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   THE J INTEGRAL 
 
  Fracture Mechanics, with or without Field Theory 
 
 For a crack in an elastic body subject to a load, the elastic energy stored in 
the body is a function of two independent variables:  the displacement of the load, 
and the area of the crack, U Δ,A( ) .  This function of two independent variables 
can be determined by alternative methods: 

1. Experimental method.  Measure the load-displacement curve for a body 
containing a pre-cut crack.  During the measurement, the crack does not 
extend.   Integrate the load-displacement curve to obtain the elastic 
energy U Δ,A( )  for the body with the fixed area of crack.  Repeat the 
procedure for the body with a pre-cut crack of a different area.  This 
method invokes no field theory of elasticity. 

2. Computational method.  Solve the boundary-value problem for a body 
containing a pre-cut crack of a given area.  Calculate the energy density at 
every material particle in the body.  Integrate the energy density overall 
all material particles to obtain the elastic energy for the body with the 
specific area of crack.  Repeat the procedure for the body with a pre-cut 
crack of a different length.  This method requires that the body be 
modeled by a field theory of elasticity.    

   
 The energy release rate is defined as 

   G = −
∂U Δ,A( )

∂A
. 

This definition of the energy release rate assumes that the body is elastic, but 
invokes no field theory of elasticity.  Indeed, the energy release rate can be 
determined experimentally by measuring the load-displacement curves of 
identically loaded bodies with cracks of different areas.  No field need be 
measured. 
    
 The J integral.  Many materials, however, can be modeled with a field 
theory of elasticity.  When a material is modeled by such a field theory, we can 
represent the energy release rate in terms of the field in the body: 
  

  
G = WN1 −TiFi1( )dL∫ . 

The integral is known as the J integral (J for James R. Rice).  This lecture 
describes the J integral, along with examples of calculation.  Uses of the J integral 
are often better appreciated in the context of individual applications, which we 
will describe in later lectures.  In current engineering practice, the field in an 
elastic body is commonly determined by using finite element method.  Once the 
field is determined, the finite element code calculates the J integral, which gives 
the energy release rate.    
 
  Nonlinear Field Theory of Elasticity   
  
 The J integral can be developed for both linear and nonlinear theory of 
elasticity.  The nonlinear theory will be used in class, and the linear theory of will 
be used in a homework problem. 
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 For a detailed development of the field 
theory of elasticity, see 
http://imechanica.org/node/7794.  The main 
ingredients of the theory are as follows. 
 
 Uniaxial deformation.  We proceed 
with our subject incrementally, beginning with 
the simplest structure:  a bar.  When the bar is 
not subject to any force, the cross-sectional 
area is A  and the length is L .  We will call this 
state the reference state.  The bar is then 
subject to an axial force P, and deforms to a 
new state, cross-sectional area a and length l.  
We will call this state the current state.  The 
experimentalist records the force as a function 
of the length.  For an elastic body, the force-
length curve is reversible upon loading and 
unloading. 
 Define the stretch, λ , as the length of the bar in the current state divided 
by the length of the bar in the reference state: 

  
L
l==

statereferenceinlength
statecurrentinlengthλ .  

 When dealing with large deformation, we must be specific about the area 
used in defining the stress.  Define the nominal stress, s, as the force applied to 
the bar in the current state divided by the cross-sectional area of the bar in the 
reference state: 

  
A
Ps ==

state reference  thein area
state current  thein force . 

The nominal stress is also known as the engineering stress, or the first Piola-
Kirchhoff stress. 
 When the bar elongates from length l to length ll δ+ , the force P does 
work lPδ .   Recall the definitions of stress and strain, sAP =  and Ll λ= .  
Consequently the work done by the force is δλδ ALslP = .  Since AL is the volume 
of the bar in the reference state, we note that  

  
statereference theinvolume

statecurrent theinworkofincrement=δλs . 

We say that the nominal stress and the stretch are work-conjugate. 
 We assume that the bar is made of an elastic material.  In the current 
state, denote the elastic energy of the bar by U.  The work done by the force 
equals the elastic energy,  δU = Pδ l .  That is, the elastic energy is the area under 
the force-length curve. 
 Define the nominal density of elastic energy, W, as the elastic energy in 
the bar in the current state divided by the volume of the bar in the reference 
state: 

  
  
W = elastic energy inthe  currentstate

volumein thereferencestate
= U

AL
. 

