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Abstract: Normal mode analysis (NMA) with coarse-grained model, such as elastic network model (ENM), has

allowed the quantitative understanding of protein dynamics. As the protein size is increased, there emerges the ex-

pensive computational process to find the dynamically important low-frequency normal modes due to diagonalization

of massive Hessian matrix. In this study, we have provided the domain decomposition-based structural condensation

method that enables the efficient computations on low-frequency motions. Specifically, our coarse-graining method

is established by coupling between model condensation (MC; Eom et al., J Comput Chem 2007, 28, 1400) and com-

ponent mode synthesis (Kim et al., J Chem Theor Comput 2009, 5, 1931). A protein structure is first decomposed

into substructural units, and then each substructural unit is coarse-grained by MC. Once the NMA is implemented to

coarse-grained substructural units, normal modes and natural frequencies for each coarse-grained substructural unit

are assembled by using geometric constraints to provide the normal modes and natural frequencies for whole protein

structure. It is shown that our coarse-graining method enhances the computational efficiency for analysis of large

protein complexes. It is clearly suggested that our coarse-graining method provides the B-factors of 100 large pro-

teins, quantitatively comparable with those obtained from original NMA, with computational efficiency. Moreover,

the collective behaviors and/or the correlated motions for model proteins are well delineated by our suggested

coarse-grained models, quantitatively comparable with those computed from original NMA. It is implied that our

coarse-grained method enables the computationally efficient studies on conformational dynamics of large protein

complex.

q 2010 Wiley Periodicals, Inc. J Comput Chem 00: 000–000, 2010
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Introduction

Normal mode analysis (NMA) has been one of important simula-

tion tool kit, which allows the quantitative understanding of protein

dynamics such as conformational transitions.1–5 The key feature of

NMA in analysis of protein dynamics is to compute the low-fre-

quency normal modes and the natural frequencies, which are theo-

retically related to conformational fluctuation described by Debye–

Waller factor renowned as B-factors through equilibrium statistical

mechanics theory.6,7 This indicates that, for computationally effi-

cient analysis of protein dynamics, it is a key to find fast the low-

frequency normal modes and/or the natural frequencies. The most

time-consuming process in NMA is the diagonalization of Hessian

(stiffness) matrix based on eigenvalue problem.

In classical NMA, there is other time-consuming process to

find the global equilibrium conformation for a given protein

structure.1 Energy minimization process to find the equilibrium

conformation becomes computationally expensive process as the

protein size is increased. Recently, due to the pioneering work

by Tirion,8 Elastic network model (ENM)8–12 has allowed one

to avoid the energy minimization process, as ENM assumes the

harmonic potential near the native conformation. Specifically,
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ENM regards the protein structure as a harmonic spring network

in such a way that residues within the neighborhood (cut-off dis-

tance) are connected by harmonic springs with a single force

constant parameter. In the similar spirit, Bahar and coworkers

have introduced the Gaussian network model (GNM),9,10 which

is one-dimensional version of ENM, and/or Anisotropic network

model (ANM)11 spiritually identical to ENM. It is remarkably

shown that conformational fluctuation behavior of proteins is

well depicted by ENM, quantitatively comparable with experi-

mental data.8–11 This is attributed to the role of native topology

on the protein dynamics, that is, the conformational dynamics is

governed by native topology but not the shape of potential

energy.3,5 This conjecture was validated by Teeter and Case,13

who showed that low-frequency normal modes of a protein are

insensitive to details of potential fields. Further, Ma and co-

workers14 have showed that perturbation of Hessian matrix for a

protein structure does not induce the significant variations in

low-frequency normal modes, as long as native topology of a

protein structure is conserved during the perturbation. Moreover,

it was importantly reported that low-frequency normal modes

obtained from ENM are highly correlated with conformational

changes.15–17 Onuchic and coworkers18,19 have used the low-fre-

quency normal modes computed from ENM to find the confor-

mational transition pathways in such a way that protein structure

is perturbed along the low-frequency normal modes with a con-

straint. In the similar manner, Bahar and coworkers20–23 have

reported that conformational changes of proteins can be acquired

from the perturbation of protein structure along the dominant

low-frequency normal modes. Karplus and coworkers24 have

studied the conformational changes of myosin, in the similar spi-

rit, by using low-frequency normal modes along which protein

structure is deformed. Kidera and coworkers25 have described

the conformational changes of proteins using perturbation theory

using low-frequency normal mode computed from ENM.

