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Abstract  

This paper presents a computational reliable optimization approach for internal cooling channels 

in Ceramic Matrix Composite (CMC) under thermal and mechanical loadings. The algorithm finds 

the optimal cooling capacity of all channels (which directly minimizes the amount of coolant 

needed). In the first step, available uncertainties in the constituent material properties, the applied 

mechanical load, the heat flux and the heat convection coefficient are considered. Using the 

Reliability Based Design Optimization (RBDO) approach, the probabilistic constraints ensure the 

failure due to excessive temperature and deflection will not happen. The deterministic constraints 

restrict the capacity of any arbitrary cooling channel between two extreme limits. A “series 

system” reliability concept is adopted as a union of mechanical and thermal failure subsets. Having 

the results of the first step for CMC with uniformly distributed carbon (C-) fibers, the algorithm 

presents the optimal layout for distribution of the C-fibers inside the ceramic matrix in order to 

enhance the target reliability of the component. A sequential approach and B-spline finite elements 

have overcome the cumbersome computational burden. Numerical results demonstrate that if the 

mechanical loading dominates the thermal loading, C-fibers distribution can play a considerable role 

towards increasing the reliability of the design. 

Keywords: A. Ceramic-matrix composites (CMCs); B. Thermomechanical; C. Finite 

element analysis (FEA); C. Statistical properties/methods; Optimization 

 

1. Introduction 

The main disadvantage of monolithic ceramics is their low fracture toughness. Thus, carbon fibers 

are added to increase their damage tolerance while maintaining other advantages (for instance lower 
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density and higher maximum operating temperature compared to metals or high erosion and 

corrosion resistance). 

As a common reinforcing ingredient, C-fibers degrade in an oxidizing atmosphere beyond 450 

degrees Celsius [1]. Although multilayer protection coatings hinder degradation to a degree, the 

coating process may itself result in formation of interphasial cracks. Preventing high temperature 

zones in the component might be a better solution. Such a solution however calls for a 

multidisciplinary approach accounting for material selection, coating and internal cooling design.  

This paper presents a computational framework for an efficient and reliable internal cooling 

network for a typical component made of CMC. Although some attempts to optimize internal cooling 

system of a monotonic metallic turbine blade exist, the currently known approaches are limited to 

using heuristic optimization methods, particularly Genetic Algorithm (GA) which is computationally 

expensive. For example, Dennis et al. [2] used parallel genetic algorithm to optimize locations and 

discrete radii of a large number of small circular cross-section coolant passages. Nagaiah and Geiger 

[3] used NSGA-II as a multiobjective evolutionary algorithm optimizing the rib design inside a 2D 

cooling channel of a gas turbine blade. In both works an external commercial finite element package 

is used for the thermal analysis.  

Regardless of the optimization technique, another major drawback of current methods is their 

deterministic nature. Actual characteristics of a composite material (including CMC) involve many 

uncertainties. These emanate from a variety of sources such as constituent material properties, 

manufacturing and process imperfections, loading conditions and geometry (a classification is 

presented in [4]). Neglecting the role of uncertainties in composite materials might result in either 

unsafe or unnecessary conservative design. This research focuses not only on optimal but also on 

reliable design of a typical internal cooling network within a CMC using a non-heuristic method and 

accounting for uncertainties.  

We take advantage of sequential optimization approach [5] and propose a two stage optimization 

process in which the stages are sequentially linked to each other. In the first stage, it is assumed that 

C-fibers are uniformly distributed in the ceramic matrix. Then by using RBDO, the outputs of the 

first stage which are optimal capacities of the cooling channels, are exported into the next stage. In 

the second stage, the optimizer takes these inputs and uses the adjoint sensitivity technique adopted 

for the coupled elastic and thermal fields and eventually provides an optimal distribution of the C-

fibers within the design domain in order to enhance the target reliability of the component.  
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The remainder of this paper is organized as follows: In Section 2 and Section 3, the thermoelastic 

finite element formulations and structural reliability concept are briefly discussed. The 

optimization methodology is explained in Section 4. Afterwards, case studies in Section 5 and 

concluding remarks in Section 6 are presented. 

 

2. Thermoelastic formulation 

The steady-state governing equation and boundary conditions for a temperature field in a 2D 

isotropic solid with domain Ω and boundary Γ are [6] 

(𝑘ij𝜃,j),i
+ 𝑄 = 0               in Ω                                                                (1) 

𝜃 = 𝜃Γ                                on Γ1 Essential boundary                            (1.a) 

−𝑛i𝑘ij𝜃,j = 𝑞Γ                    on Γ2 Heat flux boundary                           (1.b)                                             

−𝑛i𝑘ij𝜃,j = ℎ(𝜃 − 𝜃∞)       on Γ3 Convection boundary                       (1.c)    

−𝑛i𝑘ij𝜃,j = 0                      on Γ4 Adiabatic boundary                          (1.d)    

where 𝑘ij, 𝑄, and 𝜃 denote the thermal conductivity, internal uniform heat source and temperature 

field, respectively; 𝑛i is component of the unit outward normal to the boundary, ℎ is the heat 

convection coefficient, 𝑞Γ is the prescribed heat flux and 𝜃∞ is the temperature of the surrounding 

medium in convection process. 

The governing equation and boundary conditions for a linear elastic solid are given by  

𝜎ij,j + 𝑏i = 0                       in Ω                                                               (2) 

𝑢i = 𝑢Γ                                on Γu Essential boundary                           (2.a) 

𝜎ij𝑛i = 𝑡Γ                            on Γt Natural boundary                              (2.b) 

where 𝜎 and 𝑏 denote the stress and body force. 𝑢Γ and 𝑡Γ are the given displacement and traction 

on the essential and natural boundaries, respectively. 

The heat and elastic problems are linked by the following stress, strain and thermal expansion 

relation 

𝜎ij = 𝛿ij𝜆L휀kk + 2𝜇L휀ij − 𝛿ij(3𝜆L + 2𝜇L)𝛼𝛥𝜃                                  (3) 

where 𝜆L and 𝜇L are Lamé’s constants, 𝛼 is the thermal expansion coefficient and Δ𝜃 is the 

temperature change with respect to the reference temperature which is assumed zero here.  