The nominal density of elastic energy is a function of the stretch, 
 
W λ( ) .  

reference 
state current 

state 

P

P

L
l

A

a
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 For the bar made of an elastic material, the work done by the force equals 
the elastic energy,  δU = Pδ l .  Dividing both sides by the volume of the bar in the 
reference state, AL, we obtain that 
   δW = sδλ . 
According to calculus, this expression is equivalent to 

  
 
s =

dW λ( )
dλ

. 

Once we experimentally determined the force-length curve, we divide the force by 
A and divide the length by L.  This procedure scales the force-length curve to the 
stress-stretch curve.  The area under the stress-stretch curve gives the nominal 
density of elastic energy, 

 
W λ( ) . 

  
 A body is a sum of many small parts.  We next generalize the above 
procedure to a body of an arbitrary shape and subject arbitrary load.  The field 
theory regards the body as a sum of many small pieces.  Each small piece is called 
a material particle, and undergoes a homogeneous deformation. The deformation 
of the body is in general inhomogeneous—that is, the deformation varies from 
one part of the body to another part.  
 In what follows, we will first describe the homogeneous deformation of an 
individual small piece, and then describe the inhomogeneous deformation of a 
body. 
 
 Homogeneous deformation in three dimensions.  We first 
consider a small part of the body.  We list the three ingredients of the theory:  
geometry of deformation, balance of forces, and conditions of thermodynamic 
equilibrium.   
 Geometry of deformation. In the undeformed state, the part is a unit 
cube, with edges coinciding with the coordinates.  Subject to forces on the faces of 
the part, the part undergoes a homogeneous deformation.  In the deformed state, 
the part deforms into a parallelepiped.   
 The deformation maps the three orthogonal edges of the cube to three 
edges of the parallelepiped.  The edges of the parallelepiped are three vectors, 
noted as F

i1
, F

i2
, and F

i3
.  The first subscript indicates the component of each 

vector, and the second subscript differentiates the three edges.  The nine 
quantities F

iK
 together are known as the deformation gradient. 
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 Balance of forces.  Acting on the three pairs of parallel faces of the 
parallelepiped are forces s

i1
, s

i2
, and s

i3
.  The first subscript indicates the 

component of each vector, and the second subscript differentiates the three pairs 
of parallel faces.  The nine quantities s

iK
 together are known as the nominal 

stress.   
 Let N be the unit vector normal to an element of an area in the 
undeformed body.  Define the nominal traction T by the force acting on the 
element of the surface in the deformed body divided by the area of the element in 
the undeformed body.  The balance of forces relates the nominal traction to the 
nominal stress:  
  KiKi NsT = . 
 
 Condition of thermodynamic equilibrium.  We consider a small part of 
the body in thermodynamic equilibrium with external forces and with an 
environment of constant temperature.  We will drop temperature from the list of 
variables.  Let W be the Helmholtz free energy of the parallelepiped.  We say a 
material is elastic if the Helmholtz free energy is a function of the deformation 
gradient, W F( ) .  This function is an input to the field theory of elasticity.  W is 
also known as the nominal density of elastic energy. 
 When the part is in a state of thermodynamic equilibrium, the nominal 
stress relates to the deformation gradient as  

  s
iK
=
∂W F( )
∂F
iK

. 

This equation of states generalizes Hooke’s stress-strain relation. 
 
 Inhomogeneous deformation.  We call each small part of the body a 
material particle.   As the body deforms, each material particle moves in space. 
Now focus on a particular material particle in the body.  When the body is in the 
undeformed state, the material particle is at a place in the space, of coordinate X.  
When the body is in a deform state, the same material particle moves to a 
difference place in space, of coordinate x.  The function x X( )  fully describes the 
deformation of the body.  The deformation gradient relates to the deformation as  

  F
iK
=
∂x
i
X( )

∂X
K

. 

When the deformation of the body is homogeneous, the deformation gradient is 
the same for all material particles in the body.  In general, the deformation of the 
body is inhomogeneous, so that the deformation gradient varies from one 
material particle to another.  That is, the deformation gradient as a function of 
material particle, F

iK
X( ) .  

 In general, the stress in the deformed body is inhomogeneous, and we 
write the stress as a function of material particles, s

iK
X( ) .  The balance of forces 

requires that the field of stress satisfy 
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∂s
iK
X( )

∂X
K

=0 . 

Here we neglect body force and inertia. 
   