Despite theoretical simplicity and robustness in the prediction

of conformational dynamics, ENM may be computationally

unfavorable for large protein complex because of computation-

ally expensive process to diagonalize the Hessian matrix. One of

the pioneering works to attempt the computational improvement

in analysis of conformational dynamics is suggested by Doruker

and coworkers.26–28 In their studies,26–28 ENM structure for pro-

tein is empirically reduced in such a way that protein structure

is described by nodal points (fewer than total number of resi-

dues), within the neighborhood, that are connected by harmonic

springs. It is remarkably shown that coarse-grained structure

(i.e., more coarsened than ENM) enables the computationally ef-

ficient description on conformational fluctuation of protein. In

the similar spirit, Eom et al.29–31 have suggested the model con-

densation (MC) that allows the coarse graining of ENM by using

low-rank matrix approximation inspired from the skeletonization

provided by Rokhlin and coworkers.32 Further, they have also

developed the multiscale ENM33 such that a region near func-

tional sites is described by refined elastic network, whereas the

remaining region is depicted by coarse-grained elastic network.

Recently, Doruker and coworkers27,34 have introduced the multi-

resolution elastic network such that a region near functional sites

is described by high-resolution (e.g., atomic resolution) elastic

network, whereas the remaining region is delineated by classical

ENM (or even coarsened ENM). It is suggested that dynamic

motion of functional domains (e.g., loop) can be well described

with computational efficiency. It is also shown that conforma-

tional changes of protein are computationally efficiently depicted

by multiresolution ENM. Further, Bahar and Chennubhotla35

have introduced the coarse-graining method applicable to protein

structure by using Markov statistical method. They have also

studied the allosteric signal transduction related to conforma-

tional transitions by using the Markov method.36 In addition, Lu

and Ma37 have recently reported the minimalist network model

(MNM) that is able to construct elastic network structure from

details of atomic structure. MNM enables one to establish not

only the residue-level ENM from atomistic structural model but

also the coarsened ENM.

In recent years, Ma and coworkers38 have used the substruc-

ture synthesis method (SSM) for computationally efficient analy-

sis of conformational dynamics. In a similar spirit, Eom and co-

workers39,40 have suggested the hierarchical component mode

synthesis (hCMS) that allows the computationally effective stud-

ies on conformational dynamics. The key idea of SSM and/or

hCMS is to decompose the protein structure into several sub-

structural units for which NMA is implemented.41 Once the nor-

mal modes and the frequencies for each substructural unit are

obtained, such modes and frequencies are assembled based on

geometric constraint to find the low-frequency normal modes

and their corresponding frequencies for whole protein structure.

It is shown that the domain decomposition methods such as

SSM and/or hCMS improve the computational efficiency to esti-

mate the B-factors of proteins, quantitatively comparable with

those computed from original NMA.

In this study, we have suggested the novel coarse-graining

method that combines the MC method29–31 and domain

decomposition method such as hCMS.39,40 Specifically, a

protein structure is decomposed into several substructural

units, and then each substructural unit is coarse grained by

MC method. NMA is implemented in each coarse-grained

substructural unit, and then normal modes and their corre-

sponding frequencies for each substructural unit are

assembled based on geometric constraints to find the low-fre-

quency normal modes and their corresponding frequencies

for a whole protein structure. For robustness of our method,

we have considered �100 protein structures composed of

�104 residues as model systems. It is remarkably shown that

our coarse-graining method enhances the computational effi-

ciency to estimate the conformational fluctuation (e.g., B-fac-

tors), quantitatively comparable with those computed from

original NMA. Specifically, the computing time to evaluate

B-factors of model proteins is enormously reduced (when

compared with original NMA or even coarse-grained ENM

by MC), whereas the correlation between B-factors obtained

from experiment and our coarse-grained method is almost

identical to that between experiments and original NMA

(with ENM). This validates the robustness of our coarse-grai-

ning method that is capable of computationally efficient

analysis of large protein dynamics. It is implied that our

coarse-graining method may be applicable to biological mac-

romolecules and/or large chemical system for quantitative

description of dynamic behavior of such structures.