A weighted residual weak form of the boundary value problem (Eq. 1-1.d) can be written as a 

generalized functional 𝐼 
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𝐼(𝜃) = ∫ 𝑤[(𝑘ij 𝜃,j),i  + 𝑄]Ω
𝑑Ω                                          (4) 

where 𝑤 denotes the sufficiently differentiable test function. The functional 𝐼(𝜃) can be written as 

𝐼(𝜃) = ∫
1

2
[𝑘x1 (

𝜕𝜃

𝜕𝑥1
)
2

+ 𝑘x2 (
𝜕𝜃

𝜕𝑥2
)
2

]
Ω

𝑑Ω − ∫ 𝜃𝑄𝑑Ω
Ω

+ ∫ 𝜃𝑞ΓΓ2
𝑑Γ + ∫ ℎ𝜃 (

1

2
𝜃 − 𝜃∞)Γ3

𝑑Γ  (5) 

considering 𝛿 as the variational operator, the Bubnov-Galerkin weak form for the heat transfer 

problem can be obtained as follows 

∫ 𝛿(∇𝜃)T𝑲c∇𝜃𝑑Ω − ∫ 𝛿𝜃T𝑄𝑑Ω + ∫ 𝛿𝜃T𝑞Γ𝑑Γ + ∫ 𝛿𝜃Tℎ𝜃𝑑Γ − ∫ 𝛿𝜃Tℎ𝜃∞𝑑Γ = 0Γ3Γ3
 

Γ2ΩΩ
  (6) 

The strains arising from boundary loadings and body forces induce only small temperature 

changes which can be ignored in the analysis. Thus, the semi-coupled theory of thermoelasticity 

is employed here. The heat governing equations are firstly solved to obtain the temperature field. 

Then, the body forces induced by the temperature field are used along with the other applied forces 

to calculate the final response of the elastic body. Using the Bubnov-Galerkin weak form 

∫ 𝛿(𝜺(𝒖) − 𝜺θ(𝒖))
T𝑪(𝜺(𝒖) − 𝜺θ(𝒖))Ω

𝑑Ω − ∫ 𝛿𝒖T𝑡Γ𝑑Γ − ∫ 𝛿𝒖T𝒃𝑑Ω = 0
ΩΓ𝑡

       (7) 

In this work quadratic B-spline basis functions are selected as the test function 𝑤. They are also 

employed to approximate the displacement and temperature fields 

𝒖(𝑥, 𝑦) = ∑ ∑ 𝑁i,j
p,q(𝜉, 𝜂)𝑚

𝑗=1  𝒖i,j = 𝑵 𝒖
𝑛
𝑖=1                                    (8.a) 

𝜽(𝑥, 𝑦) = ∑ ∑ 𝑁i,j
p,q(𝜉, 𝜂)𝑚

𝑗=1  𝜽i,j = 𝑵𝜽𝑛
𝑖=1                                     (8.b) 

where 𝒖 and 𝜽 denotes the vector of nodal displacements and temperatures, respectively. The 

strain-displacement and the heat flux-temperature gradient relationships can be written as: 

𝜺 = 𝑩e𝒖       and     𝒈 = 𝑩heat𝜽                                             (9) 

𝑩e and 𝑩heat are the matrices containing the derivatives of the shape functions, 𝑵, corresponding 

to the elastic and thermal problems, respectively. 

By substituting the B-spline approximation function into Eq. (6), the discretized system of 

equations can be expressed in the following matrix form 

𝑲c𝜽 = 𝒇heat                                                                (10) 

The local conduction matrix, 𝑲c, and the heat force vector, 𝒇heat , are determined according to  

𝑲c = ∫ 𝑩heat
T  𝑯 𝑩heat𝑑Ω + ∫ ℎ𝑵T𝑵𝑑

Γ3Ω
Γ3                                   (10.a) 

𝒇heat = 𝒇Q + 𝒇h + 𝒇q                                                     (10.b) 

where 
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𝒇Q = ∫ 𝑵T𝑄𝑑Ω
Ω

                                                          (10.b.1) 

𝒇ℎ = ∫ 𝑵Tℎ𝜃∞𝑑Γ3Γ3
                                                     (10.b.2) 

𝒇𝑞 = −∫ 𝑵T
Γ2

𝑞Γ𝑑Γ2                                                    (10.b.3) 

Superscript 𝑇 is used in this text to denote transpose of a matrix; 𝑯 is the heat conduction matrix. 

The first and the second integrals in Eq. (10.a) correspond to the heat conduction (in volume Ω) 

and the convection (on surface Γ3 ). The heat force vector contains 𝒇Q, 𝒇h and 𝒇q induced by the 

uniform heat source 𝑄, the heat convection and heat flux 𝑞Γ, respectively. 

Substituting the test function and its derivatives into Eq. (7) leads finally the discretized linear 

system of equations for the thermoelasticity problem in the following matrix form 

𝑲𝒖 = 𝒇total                                                                (11) 

The global stiffness matrix of the elastic problem, 𝑲, is obtained by 

𝑲 = ∫  𝑩e
T𝑪 𝑩e  𝑑ΩΩ

                                                (11.a) 

while 

𝒇total = 𝒇m + 𝒇θ                                                       (11.b) 

where 𝒇m is the force vector corresponding to mechanical loading 

𝒇m = ∫ 𝑵T𝑡ΓΓ𝑡
𝑑Γ + ∫ 𝑵T𝑏

Ω
𝑑Ω                                    (11.b.1) 

The body forces induced by the temperature field, 𝒇θ, also are calculated using the following 

equation 

𝒇θ = ∫ 𝑩e
T𝑪𝜺θΩ

𝑑Ω                                                  (11.b.2) 

where 𝑪 is the elasticity matrix and 𝜺𝜃 is the thermal strain matrix which for the case of plane 

stress with an isotropic material is obtained by 

𝜺θ = {
𝛼Δ𝜃
𝛼Δ𝜃
0
}                                                                 (12)  

It is also noteworthy to declare that, in this work the cross section area of a typical cooling channel 

is assumed much smaller than the area of the design domain. Such a cooling source which exists 

within a small area only, may be idealized as a point heat sink. This point sink is modeled by 

simply including a node at the location of the point source in the discretized model [7]. In the two 

dimensional element, for a typical cooling source, 𝑄i, located at 𝑥 = 𝑥0 and 𝑦 = 𝑦0 one can write 
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𝒇Qi = 𝑵0
T𝑄i                                                                 (13) 

where 𝑵0 is the vector of shape functions evaluated at 𝑥 = 𝑥0 and 𝑦 = 𝑦0. 

 

3. Structural reliability and reliability based design optimization   

3.1 Deterministic design versus reliability based design 

Traditional factor of safety would provide a safety margin to cover uncertainties in loads, material 

parameters and in the model. This factor is in principal deterministic but its magnitude is usually 

obtained based on experience which may include stochastic data. There are two major concerns 

related to this concept of safety: 1.) conservatism and 2.) inability to reflect differing degrees of 

control on design variables [8]. Both of these issues might lead to costly suboptimal designs.  