 Elastic energy of the body.  When a body is in equilibrium with a set 
of applied forces, the field in the body is in general inhomogeneous.  The 
Helmholtz free energy of the body is the sum of energy of all material particles:  
  ∫= WdVU .   

The energy density is of the body in the deformed state, but the integration is 
carried over the volume of the body in the reference state.  
 
 A composite system that does not receive work from the rest of 
the world.  Consider a body subject to a constant force P, with Δ  being the 
displacement of the force.  We can always picture the constant force as a hanging 
weight.  The potential energy of the weight is −PΔ .  The body and the weight 
together form a composite system.  The composite exchanges with the 
environment by heat, but not by work.  The Helmholtz free energy of the 
composite is 
   Π =U −PΔ . 
This quantity is known as the potential energy of the body in mechanics.   
 The general idea is to form a composite system that does not receive any 
work from the rest of the world.  We have considered two examples: 

1. When a body is loaded by a fixed displacement, the body itself is 
composite system, and the free energy of the system is U.   

2. When a body is loaded by a hanging weight, the body and the weight 
together form a composite system, and the free energy of the system is 
U −PΔ .   

We can also consider yet another example.  When a body in series with a spring is 
loaded by a fixed displacement, the body and the spring together form a 
composite system, and the free energy of the system is the sum of that of the body 
and that of the spring. 
 
  Energy Release Rate    
 
 Express energy release rate in terms of field variables.  Model a 
body with the nonlinear theory of elasticity.  Under the plane-strain or plane-
stress conditions, we represent the body by a region in the plane, and the 
boundary of the body by a curve in the plane. Consider a sample of unit thickness.  
Each point on the boundary is subject to constant nominal traction T

i
.  The 

potential energy per unit thickness of the body is 
  ( ) ( ) ( )∫∫ −=Π dLxTdAW ii XXF  

The first integral extends over the body, and the second integral extends over the 
boundary of the body. 
 Now compare two specimens, one having a crack of length C  in the 
undeformed state, and other having a crack of length C +δC  in the undeformed 
state.  The cracks are in the direction of coordinate X

1
. The two specimens are of 

the same general shape.  In the deformed states, the cracks in the two specimens 
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are traction-free, and external boundaries of 
the specimens are subject to the same 
tractions.  The two specimens have different 
potential energies, Π C( )  and Π C +δC( ) . 
 In the undeformed state, we translate 
one specimen relative to the other by a 
distance δC , so that the tips of the cracks in 
the two specimens coincide. Consider an 
element of the boundary dL.  Let N be the unit 
vector normal to the element.  As one 
specimen translates relative to the other by a 
distance δC , the element dL sweeps across a 
region in the shape of a parallelogram.  The 
area of the parallelogram is δCN

1
dL .  In the 

deformed states of the two specimens, the 
parallelogram contributes a difference in the 
elastic energies in the two specimens, 
−WN

1
δCdL .   

 Consider a set of material particles.  In 
the undeformed state, the set of particles forms 
a straight segment δC .  In the deformed state, 
the set of material particles forms a segment 
represented by vector F

i1
δC .  The applied force acting on the element is  TidL .  

Consequently, the applied force acting on the element dL gives a difference in the 
potential energies of the two specimens, F

i1
δCT

i
dL . 

 Combining the above contributions, we obtain the difference in the 
potential energies of the two specimens:         
  Π C +δC( )−Π C( ) = − WN1δCdL∫ + T

i
F
i1
δCdL∫ . 

The first term is due to the elastic energy of the body, and the second term is due 
to the potential energy of the applied traction. 
 By definition, the energy release rate is 

  G = −
Π C +δC( )−Π C( )

δC
. 

The partial derivative means that we vary the length of the crack, but keep the 
loading conditions fixed.  Comparing the above two expressions, we obtain that 
  G = WN

1
−T

i
F
i1( )dL∫ . 

This equation expresses the energy release rate in terms of field variables. 
 
  Properties of the J Integral 
   
 The J integral.  Let us focus on the integral: 
  J = WN

1
−T

i
F
i1( )dL∫ . 

The path of integration is a curve, drawn in the body in the undeformed state, 
connecting two material particles.  The unit vector N is normal to the path of 
integration.  

C +δC

C

δC
dL

N
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 Recall the relations in the theory of 
elasticity: F

iK
=∂x

i
X( ) /∂XK , s

iK
=∂W F( ) /∂FiK  

and KiKi NsT = .  The J integral can also be 
written as 

  ( ) ( )∫ ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
∂

∂−= dL
X
x

F
WNWNJ i

iK
K

1
1

XF . 