2 Kim, Na, and Eom • Vol. 00, No. 00 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc



Theory and Model

Elastic Network Model

ENM assumes that protein structure can be represented by har-

monic spring network such that the residues within the neighbor-

hood are connected by harmonic springs with identical force

constant.5,8–11 Despite its simplicity, ENM is very robust in pre-

dicting conformational fluctuation (quantitatively comparable

with that obtained from experiment), because ENM is sufficient

to describe the protein native topology that plays a vital role

on protein dynamics.5,13,14 The potential field, V, for ENM is

given by5,8–11

V ¼ c
2

XN
i¼1

XN
j6¼i

ri � rj
�� ��� r0i � r0j

��� ���h i2
� H rc � r0i � r0j

��� ���� �
(1)

where c is a force constant for a harmonic spring, N is the total

number of residues, ri is the coordinates of ith residue (a carbon

atom), rc is the cut-off distance that defines the protein topology,

H(x) is the Heaviside unit step function defined as H(x) 5 0 if x
\ 0; otherwise H(x) 5 1, and superscript 0 indicates the equilib-

rium conformational state. Here, the cut-off distance is usually

in the range of 7–12 Å, which is suitable to describe the protein

topology.11

To find the conformational fluctuation, NMA has to be

implemented. For implementation of NMA, the stiffness (Hes-

sian) matrix has to be computed from a potential field given by

Eq. (1). The stiffness matrix K for ENM is composed of 3 3 3

block matrices Kij given as11,40,42

Kij ¼ � cH rc � r0i � r0j

��� ���� � r0i � r0j

� �y
r0i � r0j

� �
r0i � r0j

��� ���2
2
664

3
775

3 1� dij
� �� dij

XN
r 6¼i

Kir ð2Þ

Here, dij is the Kronecker delta defined as dij 5 1 if i 5 j;
otherwise dij 5 0, and a symbol y represents the transpose of a

column vector.

Harmonic approximation43,44 provides the equation of motion

for protein dynamics such as M(d2R/dt2) 1 KR 5 0, where M

is the mass matrix for alpha carbon atoms (i.e., diagonal matrix),

R is a column vector representing the atomic coordinates of

alpha carbon atoms, i.e., Ry 5 [r
y
1, r

y
2, . . . r

y
N], and K is the stiff-

ness matrix composed of block matrices Kij given by Eq. (2).

For vibration of protein structure, the atomic coordinates R can

be assumed as R 5 uexp[ixt],45 where x is the natural fre-

quency and u is its corresponding normal mode. With assump-

tion of M 5 mI, where m is the molecular weight of alpha car-

bon atom and I is the 3N 3 3N diagonal matrix, the equation of

motion becomes the eigenvalue problem: Ku 5 x2 mu : ku,
where k is the eigenvalue.

Equilibrium statistical mechanics theory6,7 enables the com-

putation of fluctuation matrix Q based on the eigenvalues and

their corresponding normal modes for stiffness matrix K such as

Q ¼ R� R0ð Þy R� R0ð Þ
D E

¼
X3N
k¼7

kBT

kk
u
y
k uk (3)

where hRi indicates the ensemble average (time average) of

quantity R, and R0 is the atomic coordinates of alpha carbon

atoms at equilibrium conformation, i.e., R0 5 \R[. Herein, it

should be noticed that six zero-normal modes corresponding to

rigid body motions are excluded for computing the fluctuation

matrix. The mean square fluctuation for ith alpha carbon atom is

then given as

hjri � r0i j2i ¼ Q3ði�1Þþ1; 3ði�1Þþ1 þQ3ði�1Þþ2; 3ði�1Þþ2

þQ3ði�1Þþ3; 3ði�1Þþ3:

The B-factor for ith alpha carbon atom can be easily com-

puted from a relation of Bi 5 (8p2/3) h|ri 2 r0i |
2i.