New market demands along with shortcomings of traditional deterministic design approaches led 

to the development of nondeterministic approaches. One approach uses probability theory for 

capturing the uncertainties and measuring the reliability of the system. In probabilistic analysis, 

design variables and parameters are assumed to be random variables with selected joint probability 

density functions (pdf). 

 

3.2 An introduction to reliability  

Reliability in essence can be defined as successful performance of the system; measured by the 

probability that a design goal can be achieved. Although this concept is exhaustively explored in 

the literature (see [9] and references therein), a brief introduction to Limit State Function (LSF), 

the reliability index (𝛽) and the most common technique of structural reliability analysis, namely 

First Order Reliability Method (FORM), are presented.  

Failure can be described as a random event 𝐹 = {𝑔(𝒙) ≤ 0} where the components of the vector 

𝒙 are realizations of the real-valued (basic) random variable 𝑿 including all the relevant 

uncertainties influencing the structural probability of failure. The probability of failure can be 

defined as 

𝑃f = Prob[𝑔(𝒙) ≤ 0] = ∫ 𝑓𝐗(𝒙)𝑑𝒙
𝑔(𝒙)≤0

                                          (14) 

where 𝑓𝐗(𝒙) is the pdf of the random variable 𝑿. The difficulty in computing Eq. (14) has led to 

the development of various approximation methods. In the following, FORM is briefly introduced 
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as a popular and widely applied approximation method. An overview of available methods for 

structural reliability analysis is given in [10] and references therein.  

Linear LSF can be written in the following form 

 𝑔(𝒙) = 𝑎0 + ∑ 𝑎i𝑥i
𝑛
𝑖=1                                                               (15) 

Similarly, for normally distributed random variables, the linear safety margin 𝐿 can be written as 

𝐿 = 𝑏0 + ∑𝑏i𝑋i

𝑛

𝑖=1

                                                              (16) 

According to Eq. (14) we have 

𝑃f = Prob[𝑔(𝑿) ≤ 0] = Prob[𝐿 ≤ 0]                                             (17) 

which can be calculated through 

𝑃f = 1 − Φ(𝛽) = Φ(−𝛽)                                                      (18) 

while 𝛽 =
𝜇𝐿

𝜎𝐿
 and Φ(. ) are the so-called reliability index and the standard Cumulative Distribution 

Function (𝐶𝐷𝐹), respectively; 𝜇L and 𝜎L denote the mean and the standard deviation of 𝐿. 

Fig.1 illustrates a linear LSF in real space (𝒙 − space) and the standard normal space (𝒖 − space). 

That is obtained by the following transformation function   

𝑼i =
𝑿i − 𝜇xi
𝜎xi

                                                                    (19) 

where, 𝐔𝑖 have zero means and unit standard deviations. According to Hasofer’s and Lind’s 

definition of 𝛽 [11], the geometrical interpretation of the reliability index is the shortest distance 

from the origin of reduced variables to the LSF as shown in Fig.1. The corresponding point on 

LSF with the shortest distance to the origin is called the most probable point (MPP).   
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Fig.1. Schematic illustration of LSF in both real space and standard normal space  

 

For non-linear LSFs, Hasofer and Lind suggested to approximate the LSF by a first order Taylor 

expansion at the MPP (see Fig.2); which it is not known in advance. Finding the MPP is a 

minimization problem with an equality constraint 

{
𝛽 = min(𝑼.𝑼T)

1
2

𝑠. 𝑡 ∶                       
𝑔(𝑼) = 0              

                                                                   (20) 

which leads to the Lagrange-function 

𝐿 =
1

2
𝑼T𝑼+ 𝜆𝑔(𝑼) →  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒                                                (21) 

and can be solved iteratively.  
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Fig.2. Graphical representation of the FORM approximation [4] 

 

3.3 Probabilistic multiconstraints     

In this research the probabilistic thermal and elastic design limit states are considered as a series 

constraints. It means that violation of at least one constraint yields to the entire system failure. As 

is shown in Fig.3, the failure region is the union of two failure subsets corresponding to each limit 

state. In mathematical form the failure domain 𝐷 with two limit state functions 𝑔i(𝒙) where 𝑖 =

1,2 can be expressed as 𝐷 = {𝑥| ⋃ 𝑔i(𝒙) ≤ 0i }.  

 

 

Fig.3. Schematic illustration of the failure domain with two probabilistic design constraints     

 

The system failure probability can be obtained by 𝑃f = 1 − Φm(𝐵, 𝑅) where Φm(𝐵, 𝑅) is the m-

variate standard normal CDF with 𝐵 = (𝛽1, … , 𝛽m) and  𝑅 = [𝜌kl] ; 𝜌kl = 𝛼k𝛼l
T where 𝛼k is the 

unit normal to the hyperplane obtained by FORM approximation [8]. The open source software 
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FERUM 4.1 [12] has been extended to perform the reliability analysis for multiconstraints 

problems.  

 

3.4. RBDO 

RBDO deals with obtaining optimal design with low failure probability. A double-loop (nested) 

algorithm is employed where the outer loop finds the optimal values for the design variables and 

the inner loop performs the reliability analysis. The RBDO is defined as 

{

minimize   𝐶(𝒅)                                                                                                               

subjected to  𝑃f,j = Prob(𝑔j(𝒙) ≤ 0) ≤ �̅�f      𝑗 = 1,2, … . 𝑛𝑝                 (22)

𝒅L ≤ 𝒅 ≤ 𝒅U                                                                                                                     

 

where 𝐶(. ) is the objective depending on the design variables, 𝒅 = [𝑑𝑖]
T; 𝑃f,j and �̅�f denote the 

failure probability of the 𝑗th constraint and the prescribed failure probability, respectively. The 

probabilistic constraints are alternatively represented by the concept of reliability index since 𝛽j =

−Φ−1(𝑃f,j) .  

In our methodology the RBDO is performed as the first stage of the optimization process. The 

first objective function is minimizing the total required cooling capacity of the heat sinks. The 

probabilistic constraints are also defined on maximum deflection and maximum temperature of 

the component as the series constraints. Eventually, the first stage of the optimization problem can 

be summarized as follows 

 

{
 
 
 

 
 
 Minimize:             𝐶(𝑸) =∑𝑄i

𝑛

𝑖=0

   where  𝑛 = number of cooling channels                                                

Subjected to:                                                                                                                                                                       

Probabilistic Constraints ∶ {
𝑃f,1 = Prob(𝜃allow − 𝜃max < 0) ≤ �̅�f
𝑃f,2 = Prob(𝛿all − 𝛿max < 0) ≤ �̅�f    

                            (23)                           

 Deterministic Constraints ∶       𝑄j
L ≤ 𝑄j ≤ 𝑄j

U     where  𝑗 ∈ {1,2, … , 𝑛}                                                          

 

 

Where 𝜃allow and 𝛿all are the maximum allowable temperature and deflection, respectively. These 

two parameters as well as the prescribed failure probabilities (i.e. �̅�f) should be decided by the 

designer at the beginning of the optimization process. 𝑄j denotes the cooling capacity of the 𝑗th 
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channel; 𝜃max and 𝛿max are the corresponding maximum values obtained from the solution of the 

thermoelastic governing equations described in Section 2. 