The integral is a functional of ( )Xx , the field 
that describes the deformation of the body.  
The dummy variable of integration is X, the 
coordinates of material particles in the 
undeformed body.   
  
 Yet another alternative expression of the J integral.  A material 
particle occupies a place of coordinate X in the undeformed state, and occupies a 
place of coordinate x in the deformed state.  The displacement of the material 
particle is  
  u = x X( )−X . 
Thus 

   
∂u
i
X( )

∂X
1

=
∂x
i
X( )

∂X
1

−δ
i1

. 

Inserting this expression into the definition of the J integral, we obtain that 

  J = WN
1
−T

i

∂u
i
X( )

∂X
1

#

$

%
%

&

'

(
(
dL∫ . 

In reaching this expression, we have used the following relation: 
  T

1
dL∫ =0 . 

This relation results from the balance of forces. 
 
 Divergence theorem.  In the following development, we will need a 
result in calculus:  the divergence theorem.  Consider a region in a plane.  Let 
f X( )  be a smooth function defined in the region, and N

K
 be the unit vector 

normal to the curve around the region.  The divergence theorem is    

 
  

∂ f X( )
∂XK

dA∫ = fN K dL∫ . 

The integral on the left is over the area of a region, and integral on the right is 
over the curve surrounding the region.    
 
 The J integral is path-independent.  
The two material particles A and B can be 
connected by numerous paths.  For any two 
paths, so long as no singularity exists between 
them, the J integrals along the two paths are 
identical. 

A 

B 

A 

B 
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 To prove this statement, reverse the direction of one path, so that the two 
paths form a closed contour.  This closed contour is used as a path of integration.  
We need to prove that the J integral vanishes if the closed contour encloses no 
singularity.  The proof invokes the divergence theorem, as well as the field theory 
of elasticity.  We show that the second part of the J integral equals the first part: 

  

   

TiFi1 dL∫ = N K siK Fi1 dL∫ recall Ti = siK N K

=
∂ siK Fi1( )
∂XK

dA∫ divergence theorem 

=
∂siK

∂XK

Fi1 + siK

∂Fi1

∂XK

⎛

⎝⎜
⎞

⎠⎟
dA∫

= siK

∂Fi1

∂XK

dA∫ recall 
∂siK

∂XK

= 0

= siK

∂2 xi

∂X1 ∂XK

dA∫ recall FiK =
∂xi X( )
∂XK

=
∂W F( )
∂FiK

∂2 xi

∂X1 ∂XK

dA∫ recall siK =
∂W F( )
∂FiK

=
∂W F( )
∂FiK

∂FiK

∂X1

dA∫

=
∂W F( )
∂X1

dA∫
= W F( )N1 dL∫ divergence theorem

. 

 

 
  The J integral associated with a traction-free crack.  Consider a 
crack in a body subject to a load.  The faces of the crack are traction-free.  In the 
undeformed body, a path of integration starts from a material particle on the 
lower face of the crack, surrounds the tip of the crack, and ends at a material 

 

Undeformed body Deformed body 

C 
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particle on the upper face of the crack.  Because the path encloses the singular tip 
of the crack, the J integral does not vanish.  We can make two statements: 

1. Given the two material particles on the faces of the crack, the J integral is 
independent of the path. 

2. The J integral is the same independent of the choice of the material 
particles on the two faces of the crack. 

 
 Use the J integral to calculate energy release rate in the finite-
element method.  For a crack in an elastic body subject to a load, the energy 
release rate is defined as the decrease in the elastic energy of the body associated 
with extension of the crack by unit area, while the load is held fixed.  We have 
used this definition directly to calculate the energy release rate for a few cases.  In 
each case, we somehow obtain the elastic energy in the body as a function of the 
area of the crack, and then take the partial derivative of this function with respect 
to the area of the crack.   
 This procedure, however, is difficult to apply when we solve the 
boundary-value problem by using the finite-element method.  Let us imagine how 
we might go about it.  For a given area of the crack, we use the finite-element 
method to determine the field in the body, and then integrate to obtain the elastic 
energy stored in the body.  We then change the area of the crack slightly, solve a 
new boundary-value problem, and then obtain the elastic energy in the body.  We 
then take the ratio between the difference in the elastic energy and the difference 
in the area of crack.  Here are two obvious difficulties: 

• In each boundary-value problem, the field is singular around the front of 
the crack. 