Domain Decomposition-Based Structural Condensation

For computationally efficient analysis of protein dynamics, we

have previously suggested the coarse-graining methods such as

MC29–31 and/or hCMS.39,40 The key feature of MC is to reduce

the degrees of freedom, and consequently, decrease the size of

stiffness matrix. On the other hand, the basic idea of hCMS is

to decompose the protein structure into several substructural

units, and then NMA is implemented in each substructural unit

rather than whole structure. In this study, we have developed

the novel coarse-graining scheme, which enhances the compu-

tational efficiency when compared with previous coarse-grai-

ning scheme such as MC, by coupling two features of MC

and hCMS.

Figure 1 shows the schematic illustration of our coarse-grai-

ning scheme, that is, domain decomposition-based structural

condensation. First, a protein structure is decomposed into sev-

eral substructural units (e.g., two substructural units in Fig. 1).

Subsequently, we have used the MC that allows the reduction

of degrees of freedom for each substructural unit. NMA is

then implemented to coarse-grained substructural units. Finally,

natural frequencies and normal modes for each substructural

unit are assembled by using geometric constraint. Each pro-

cess for our suggested coarse-graining scheme is summarized

as below.

For straightforward demonstration, we decompose the protein

structure into two substructural units. Here, it should be kept in

mind that substructural unit should have the sufficient degrees of

freedom such that degrees of freedom for substructural unit are

much larger than the degrees of freedom for interface between

two substructural units. If the degrees of freedom for substruc-

tural unit are comparable with the degrees of freedom for

interface (i.e., under constraints), the dynamic motion of such a

substructural unit would be constrained, which leads to inability

to describe the motion of substructural unit.40 Herein, constraints

for residues (colored as green in Fig. 1) belonging to interface

between two substructural units are that displacement field for

such residues is continuous.

Now, for convenience, the constraint for interface between

substructural units is not considered at this moment. Then, the
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Journal of Computational Chemistry DOI 10.1002/jcc



potential energy for a system composed of two substructural

units without application of constraints is given by

V0 ¼ 1

2
v
y
AKAvA þ v

y
BKBvB

� �
(4)

where Ki and vi represent the stiffness matrix and the displace-

ment field for ith substructural unit (i.e., i 5 A or B), and prime

indicates that constraints imposed to interface are not applied at

this moment. In the similar manner, the kinetic energy for a

system is represented in the form of

T0 ¼ 1

2
_v
y
AMA _vA þ _v

y
BMB _vBÞ

�
(5)

Here, a symbol dot indicates the time derivative, and Mi is

the mass matrix for ith substructural unit.

Then, we use the MC that enables the coarse-graining of

each substructural unit. We partition the residues for a substruc-

ture into two sets of residues, one of which is maintained dur-

ing MC while the rest is eliminated during MC. The poten-

tial energy for a substructural unit A can be represented in the

form of

V0
A ¼ 1

2
v
y
AKAvA ¼ 1

2 vaA
� �y

v
b
A

� �y� �
Kaa

A K
ab
A

K
ba
A K

bb
A

" #
vaA
v
b
A

� �
(6)

where Greek symbols a and b indicate the set of master residues

(that are maintained during MC) and the set of slave residues

(that are supposed to be eliminated during MC), respectively.