 

4. Double sequential stages optimization methodology 

The optimization algorithm in this research includes two independent but sequentially linked 

stages. In the first stage, it is assumed that the C-fibers are uniformly distributed in the matrix. 

According to Eq. (23), the total required cooling capacity of the channels is optimized through the 

RBDO approach. Mechanical (maximum deflection) as well as thermal (maximum temperature) 

probabilistic design constraints are enforced. The deterministic design constraints also limit the 

capacities of the cooling channels. Random variables include constituent material properties 

(Young’s modulus and heat conduction coefficient for the both C-fibers and ceramic matrix), 

applied load, applied heat flux and film convection coefficient. The output of this stage is used as 

the input for the second stage.   

Before describing the second stage, note that the specific properties of a typical CMC component 

can be controlled by the appropriate design of its embedded C-fibers scaffold, called Carbon 

preform. For example, anisotropic properties of the composite material can be obtained by 

orienting the C-fibers in a specific direction. On the other hand and from the theoretical point of 

view, Ghasemi et al.[13] presented a computational platform for optimizing the distribution of 

randomly oriented short fibers inside the polymeric matrix to obtain better structural performance. 

We adopt our approach in [13] in the second optimization stage to obtain the optimal distribution 

of C-fibers in the ceramic matrix in order to increase the reliability of the structure. 

The distribution function 𝜂p(𝑥, 𝑦) indicating the amount of carbon fibers at each design point 

(𝑥, 𝑦), is used for obtaining the homogenized material properties. It is defined as 

𝜂p(𝑥, 𝑦) =∑∑𝑁i,j
p,q(𝜉, 𝜂)

𝑚

𝑗=1

 𝜑i,j                                             (24)

𝑛

𝑖=1

 

where 𝑁i,j
p,q

and  𝜑i,j are B-spline basis functions and corresponding nodal volume fractions of C-

fibers, respectively;  𝜑i,j are the only design variables in the second optimization stage which are 

defined on the mesh control points (refer to [13] for more details). When the reinforcement volume 

fraction at each point is available, we define the equivalent properties as follows 

𝑀eq(𝑥, 𝑦) = (1 − 𝜂p) ∙ 𝑀m + 𝜂p𝑀c    with     𝑀 = 𝐸 , 𝑘, 𝛼                        (25) 
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where, 𝐸, 𝑘 and 𝛼 denote the Young’s modulus, thermal conductivity and thermal expansion 

coefficient, respectively. Subscripts 𝑒𝑞, 𝑚 and 𝑐 represent homogenized, matrix and C-fibers 

respectively. For the sake of notation simplicity, 𝑀eq is denoted by 𝑀 in the following. The 

multiobjective optimization problem is defined as the weighted sum of different normalized 

objective functions. The target (total) objective function, 𝐽(𝒖(𝝋), 𝜽(𝝋),𝝋), consists of the structural 

compliance and the so called “thermal compliance” yielding 

𝐽(𝒖(𝝋), 𝜽(𝝋),𝝋) = 

𝑊1

𝑆1
(
1

2
∫ (𝑩e 𝒖)

T𝑪 (𝑩e 𝒖)𝑑Ω
Ω

) +
𝑊2

𝑆2
(
1

2
∫ (𝑩heat 𝜽)

T𝑯 (𝑩heat 𝜽) 𝑑Ω
Ω

) (26) 

where 𝝋 denotes the vector containing all 𝜑i,j and Ω is the entire design domain; 𝑊i and 𝑆i denote 

the 𝑖th weight and scaling factor, respectively. The optimization problem in the second stage can 

then be summarized as follows  

 

{
 
 
 
 

 
 
 
 
Minimize:                           𝐽(𝒖(𝝋), 𝜽(𝝋),𝝋)                                                                                (27)                
Subjected to:                                                                                                                                                               

𝑉f = ∫ 𝜂p 𝑑Ω
Ω

 ≤ 𝑉f0                                        

𝑭1(𝜽(𝝋),𝝋) = 𝒇heat − 𝑲c𝜽 = 𝟎                   

𝑭2(𝒖(𝝋), 𝜽(𝝋),𝝋) = 𝒇m + 𝒇θ −𝑲𝒖 = 0    
𝜑i,j − 1 ≤ 0                                                            

−𝜑i,j ≤ 0                                                                 

 

 

where 𝑉f is the total C-fibers volume in each optimization iteration, 𝑉f0 is an arbitrary initial C-

fibers volume which must be set at the beginning of the optimization process.  

By introducing a proper Lagrangian objective function, l, and using the Lagrangian multipliers 

method we obtain 

𝑙 = 𝐽 − (𝑉f − 𝑉f0 ) − ∑ 𝜓1(𝜑i,j − 1) − ∑ 𝜓2(−𝜑i,j)                         (28)

𝑛𝑐𝑝

𝑖,𝑗=1

𝑛𝑐𝑝

𝑖,𝑗=1

 

where 𝜓1, 𝜓2 are upper and lower bounds of the Lagrange multipliers, respectively; 𝑛𝑐𝑝 is the 

number of control points. Minimizing Eq. (28) with respect to 𝝋 gives 

𝑑𝑙

𝑑𝝋
=
𝑑𝐽

𝑑𝝋
−
𝑑𝑉𝑓

𝑑𝝋
− 𝜓1 + 𝜓2 = 0                                              (29) 
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We employed the optimality criteria (OC) based optimization [14] to numerically solve Eq. (29). 

For updating the design variables a sensitivity analysis is required which is presented in Section 

4.1.  

 

4.1 Adjoint sensitivity analysis 

To solve Eq. (29), one should differentiate the objective and the constraint functions with respect 

to the design variables. Analytical methods such as the direct and adjoint methods are good 

alternatives to numerical methods due to their lower computational cost. In the present work, we 

adopt an adjoint technique for sensitivity analysis of the coupled thermoelastic problem in order 

to remove the implicitly dependent terms from the sensitivity expression. 

Recalling Eq. (29), we use the chain-rule to calculate the sensitivity of 𝐽(𝒖(𝝋), 𝜽(𝝋),𝝋) with 

respect to 𝝋 using partial derivatives ( 
𝜕( .)

