution can be useful for quick estimates of the effect of viscoelasticity on the increase
of adhesion in spherical geometries.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes

1. The factor 2 which is missing in Muller [10] comes from the fact that strain energy exists
only in one material, assuming the other is rigid. For two identical materials, 1

E� ¼ 2
E�1

and
we return to the standard LEFM case with G að Þ ¼ K að Þ2

E�1
:

2. Strictly speaking, during loading adhesion is reduced with respect to the adiabatic value at
zero speed, but we neglect this effect, or else we consider that loading occurs near
thermodynamic equilibrium.

Funding

MC acknowledges support from the Italian Ministry of Education, University and Research
(MIUR) under the program ‘Departments of Excellence’ [L.232/2016].

References

[1] Andrews EH, Kinloch AJ. Mechanics of elastomeric adhesion. In: Journal of polymer
science: polymer symposia (Vol. 46, No. 1). New York: Wiley Subscription Services,
Inc., A Wiley Company; 1974. pp. 1–14.

[2] Barber M, Donley J, Langer JS. Steady-state propagation of a crack in a viscoelastic
strip. Phys Rev A. 1989;40(1):366–376.

[3] Barquins M, Maugis D. Tackiness of elastomers. J Adhes. 1981;13(1):53–65.
[4] Gent AN, Petrich RP. Adhesion of viscoelastic materials to rigid substrates. Proc Royal

Soc London. A. Math Phys Sci. 1969;310(1502):433–448.

8 M. CIAVARELLA



[5] Gent AN, Schultz J. Effect of wetting liquids on the strength of adhesion of viscoelastic
material. J Adhes. 1972;3(4):281–294.

[6] Greenwood JA, Johnson KL. The mechanics of adhesion of viscoelastic solids. Philos
Mag A. 1981;43(3):697–711.

[7] Maugis D, Barquins M. Fracture mechanics and adherence of viscoelastic solids. In:
Adhesion and adsorption of polymers. Boston (MA): Springer; 1980. p. 203–277.

[8] Persson BNJ, Brener EA. Crack propagation in viscoelastic solids. Phys Rev E. 2005;
71(3):036123.

[9] Williams ML, Landel RF, Ferry JD. The temperature dependence of relaxation mecha-
nisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc. 1955;
77(14):3701–3707.

[10] Muller VM. On the theory of pull-off of a viscoelastic sphere from a flat surface.
J Adhes Sci Technol. 1999;13(9):999–1016.

[11] Johnson KL, Kendall K, Roberts AD. Surface energy and the contact of elastic solids.
Proc R Soc Lond. 1971;A324:301–313.

[12] Violano G, Afferrante L. Adhesion of compliant spheres: an experimental investigation.
Procedia Struct Integr. 2019;24:251–258.

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY 9


	Abstract
	Introduction
	Spherical contact mechanics theory
	Viscoelasticity
	Muller’s approximate solution

	Numerical results and fittings
	Conclusions
	Disclosure statement
	Funding
	References