Based on the MC suggested in ref. 29, the effective stiffness ma-

trix for coarse-grained substructural unit A is given by

�KA ¼ Kaa
A �K

ab
A K

bb
A

� ��1

K
ba
A (7)

In the similar manner, it is straightforward to find the

effective stiffness matrix for coarse-grained substructural unit

B. In addition, the effective mass matrix for coarse-grained

substructural unit A can be represented in the form of MA 5
mIaA, where m is the molecular weight of alpha carbon atom,

and IaA indicates the (NA/n) 3 (NA/n) identity matrix with NA

being the total number of alpha carbon atoms for substructural

unit A (before coarse graining) and n being the degrees of MC

(e.g., n 5 2, 3, . . ..). As a consequence, the potential energy for

a system composed of coarse-grained substructural units is given as

V0 ¼ 1

2
vaA
� �y �KAv

a
A þ vaB

� �y �KBv
a
B�

�
(8)

Here, vaA represents the displacement field for master resi-

dues in substructural unit A. Then, the displacement field

vaA(x
a
A, t) where xaA is the coordinates of master residues

of substructural unit A, is assumed to be in the form of

vaA(x
a
A, t) 5 FA(x

a
A) � zaA(t), where FA is the (NA/n) 3 (NA/n)

matrix whose column vector indicates the normal mode of

effective stiffness matrix KA, i.e., KAFA 5 FA LA. Here, LA

is the diagonal matrix whose component is the eigenvalue of

Figure 1. Schematic illustration of domain decomposition-based structural condensation method is

shown. First, a protein structure is decomposed into two substructural units, and then each substructural

unit is coarse grained by using MC method. Subsequently, NMA is implemented to each coarse-grained

substructural unit. Then, by using geometric constraints for interface between two substructural units, the

normal modes and their corresponding natural frequencies for coarse-grained substructural units are

assembled. Here, green-colored residues belong to the interface between two substructural units. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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effective stiffness matrix KA. With linear transformation, the

potential energy and the kinetic energy without geometric con-

straints are given by

V0 ¼ 1

2
zaA
� �y

zaB
� �yh i KA 0

0 KB

� �
zaA
zaB

� �
� 1

2
zyKz (9a)

T0 ¼ 1

2
_zaA

� �y
_zaB

� �yh i U
y
A
�MAUA 0

0 U
y
B
�MBUB

" #
_zaA
_zaB

� �
� 1

2
_zyD _z

(9b)

Here, it should be noticed that the transformed effective mass

matrix for a coarse-grained system, D, is not a diagonal matrix.

To find the natural frequencies and their corresponding normal

modes for a coarse-grained system, we have to impose the con-

straints to the interface, which is the assembly process. Specifi-

cally, the displacement field at interface between two coarse-

grained substructural units should be continuous. Such constraints

for interface can be represented in the form of Pz 5 0. Here, a

vector z has the redundant degrees of freedom, since the alpha car-

bon atoms belonging to interface were redundantly enumerated.

The constraint equation is then given as Pz : P1s 1 P2y 5 0,

where s is the independent variable and y is the dependent vari-

able. The detailed procedure to obtain the matrices P, P1, and P2,

which represent the geometric constraints, is described in Support-

ing Information. After imposition of constraints, the potential

energy and the kinetic energy become

V ¼ 1

2
sy ByKB
� �

s � 1

2
syLs (10a)

T ¼ 1

2
_sy ByDB
� �

_s � 1

2
_syG_s (10b)

where the matrix B is the constraint matrix defined as

B ¼ I

�P�1
2 P1

� �
(10c)

Here, matrices L and G indicate the stiffness matrix and the

mass matrix, represented in the space spanned by normal modes

of coarse-grained substructural units, respectively. The potential

energy and the kinetic energy given by eqs. [10(a)] and [10(b)],

respectively, are the exact form for a coarse-grained system

composed of coarse-grained substructural units, as the geometric

constraints are prescribed.

NMA for a coarse-grained protein structure is represented as

the eigenvalue problem as follows: LU 5 GUX, where U is the

modal matrix and X is the diagonal matrix whose components

are the eigenvalues of a coarse-grained protein structure. To

describe the protein dynamics based on low-frequency normal

modes, the modal matrix U has to be transformed to the matrix

W, whose column vectors represent the normal modes, given as

W 5 FBU, where Fy 5 [F
y
A F

y
B]. Then, the conformational dy-

namics of coarse-grained protein structure can be easily under-

stood from equilibrium statistical mechanics theory that provides

the fluctuation matrix given by Eq. (3).