𝜕(.)
 ) 

𝑑𝐽

𝑑𝝋
=
𝜕𝐽

𝜕𝒖

𝜕𝒖

𝜕𝝋
+
𝜕𝐽

𝜕𝜽

𝜕𝜽

𝜕𝝋
+
𝜕𝐽

𝜕𝝋
                                                            (30) 

The last term of Eq. (30) is the explicit quantity and easy to calculate 

𝜕𝐽

𝜕𝝋
= 

𝑊1

𝑆1
(
1

2
∫  (𝑩e  𝒖)

T  
𝜕𝑪

𝜕𝝋
 (𝑩e  𝒖) 𝑑Ω

Ω

) +
𝑊2

𝑆2
(
1

2
∫  (𝑩heat  𝜽)

T  
𝜕𝑯

𝜕𝝋
 (𝑩heat  𝜽) 𝑑Ω

Ω

)        (31) 

while  

𝜕𝑪

𝜕𝝋
= − 

𝜕𝜂p

𝜕𝝋
(
𝐸m

1 − 𝜈2
) [

1 𝜈 0
𝜈 1 0

0 0 (
1 − 𝜈

2
)
]  + 

𝜕𝜂p

𝜕𝝋
 (

𝐸c
1 − 𝜈2

) [

1 𝜈 0
𝜈 1 0

0 0 (
1 − 𝜈

2
)
]         (32) 

and  

𝜕𝑯

𝜕𝝋
= − 

𝜕𝜂p

𝜕𝝋
[
𝑘m 0
0 𝑘m

]  +  
𝜕𝜂p

𝜕𝝋
[
𝑘c 0
0 𝑘c

]                                                     (33) 

𝜕𝜂p

𝜕𝝋
 can be obtained by taking the first derivative of Eq. (24) 

𝜕𝜂p

𝜕𝜑i,j
= 𝑁i,j

p,q(𝜉, 𝜂)                                                                 (34) 
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The first and the second terms of Eq. (30) include implicit quantities (i.e. 
𝜕𝒖

𝜕𝝋
 and 

𝜕𝜽

𝜕𝝋
) which are 

accomplished by using the following heat conduction and linear elasticity system of equations as 

adjoint expressions 

{
𝑭1(𝜽(𝝋),𝝋) = 𝒇heat − 𝑲c𝜽 = 𝟎                               (35. 𝑎)

𝑭2(𝒖(𝝋), 𝜽(𝝋),𝝋) = 𝒇m + 𝒇θ −𝑲𝒖 = 0                (35. 𝑏)
  

By differentiating Eq. (35.a), we have 

(
𝜕𝑭1
𝜕𝜽

)
T 𝜕𝜽

𝜕𝝋
+
𝜕𝑭1
𝜕𝝋

= 0                                                                   (36) 

(
𝜕𝒇heat
𝜕𝜽

)
T 𝜕𝜽

𝜕𝝋
+
𝜕𝒇heat
𝜕𝝋

= 0                                                         (37) 

𝜕𝜽

𝜕𝝋
= −(

𝜕𝒇heat
𝜕𝜽

)
−T 𝜕𝒇heat

𝜕𝝋
                                                       (38) 

Substitution Eq. (38) into the second term of Eq. (30) yields 

𝜕𝐽

𝜕𝜽

𝜕𝜽

𝜕𝝋
= −

𝜕𝐽

𝜕𝜽
[(
𝜕𝒇heat
𝜕𝜽

)
−T 𝜕𝒇heat

𝜕𝝋
]                                              (39) 

Assuming 

𝜸 = −
𝜕𝐽

𝜕𝜽
(
𝜕𝒇heat
𝜕𝜽

)
−T

                                                              (40) 

and knowing that  
𝜕𝒇heat

𝜕𝜽
= 𝑲c, we can write  

𝑲c𝜸 = −
𝜕𝐽

𝜕𝜽
                                                                       (41) 

𝑲c𝜸 = −
𝑊2

𝑆2
∫  𝑩heat

T𝑯 𝑩heat 𝜽 𝑑Ω
Ω

                                                         (42) 

Eventually, Eq. (39) can be written in the form 

𝜕𝐽

𝜕𝜽

𝜕𝜽

𝜕𝝋
= (𝜸)T

𝜕𝒇heat
𝜕𝝋

                                                                    (43) 

𝜕𝐽

𝜕𝜽

𝜕𝜽

𝜕𝝋
= ∫  (𝑩heat 𝜸 )

T  
𝜕𝑯

𝜕𝝋
 (𝑩heat  𝜽) 𝑑Ω

Ω

                                       (44) 

For calculating the first term of Eq. (30) we differentiate Eq. (35.b) as 

(
𝜕𝑭2
𝜕𝒖

)
T 𝜕𝒖

𝜕𝝋
+ (

𝜕𝑭2
𝜕𝜽

)
T 𝜕𝜽

𝜕𝝋
+
𝜕𝑭2
𝜕𝝋

= 0                                          (45) 
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𝜕𝒖

𝜕𝝋
= (

−𝜕𝑭2
𝜕𝒖

)
−T

[(
𝜕𝑭2
𝜕𝜽

)
T 𝜕𝜽

𝜕𝝋
+
𝜕𝑭2
𝜕𝝋

]                                   (46) 

Substitution Eq. (38) into Eq. (46) gives 

𝜕𝒖

𝜕𝝋
= (

−𝜕𝑭2
𝜕𝒖

)
−T

[(
𝜕𝑭2
𝜕𝜽

)
T

(−(
𝜕𝒇heat
𝜕𝜽

)
−T 𝜕𝒇heat

𝜕𝝋
) +

𝜕𝑭2
𝜕𝝋

]                  (47) 

The first term of Eq. (30) then becomes 

𝜕𝐽

𝜕𝒖

𝜕𝒖

𝜕𝝋
=
𝜕𝐽

𝜕𝒖
[(
−𝜕𝑭2
𝜕𝒖

)
−T

[(
𝜕𝑭2
𝜕𝜽

)
T

(−(
𝜕𝒇heat
𝜕𝜽

)
−T 𝜕𝒇heat

𝜕𝝋
) +

𝜕𝑭2
𝜕𝝋

]]      (48) 

Manipulating Eq. (48) yields 

𝜕𝐽

𝜕𝒖

𝜕𝒖

𝜕𝝋
=
𝜕𝐽

𝜕𝒖
(
−𝜕𝑭2
𝜕𝒖

)
−T

[(
𝜕𝑭2
𝜕𝜽

)
T

(−(
𝜕𝒇heat
𝜕𝜽

)
−T 𝜕𝒇heat

𝜕𝝋
)] +

𝜕𝐽

𝜕𝒖
(
−𝜕𝑭2
𝜕𝒖

)
−T 𝜕𝑭2
𝜕𝝋

     (49) 