• The elastic energies in the two bodies are large quantities compared to 
their difference.  To calculate the energy release rate this way would 
require us to determine the field very accurately.    

 
 Both of the above difficulties are avoided if we use the J integral to 
calculate the energy release rate.  The integrand involves the field in the body of a 
fixed crack.  The path of integration needs to enclose the tip of crack, but can be 
chosen to be far away from the tip of the crack. 
 
  Examples 
 
 A long crack in a strip of a material pulled by two rigid grips.  
Rivlin and Thomas (1953) described this experimental setup.  They obtained the 
energy release rate directly from its definition.  The result is 
  ( )λHWG = , 
where H is the width of the undeformed strip, and Hλ  is the width of the 
deformed stripe.  The quantity ( )λHW  can be determined from experimentally 
measured load-displacement curve of a strip with no crack, pulled by two rigid 
grips.   
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 The same result can be obtained by using the J integral along the dotted 
lines indicated in the undeformed strip (Rice, 1968).  Use the J integral in the 
form 

  J = WN
1
−T

i

∂u
i
X( )

∂X
1

#

$

%
%

&

'

(
(
dL∫ . 

The only nonzero contribution comes from the vertical line in the strip ahead of 
the crack.  
 
 Layered materials.  In the above, the material is taken to be 
homogeneous.  When the two material particles are of the same deformation 
gradient, they have the same free energy function—that is, the nominal density of 
free energy is a function the deformation gradient: 
  ( )FWW = . 
The function does not depend on X explicity.   
 For a layered material, which is homogenous in the 1X -direction, but 
inhomogeneous in the 2X -direction, the energy density takes the form 
   ( )2,XWW F= . 
Going through the same steps, you can confirm that the J integral is still path-
independent. 
 Finally consider a generally inhomogeneous material, for which the 
energy density takes the form 
  ( )21 ,, XXWW F= . 
Going through the same steps, you will find that the J integral is path-dependent.  
 
 
 
 
 
 
 
 Detaching highly stretchable materials.  Jinda Tang and Jianyu Li 
are studying the delamination of highly stretchable materials, such as elastomers 
and gels, using a specific experimental setup.  Attach a film to a substrate, and 
leave a detached region as a pre-existing crack.  Both materials are elastic and 
highly stretchable.  When a force pulls the substrate, the tip of the crack blunts.  
When the force reaches some critical value, the crack runs.  The length of the 
crack is large compared to the thicknesses of the film and the substrate, so that 
the crack runs in a steady state, and the energy release rate is independent of the 
length of the crack.  We wish to relate the energy release rate of the crack to the 
applied force. 

H Hλ

substrate 

film 
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 First measure the stress-stretch relations of the film and the substrate 
separately.  When a uniaxial force pulls the film, the nominal stress S

f
 in the film 

relates to the stretch λ  through a curve S
f
λ( ) , and the area under this curve is 

the nominal density of the free energy in the film as a function of the stretch, 
W
f
λ( ) .  Similarly, when a uniaxial force pulls the substrate, the nominal stress 

S
s

 in the substrate relates to the stretch λ  through a curve S
s
λ( ) , and the area 

under this curve is the nominal density of the free energy in the film as a function 
of the stretch, W

s
λ( ) . 

 When the laminate is in the undeformed state, the thickness of the film is 
H
f

, the thickness of the substrate is H
s

, and the width of the film and substrate 
is B.  In the deformed state, a force P pulls the substrate. Far behind the tip of the 
crack, the film is stress-free, and the substrate is in a state of uniaxial stress, with 
the stretch !λ  determined by 
  H

s
S
s

!λ( ) = P . 
Far ahead the tip of the crack, the film and substrate are attached and both have 
the same stretch !!λ , determined by 
  H

f
S
f

!!λ( )+HsSs !!λ( ) = P . 
 Now compare two specimens.  Both specimens have the total length L in 
the reference state.  One specimen has a crack of length C  in the undeformed 
state, and has potential energy  
 Π C( ) =C BHsWs "λ( )−P "λ$

%
&
'+ L−C( ) BH fWf

""λ( )+BHsWs ""λ( )−P ""λ$
%

&
'   

in the deformed state.   
 The other specimen has a crack of length C +δC  in the undeformed state, 
and has potential energy 
Π C +δC( ) = C +δC( ) BHsWs "λ( )−P "λ$

%
&
'+ L−C −δC( ) BH fWf

""λ( )+BHsWs ""λ( )−P ""λ$
%

&
'  

in the deformed state.   
 By definition, the energy release rate is the reduction in the potential 
energy associated with unit increase of the crack area:  

  G = −
Π C +δC( )−Π C( )

BδC
, 

giving that  

  G =H
f
W
f

!!λ( )+HsWs !!λ( )−HsWs !λ( )+ P
B

!λ − !!λ( ) . 