Results and Discussion

Model Proteins

For validation of our coarse-graining method as well as its

robustness, we have considered �100 protein complexes that

consist of �104 residues. The smallest protein complex which

we took into account, is the hemoglobin composed of 572 resi-

dues. The largest protein complex considered in this study is the

glutamate synthase comprised of 11,568 residues. Most ([90%)

of protein complexes taken into account have [103 residues. The

details of model proteins are suggested in Supporting Information.

Model proteins are treated with ENM that straightforwardly pro-

vides the stiffness matrix. The parameters of ENM are cut-off

distance that is prescribed as �10 Å and force constant that is

determined by fitting of B-factors computed from ENM and those

obtained from experiments. The force constants of model proteins

are summarized in (Supporting Information) Figure S.2.

B-factors

For reliability and robustness of our coarse-graining method, we have

compared the B-factors of �100 model proteins computed from our

coarse-graining method with those obtained from experiments (see

also Supporting Information, Fig. S.3). For quantitative comparison,

we have introduced the correlation parameter r defined as46

r ¼
PN
i¼1

Bexp
i � Bexp

i

� 	� �
Bsim
i � Bsim

i

� 	� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Bexp
i � Bexp

i

� 	� �2 PN
j¼1

Bsim
i � Bsim

i

� 	� �2s (11)

where Bexp
i and Bsim

i represent the B-factors for ith residue

obtained from experiments and simulations (e.g., original

Figure 2. Histogram of correlations between B-factors (for�100 model

proteins) obtained from experiments and ENM is presented. In addition,

the histogram of correlations between B-factors obtained from experi-

ments and our proposed coarse-graining (CG) method is also shown.

[Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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NMA or our coarse-grained method), respectively. Figure 2

depicts the histogram of correlations between B-factors

obtained from experiment and our coarse-graining method for

�100 large protein structures. A histogram of the correlation

between B-factors obtained from experiment and original

NMA for �100 model proteins is also presented in Figure 2.

As stated earlier, in this study, we have only considered the

large protein complexes composed of �104 residues. It is

remarkably shown that the histograms of two correlations

(i.e., correlation between experiment and original NMA and

correlation between experiment and our coarse-graining

method) are similar to each other. This indicates that the per-

formance in prediction of B-factors by our coarse-graining

method is close to that by original NMA. The number of pro-

teins having the correlation of [0.5 is 50 (out of 95) by

using our coarse-graining method, whereas the number of pro-

teins have a correlation of [0.5 is 68 (out of 95) based on

original NMA with ENM.

For further evaluation of robustness of our coarse-graining

method, we have taken into account the correlation between

B-factors computed from our coarse-grained method and

NMA with ENM. Figure 3 shows the histogram of correlation

between B-factors obtained from our coarse-graining method

and NMA with ENM for 100 model proteins. It is interest-

ingly shown that the correlation between our coarse-graining

method and NMA with ENM is relatively high. Remarkably,

the percentage of proteins having the correlation (between our

coarse-graining method and NMA with ENM) of [0.7 is

87%. This indicates that the B-factors computed from our

coarse-graining method are well correlated with those esti-

mated from NMA with ENM.

Low-Frequency Normal Mode

For robustness of our coarse-graining scheme, based on 100

model proteins, we take into account the correlation between

lowest-frequency normal modes obtained from ENM and our

coarse-graining method. The lowest frequency normal modes,

which are computed from NMA, MC (our previous method29–31),

and our current coarse-graining method, respectively, for some

model proteins are presented in Figure S.4. Figure 4 shows the

histogram of correlations (between lowest frequency normal

modes computed from ENM and our coarse-graining method)

for 100 model proteins. The percentage of proteins having the

correlation of [0.7 is 77%. High correlations of [0.9 (between

normal modes computed from ENM and our coarse-grained

model) are found in 63% of model proteins. This implies that our

coarse-graining method is allowable for quantitative description

Figure 4. Histogram of correlations between lowest-frequency nor-

mal modes estimated from ENM and our proposed coarse-graining

(CG) method, for 100 model proteins, is presented. [Color figure

can be viewed in the online issue, which is available at www.inter-

science.wiley.com.]