Knowing that 
𝜕𝑭2

𝜕𝒖
= 𝑲, we assume 

𝝀 =
𝜕𝐽

𝜕𝒖
(
−𝜕𝑭2
𝜕𝒖

)
−T

                                                                  (50) 

And hence 

𝑲𝝀 = −
𝜕𝐽

𝜕𝒖
                                                                            (51) 

𝑲𝝀 = −
𝑊1

𝑆1
∫  𝑩e

T𝑪 𝑩e 𝒖 𝑑Ω                                                          (52)
Ω

 

Moreover 

𝝀x (
𝜕𝑭2x
𝜕𝜽

)
T

((
𝜕𝒇heat
𝜕𝜽

)
−T

) = 𝝀x
∗                                             (53) 

Assuming 𝚲 = (𝑩e
T𝑪 𝜶 ) where 𝜶 = {

𝛼eq
𝛼eq
0
}; 

 𝑲c𝝀x
∗ = ∫  𝑁i,j

p,q
𝜦x𝝀x dΩΩ

                                                (54) 

Similarly, in the transverse direction (𝑦) we have 

𝑲c𝝀y
∗ = ∫  𝑁i,j

p,q
𝜦y𝝀y 𝑑Ω

Ω

                                                (55) 

where 𝜦i, 𝝀i and 𝑭2i are related components of 𝚲, 𝝀 and 𝑭2 vectors corresponding to the 𝑖 direction.  

By substituting 𝝀x
∗  and 𝝀y

∗  in Eq. (49) we obtain 
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𝜕𝐽

𝜕𝒖

𝜕𝒖

𝜕𝝋
= 𝝀x

∗ (−
𝜕𝒇heat
𝜕𝝋

) + 𝝀y
∗ (−

𝜕𝒇heat
𝜕𝝋

) + 𝝀
𝜕𝑭2
𝜕𝝋

                  (56) 

In addition 

𝝀
𝜕𝑭2
𝜕𝝋

= − ((𝑩e𝝀)
T  
𝜕𝑪

𝜕𝝋
 𝜺T ) − ((𝑩e𝝀)

T 𝑪 
𝜕𝜶

𝜕𝝋
 ∆𝜃) + ((𝑩e𝝀)

T  
𝜕𝑪

𝜕𝝋
 𝑩e𝒖)       (57) 

So, Eq. (56) becomes 

𝜕𝐽

𝜕𝒖

𝜕𝒖

𝜕𝝋
= ∫ − ((𝑩e𝝀)

T  
𝜕𝑪

𝜕𝝋
 𝜺T ) − ((𝑩e𝝀)

T 𝑪 
𝜕𝜶

𝜕𝝋
 ∆𝜃) + ((𝑩e𝝀)

T  
𝜕𝑪

𝜕𝝋
 𝑩e𝒖)

Ω

+ ((𝑩heat𝝀x
∗)T  

𝜕𝑯

𝜕𝝋
 𝑩heat𝜽) + ((𝑩heat𝝀y

∗)
T
 
𝜕𝑯

𝜕𝝋
 𝑩heat𝜽)     𝑑Ω                     (58) 

Eventually, Eq. (30) becomes 

𝑑𝐽

𝑑𝝋
= ∫ − ((𝑩e𝝀)

T  
𝜕𝑪

𝜕𝝋
 𝜺T ) − ((𝑩e𝝀)

T 𝑪 
𝜕𝜶

𝜕𝝋
 ∆𝜃) + ((𝑩e𝝀)

T  
𝜕𝑪

𝜕𝝋
 𝑩e𝒖)

Ω

+ ((𝑩heat𝝀x
∗)T  

𝜕𝑯

𝜕𝝋
 𝑩heat𝜽) + ((𝑩heat𝝀y

∗)
T
 
𝜕𝑯

𝜕𝝋
 𝑩heat𝜽)     𝑑Ω

+ ∫  (𝑩heat 𝜸 )
T  
𝜕𝑯

𝜕𝝋
 (𝑩heat  𝜽) 𝑑Ω

Ω

+
𝑊1

𝑆1
(
1

2
∫  (𝑩e  𝒖)

T  
𝜕𝑪

𝜕𝝋
 (𝑩e  𝒖) 𝑑Ω

Ω

)

+
𝑊2

𝑆2
(
1

2
∫  (𝑩heat  𝜽)

T  
𝜕𝑯

𝜕𝝋
 (𝑩heat  𝜽) 𝑑Ω

Ω

)                                                       (59) 

Finally, the second term of Eq. (29) can be written as 

 
𝑑𝑉f
𝑑𝝋

=
𝜕𝑉f
𝜕𝝋

= ∫
𝜕𝜂p

𝜕𝝋
 𝑑Ω

Ω

                                                      (60) 

 

5. Case studies 

Consider a L-shaped CMC component shown in Fig.4. An outward uniform pressure load and an 

inward uniform heat flux are applied on the left edge while a convection boundary condition is 

applied on the lower half of the right edge. Mechanical and thermal loadings and boundary 

conditions are also illustrated in Fig.4(a) and 4(b), respectively. Cooling channels are modeled as 

point sources on the mid axis of the component and positioned as shown in Fig.4(b). The model is 

discretized by a 32 × 16 quadratic B-spline mesh as shown in Fig.4(c). Red dots represent control 

points.  
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Fig.4. Mechanical loading and boundary conditions (a), Thermal loading and boundary conditions (b), FE 

discretization with red dots as control points (c) 

 

5.1. The first stage of the optimization 

Finding the optimal total capacity of the cooling channels is investigated in the first stage of the 

optimization process. We set deterministic constraints on the first and the last channels (i.e. 

channels #1 and #5) so that their cooling capacities take a value less than 100 Watt. We also set 

probabilistic constraints on the maximum deflection and temperature of the design domain 

according to Table-1.   