 In writing the potential energy of each specimen, we have assumed that 
the detached substrate is in a homogeneous state of stretch !λ , and the attached 
laminate is in a homogeneous state of !!λ .  In the region around the tip of the 
crack, however, the field is inhomogeneous.  Because the crack is in a steady 
state, the inhomogeneous field in this region is identical in the two specimens.  
Consequently, this inhomogeneous field does not affect the calculation of the 
energy release rate. 
 We can also use the J integral to obtain the above expression for the 
energy release rate. 
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 These relations together relate the energy release rate to the applied force 
P.  We measure the stress-stretch curves of the two materials, S

f
λ( )  and S

s
λ( ) .  

The areas under these curves give the nominal densities of energy of the two 
materials, W

f
λ( )  and W

s
λ( ) .  The applied force P determines the stretch !λ  in 

the detached substrate by H
s
S
s

!λ( ) = P , and determines the stretch !!λ  in the 

attached laminate by H
f
S
f

!!λ( )+HsSs !!λ( ) = P . 
 
 A thin, compliant film on a substrate.  In a limiting case that the 
substrate is much stiffer than the substrate, the attached film does not constrain 
the substrate, so that the stretch in the detached substrate is nearly the same as 
the stretch in the attached laminate, !λ ≈ !!λ .  In this limiting case, the energy 
release rate reduces to 
  G =H

f
W
f
λ( ) . 

When the stretch is of order unity, the free energy density is on the order of the 
elastic modulus, E.  For a hydrogel, a representative value is E = 104 Pa.  For the 
film of thickness H

f
 = 0.1 mm, the energy release rate is on the order of 1 J/m2.  

For given materials, the laminate will not detach if the film is thin and stretch is 
small. 
 
 A stiff film on a compliant substrate.  In this limiting case, the 
attached laminate does not deform, !!λ  = 1, so that the energy release rate is 
entirely due to the detached substrate: 
  G =H

s
S
s

!λ( ) !λ −W
s

!λ( )#
$

%
& . 

 For experimental details, see Jingda Tang, Jianyu Li, Joost J. Vlassak, 
Zhigang Suo.  Adhesion between highly stretchable materials.  Soft Matter 12, 
1093-1099 (2016). http://www.seas.harvard.edu/suo/papers/350.pdf  
 
  Historical Notes 
 Eshelby studied the change in the potential energy associated with the 
movement of a singularity.  He called this change the force on the singularity, and 
expressed this force as an integral.  He did not relate his idea to the Griffith 
theory of cracks.  Rice and Cherepanov independently discovered the J integral 
within the context of fracture mechanics.  
 

• J.D. Eshelby, The force on an elastic singularity.  Phil. Trans. Roy. Soc. 
London A 244, 87-111 (1951). 

• J.D. Eshelby, The continuum theory of lattice defects.  Solid State Physics 
3, 79-144 (1956).   

• J.R. Rice, A path independent integral and the approximate analysis of 
strain concentration by notches and cracks.  J. Appl. Mech. 35, 379-386 
(1968).  
http://esag.harvard.edu/rice/015_Rice_PathIndepInt_JAM68.pdf 

• J.R. Rice, Mathematical analysis in the mechanics of fracture, Chapter 3 
of Fracture:  An Advanced Treatise (Vol. 2, Mathematical Fundamentals) 
(ed. H. Liebowitz), Academic Press, N.Y., 1968, pp. 191-311.                                                                   
http://esag.harvard.edu/rice/018_Rice_MathAnalMechFract_68.pdf 



ES 247 Fracture Mechanics http://imechanica.org/node/7448 Zhigang Suo 

4/8/16 13  
 

• G.P. Cherepanov, Crack propagation in continuous media.  Journal of 
Applied Mathematics and Mechanics 31, 503 (1967). 

• G.P. Cherepanov, Cracks in solids.  International Journal of Solids and 
Structures 4, 811-831 (1968). 

• S.J. Chang, Path-independent integral for rupture of perfectly elastic 
materials.  Journal of Applied Mathematics and Physics 23, 149-152 
(1972). 