Figure 5. Computation times for estimation of B-factors using orig-

inal NMA with ENM, MC, and our coarse-graining (CG) method

for 20 representative model proteins, are presented. [Color figure

can be viewed in the online issue, which is available at www.inter-

science.wiley.com.]

Figure 3. Histogram of correlations between B-factors computed

from ENM and our proposed coarse-graining (CG) method for 100

model proteins is presented. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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of low-frequency normal mode relevant to conformational

dynamics.

Collective behaviors found in low-frequency motions for

model proteins are well described by our coarse-graining

method, quantitatively similar to those predicted from NMA

with ENM (see Supporting Information, Fig. S.5). For quantita-

tive comparison, we have introduced the collectivity parameters

(described in Supporting Information). It is remarkably shown

that collective parameters for low-frequency modes, computed

from our coarse-graining method and NMA with ENM, are also

similar to each other. This indicates that our coarse-graining

method is robust in computationally efficient predictions on col-

lective dynamics based on low-frequency motion. Moreover, the

correlated motion predicted from both NMA (with ENM) and

our coarse-graining method is presented in Supporting Informa-

tion (see Supporting Information, Fig. S.6). It is shown that cor-

related motion for protein domains is well depicted by our

coarse-graining method, quantitatively comparable with that

anticipated from NMA with ENM.

Computational Efficiency

To validate the computational efficiency of our coarse-graining

method, we have measured the computing time to calculate the

low-frequency normal modes for large protein complex by using

our coarse-graining method, our previous MC method, and origi-

nal NMA. Here, 20 model proteins are considered such that such

proteins exhibit [103 residues. It is remarkably shown that the

computing time to evaluate low-frequency normal modes is in the

order of [our coarse-graining method] \ [MC method29–31] \
[original NMA] (see Fig. 5). This indicates that our coarse-graining

method, which couples the key feature of MC and hCMS, enhan-

Figure 6. Correlation between B-factors computed from ENM and our coarse-graining (CG) method,

using different number of normal modes of coarse-grained substructural units, is presented. In addition,

the computing time to estimate B-factor by using our coarse-graining (CG) method that uses the differ-

ent number of normal modes of coarse-grained substructural units is shown. (a) Hemoglobin, (b) F0-

ATPase motor protein, (c) F1-ATPase motor protein, and (d) scallop myosin. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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ces the computational efficiency enormously especially for large

protein complex. Herein, the computing time is measured based

on the workstation system with Intel Xeon 2.0 GHz Quadcore 32

and RAM 8 GB.

Conformation Dynamics Described by Normal Modes

Our coarse-graining method allows the computationally efficient

analysis of large protein dynamics by using the key features of

MC and hCMS. The feature of MC is to reduce the degrees of

freedom for protein structure, whereas the key feature of hCMS is

to decompose the protein structure into several substructural units,

and then transform the stiffness matrix in Cartesian coordinates

into that represented in the space spanned by normal modes of

substructural units. In our previous study,40 it is shown that the

reduced space spanned by certain number of normal modes (rather

than all normal modes) of substructural units enhances the compu-

tational efficiency. In this study, our coarse-graining method may

be computationally improved by using the reduced space spanned

by certain number of normal modes. However, it should be also

kept in mind that, if one uses the reduced space spanned by few

low-frequency normal modes, the conformational dynamics of

proteins cannot be well predicted by such reduced space.

We have considered the B-factors for four representative

model proteins computed from ENM and our coarse-graining

method by using reduced space spanned by certain number of nor-

mal modes of substructural units. It is interestingly shown that the

reduced space spanned by\50 low-frequency normal modes does

not enable the description of B-factors. At least [100 normal

modes should be considered for reduced space into which the stiff-

ness matrix is transformed (see Supporting Information, Fig. S.7).