 

Table-1. Design parameters of the L-shaped component under thermomechanical loadings 

Parameter / Description (unit) Value  (𝜇 / 𝜎) 

L / Dimension in Meter (m) 1 

𝐸m / Young’s modulus of the matrix (GPa) 88 / 8 

𝐸c / Young’s modulus of the C-fibers (GPa) 200 / 20 

𝜈 / Poisson ratio 0.2 

𝛼m / Thermal expansion coeff. of the matrix (
10−6

℃
) 4.5 

𝛼c / Thermal expansion coeff. of the C-fibers (
10−6

℃
) 3.1 

𝑘m / Heat conduction coeff. of the matrix  (
𝑊

𝑚 .℃
) 45 / 3 

𝑘c / Heat conduction coeff. of the C-fibers (
𝑊

𝑚 .℃
) 7 / 0.7 
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q / heat flux (
𝑊

𝑚2) 800 / 20 

h / Convection coeff. (
𝑊

𝑚2 .℃
) 3 / 0.3 

P / Applied load (KN) 1000 / 10 

𝑉f0 / The total C-fibers volume fraction 40% 

𝜃allow / Max. allowable temperature (℃) 450 

𝛿allow / Max. allowable deflection (mm) 1.5 

𝛽 / Target reliability index 3 

 θ∞/ the temperature of the fluid in convection process (℃) 50 

Remarks: 

𝜇:𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒,  𝜎 ∶ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: 𝐿𝑜𝑔 𝑁𝑜𝑟𝑚𝑎𝑙    

 

 

The results of the optimization are plotted in Fig.5. The history of the design variables i.e. the 

capacities of the cooling channels are plotted versus the iterations in Fig.5(a) and 5(b). The final 

reliability index converges to the target value as illustrated in Fig.5(c) and the objective function 

finally takes the minimum value according to Fig.5(d).   

To show the correctness of the results and also demonstrate the fact that the final optimization 

output is independent from the initial guess, we reduce the maximum allowable capacities on 

Channels #1 and #5 from 100 W to 90 W and also restrict the capacity of the Channel #3 to a value 

less than 90 W.  We also consider different starting points as the initial guesses for iterations 

commencement. As expected, the reduction in capacities is compensated by the increase in the 

cooling capacities of the other channels (i.e. Channels #2 and #4) so that the total required cooling 

capacity (i.e. the minimum of the objective function) takes the same value as in the previous case. 

The new results are illustrated in Fig.6. The temperature plot is shown in Fig.7(a), while the 

displacements in the X and Y directions are plotted in Fig.7(b) and 7(c), respectively. 
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Fig.5. Optimization results for target reliability index equal to 3 and with following constraints on channels 

#1 and #5: 𝑄1 ≤ 100 and 𝑄5 ≤ 100; Obtained optimum design variables: 𝑄1 = 80.71, 𝑄2 = 105.50, 𝑄3 =

106.27, 𝑄4 = 107.02, 𝑄5 = 83.82, Optimized cost = 483.32 W 
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Fig.6. Optimization results for target reliability index equal to 3 and with following new constraints on 

Channels #1, #3 and #5: 𝑄1 ≤ 90 , 𝑄3 ≤ 90 and 𝑄5 ≤ 90 ; Obtained optimum design variables: 

𝑄1 = 15.81, 𝑄2 = 214.91, 𝑄3 = 16.42, 𝑄4 = 218.62, 𝑄5 = 17.02, Optimized cost = 482.80 W 
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Fig.7. Temperature (a), displacement in X-direction (b) and displacement in Y-Direction (c) for CMC 

component with uniformly distributed C-fibers considering: 𝑄1 = 15.81, 𝑄2 = 214.91, 𝑄3 = 16.42, 𝑄4 =

218.62, 𝑄5 = 17.02  

 

5.2. The second stage of the optimization 

As discussed in Sec. 2, both mechanical and thermal loadings cause structural deformation. The 

total nodal displacements (𝒖) consists in 𝒖m which is the displacement caused by mechanical 

loading and 𝒖θ which is caused by thermal loading. Both mechanical and thermal loading 

contribute to the formation of the total force vector. Next, we consider two load cases: in Load 

case-1, the higher temperature load causes 𝒖θ to be around two orders of magnitude higher than  

𝒖m and in Load case-2 the high mechanical loading causes  𝒖m to be one order of magnitude 

higher than 𝒖θ.  

 

5.2.1. Load case-1 (high thermal loading) 

The lastly obtained optimal capacity of each channel (i.e. 𝑄1 = 15.81, 𝑄2 = 214.91, 𝑄3 = 16.42, 

𝑄4 = 218.62, 𝑄5 = 17.02) are used as inputs of the second stage of the optimization process. 

According to Eq. (23), the final optimization results depend on the choice of the weight factors 

corresponding to the structural and the thermal compliances. Fundamentally, in the weighted sum 

optimization problem, it is the designer’s responsibility to choose appropriate weights of each 

objective function based on their relative importance. In our problem it is more straightforward 

than other multiobjective optimization problems. Since the violation of either mechanical or 

thermal constraints leads to design failure, the final reliability index, 𝛽target, is dominated by 𝛽m 

or 𝛽t where the former is the reliability index associated with the probabilistic deformation 

constraint and the latter is associated with the temperature constraint. As the objective functions 

are contradictory, one can just consider extreme values of weights (i.e. zero or unity) depending 
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on which factor dominates (i.e. is minimum). For instance in this load case having the CMC 

component with uniformly distributed C-fibers, 𝛽target is equal to 3.0089 (which is the minimum 

of 𝛽m = 3.0089 and 𝛽t = 4.6684). Here, 𝛽target is dominated by 𝛽m. In order to  increase 𝛽target 

, 𝛽m should be increased while minding about reversal of 𝛽t. 

 Table-2 summarizes 𝛽target , 𝛽m and 𝛽t for uniformly (item 0) and optimally (items 1 to 5) 

distributed C-fibers with different combinations of weight factors 𝑊1 and 𝑊2; subscripts 1 and 2 

correspond to the mechanical and the thermal weight factors, respectively. One can see from Table-

2 that item 1 and item 5 (which use the extreme values of the weight factors) provide respectively, 

the maximum reduction in structural and thermal compliances. However, neither these items nor 

other combinations of weight factors are able to improve 𝛽m and consequently 𝛽target. 

 

Table-2. Summary of optimization results in Load case-1 for uniformly and optimally distributed C-fibers 

with different combinations of weight factors 

 Item 𝑊1 / 𝑊2 
Total 

objective 

Structural  

compliance 
𝛽m 

Thermal 

compliance 
𝛽t 𝛽𝑡𝑎𝑟𝑔𝑒𝑡 

Uniform 0 - 1 1 3.0089 1 4.6684 3.0089 

O
p

ti
m

al
ly

 

d
is

tr
ib

u
te

d
 C

-f
ib

er
s 1 1 / 0 0.959 0.959 2.4976 1.083 4.6835 2.4976 

2 0.75 / 0.25 0.961 0.972 2.3783 0.929 4.6753 2.3783 

3 0.5 / 0.5 0.950 0.979 2.3518 0.920 4.6700 2.3518 

4 0.25 / 0.75 0.935 0.982 2.3748 0.920 4.6689 2.3748 

5 0 / 1 0.920 0.9840 2.4 0.920 4.6686 2.4 

 

To explain this, let us consider item1 in more detail. The thermal term in the objective function 

is disregarded as 𝑊2 is set to zero. The total objective function which contains only the structural 

compliance is minimized while the thermal compliance increases. Fig.8(a) illustrates the history 

of the structural and thermal compliance terms over the iterations. The total objective function 

does not converge, smoothly, towards the minimum value.  