We have also taken into account the correlation between B-factors

computed from ENM and our coarse-graining method by using

reduced space spanned by certain number of normal modes with

their computing times (see Fig. 6). Herein, for convenience, the

model protein structure is decomposed into two substructural

units. Except F1-ATPase, the reduced space spanned by[100 nor-

mal modes (rather than using all normal modes) improves the

computing time to calculate the B-factors, quantitatively compara-

ble with those computed from ENM. As F1-ATPase is decom-

posed into two substructural units, each substructural unit still

exhibits the large degree of freedom which leads to the computa-

tionally expensive process to reduce the structure using MC

method. The computational efficiency for F1-ATPase will be

enhanced when such a large protein is decomposed into several

substructural units rather than two substructural units.

Degree of Domain Decompositions

As presented in our previous study,40 we can decompose a pro-

tein structure into more than two substructural units in our

coarse-graining process, which consists of two dominant proc-

esses of CMS and MC. However, it should be reminded that, if

the structure is decomposed into too many substructural units,

the dynamic behavior of a protein domain cannot be well

described. This is attributed to the fact that decomposition into

many substructural units leads to induce the more constraints on

protein dynamics so as to degrade the dynamic characteristics

such as low-frequency motion. As discussed in our previous

study,40 the appropriate number of decomposition is comparable

with the number of domains in a protein structure.

For brief elucidation, we have considered the dynamic behav-

ior of hemoglobin, described by our coarse-grained models.

Here, our models are constructed such that hemoglobin structure

is first decomposed into Nd substructural units (where Nd 5 2,

4, 8), and then each substructural unit is condensed. Figure 7

depicts the differences between eigenvalues computed from our

coarse-graining methods (using different degree of decomposi-

tion) and NMA with ENM. It is interestingly shown that it is

acceptable until one decomposes the hemoglobin structure into

four substructural units. As shown in Figure 7, if the hemoglobin

structure is decomposed into eight substructural units, the differ-

ence in eigenvalues (corresponding to low-frequency motion)

becomes larger when compared with the cases, where hemoglo-

bin is decomposed into two or four substructural units. This

indicates that it is unacceptable that hemoglobin is decomposed

into more than four substructural units. In other words, it is ac-

ceptable when a protein structure is decomposed into the number

of domains. This is ascribed to the fact that, if a protein struc-

ture is decomposed into more than number of domains, such

decomposition will severely constrain on the low-frequency

functional motion of a protein structure.

Conclusion

In this study, we have suggested the novel coarse-graining

method, that is, domain decomposition-based structural conden-

Figure 7. Differences between eigenvalues, for hemoglobin, com-

puted from NMA with ENM and our coarse-graining methods,

Herein, our coarse-grained models are established such that hemo-

globin structure is decomposed into Nd substructural units, where Nd

5 2, 4, or 8, and then each substructure is condensed. It is shown

that, for Nd 5 8, the differences in eigenvalues corresponding to

low-frequency motions become significant. This indicates that

coarse-graining using Nd 5 8 is inappropriate to describe the low-

frequency motion, related to conformational changes, of hemoglo-

bin. [Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]
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sation method by using the key features of MC method29–31 and

hCMS method.39,40 Specifically, a large protein structure is

decomposed into the several substructural units, and then such

substructural units are coarse grained by using MC. Subse-

quently, the stiffness matrix for protein structure is transformed

into that represented by the space spanned by normal modes of

substructural units. It is clearly shown that domain decomposi-

tion-based structural condensation method allows the computa-

tionally efficient analysis of large protein dynamics. This pro-

posed an approach that can enable the computationally effective

calculations of normal modes relevant to conformational transi-

tion. This approach can be, thus, applicable to the prediction of

conformational transition pathway based on the perturbation of

structure along the low-frequency normal modes. In conclusion,

our proposed approach allows for studying dynamic behavior of

large chemical structures and/or macromolecular structures based

on NMA.
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