This undesired phenomenon that a decrease in the structural compliance yields to a larger 

maximum structural deformation (which consequently causes lower 𝛽m) is caused by the coupling 

between the thermal and the mechanical fields and the contradictory effects of C-fibers on these 

fields. In a typical elastic problem, when the stiffness increases as the force vector remains 
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unchanged, the maximum structural deformation will decrease. In the coupled thermoelastic 

problem, the forces induced by the temperature field and consequently the total force vector does 

not remain unchanged. According to Eq. (6), the force induced by the temperature field will change 

when the Young’s modulus, thermal expansion coefficient or nodal temperatures deviate. Since 

all of these items are functions of the volume fraction of C-fibers (see Eq. (22)) the final magnitude 

of the force vector depends on the distribution of the C-fibers. Thus, any increase or decrease in 

the maximum deflection of a CMC component depends on the changes of structural stiffness and 

force induced by the temperature field and should be evaluated case by case based on the 

constituent material properties and the loading conditions. 

To gain better insight into this issue, we solve the same problem assuming the mechanical and 

thermal fields are decoupled. This is accomplished by setting the thermal expansion coefficients 

of both the C-fibers and the matrix to zero. Fig.8(b) shows the results for the decoupled problem. 

In this case the objective function smoothly converges towards the minimum value and the 

optimization process is stable.  
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Fig.8. History of the objective functions and optimal distribution of the C-fibers inside the matrix 

considering 𝑊1 = 1 and 𝑊2 = 0 for coupled (a) and decoupled (b) cases. 𝑄1 = 15.81, 𝑄2 = 214.91, 𝑄3 =

16.42, 𝑄4 = 218.62 and 𝑄5 = 17.02 while the other design parameters are according to Table-1.  

  

In item 5 (𝑊1 = 0 and 𝑊2 = 1) the structural term in the objective function is disregarded. Thus 

the total objective function consists only by the thermal compliance contribution. The optimal 

distribution of the C-fibers and the history of the objective functions over the iterations are 

presented in Fig.9. As the mechanical field doesn’t affect the thermal field, the optimization 

process is stable and the objective function smoothly converge towards its minimum value, though 

the problem is coupled.  
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Fig.9. History of the objective functions and optimal distribution of the C-fibers inside the matrix 

considering 𝑊1 = 0 and 𝑊2 = 1 for coupled problem 

 

5.2.2. Load case-2 (high mechanical loading) 

Now, we increase the applied mechanical load so that it dominates the thermal one. Table-3 

includes the new design parameters. Other design parameters remain unchanged according to 

Table-1.  

 

Table-3. New design parameters of the L-shaped component under thermomechanical loading 

Parameter / Description (unit) Value  (𝜇 / 𝜎) 

P / Applied load (KN) 1000000 / 10000 

𝛿allow / Max. allowable deflection (mm) 50 

Other design parameters according to Table-1 

 

The results of the optimization for this load case are summarized in Table-4. Item 0 refers to 

uniformly distributed C-fibers. In item 1 the thermal term is disregarded and the total objective 

function just includes the structural term while item 2 acts reversely. 
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Table-4. Summary of optimization results in Load case-2 for uniformly and optimally distributed C-fibers 

with different combinations of weight factors 

 
Item 𝑤m / 𝑤t 

Structural  

compliance 
𝛽m 

Thermal 

compliance 
βt 𝛽target 

Uniform 0 - 1 2.8916 1 4.6684 2.8913 

Optimal 
1 1 / 0 0.8963 4.4259 1.0814 4.5803 4.34 

2 0 / 1 1.060 2.3323 0.920 4.6686 2.3322 

 

Fig.10(a) shows the optimal distribution of C-fibers and the history of the objective functions for 

item 1, respectively. Decreasing the structural compliance yields an increase in the structural 

stiffness. Since the C-fibers distribution is changed, 𝒇θ also changes. Contrary to the previous case, 

as the thermal force is smaller than the mechanical force, its deviation does not influence the total 

force vector severely, resulting in a decrease in the maximum structural deflection and 

consequently a considerable increase in 𝛽m and eventually 𝛽target. 

The optimal distribution of C-fibers and the history of objective functions for different weights 

are illustrated in Fig.10(b). The structural compliance is disregarded in the total objective function 

and increases while the objective function (i.e. thermal compliance) is minimized. Although the 

thermal compliance is decreased, the reduction in maximum temperature and consequently in 𝛽t 

is trifle and not sensible. However, as 𝛽m decreases (due to the increase in structural compliance), 

𝛽target also decreases.  
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Fig.10. History of the objective functions and optimal distribution of the C-fibers inside the matrix 

considering 𝑊1 = 1 and 𝑊2 = 0 (a) and 𝑊1 = 0 and 𝑊2 = 1 (b). Both (a) and (b) are coupled problems 

 

6. Concluding remarks 

Ceramic matrix composites which are manufactured by adding reinforcements such as carbon fibers 

to a ceramic matrix show improved toughness properties in comparison with pure ceramics. Usually, 

components made of CMCs are cooled by internal cooling channels because typical C-fibers are 

vulnerable to high temperature oxidizing atmospheres. Firstly, the presented computational platform 

efficiently optimizes the capacity of cooling channels using RBDO approach. A “series system” 

reliability concept is adopted as a union of mechanical and thermal failure subsets. Secondly, the 

optimizer is supposed to increase the reliability of the component by optimally distributing the C-

fibers inside the matrix within the design domain. Numerical results for the performed case studies 

demonstrate that optimal distribution of C-fibers can decrease structural and thermal compliances. 

In the decoupled elastic and thermal problems, the former yields an increase in 𝛽m(the reliability 
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index associated with the probabilistic deformation constraint) and the latter in an increase in 

𝛽t(the reliability index associated with the probabilistic thermal constraint). But, in the coupled 

thermoelastic problem, any prediction about final reliability indices depends on fiber and matrix 

constitutive material properties and contribution of mechanical and thermal loadings on the global 

force vector. When the mechanical loading dominates the thermal loading, fiber distribution can 

show promising advantage to have more reliable design by increasing 𝛽m and consequently 

𝛽target(the final reliability index). However, its role for increasing the reliability index 

corresponding to thermal constraint is negligible.  
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