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Abstract Consider an arbitrarily oriented ellipsoidal domain near the interface of an
isotropic bimaterial space. It is assumed that a general class of piecewise nonuniform dilata-
tional eigenstrain field is distributed within the ellipsoidal domain. Two theorems relevant to
prediction of the nature of the induced displacement field for the interior and exterior points
of the ellipsoidal domain are stated and proved. As a resultant the exact analytical expression
of the elastic fields are obtained rigorously. In this work a new Eshelby-like tensor, A is in-
troduced. In particular, the closed-form expressions for A associated with the interior points
of spherical and cylindrical inclusion are derived. The stress field is presented for a single
ellipsoidal inclusion which undergoes a Gaussian distribution of eigenstrain field and one
of the principal axes of the domain is perpendicular to the interface. For the limiting case
of spherical inclusion the closed-form solution is obtained and the associated strain energy
is discussed. For further demonstration, two examples of two concentric spheres and three
concentric cylinders with eigenstrain field distributions which are descriptive of the general
class of functions defined in this paper. The effect of some parameters such as distance be-
tween the inclusion and the interface, and the ratio of the shear moduli of the two media on
the induced elastic fields are examined.
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1 Introduction

Ever since the pioneering contribution of Eshelby [1–3], the subject of ellipsoidal inclusion
and related problems, due to its numerous valuable engineering applications, has become
one of the most attractive topics of solid mechanics. In addition to the practical examples
of inclusion given by Mura [4], one may mention new implications in isolation trenches
in large scale integrated circuits and strained semiconductor laser devices where residual
stresses induced by thermal or lattice mismatch strains affect electronic performance of
devices. In the past, the micromechanics of inclusion with uniform eigenstrain and its re-
lated problems have received considerable attentions, as evidenced by the reviews given by
Mura [4], Mura et al. [5], and Nemat-Nasser and Hori [6]. On the other hand, Eshelby [2],
Sendeckij [7] and Rahman [8] performed analytical works on the ellipsoidal inclusion in an
infinite domain with eigenstrain field characterized by a polynomial of arbitrary order. In
particular, Eshelby [3] has shown that if the eigenstrain field in the inclusion is a homoge-
nous polynomial of degree n = 1, the disturbance strain for the interior points will be also
a homogenous polynomial of degree 1. If the distribution of eigenstrain field is a homo-
geneous polynomial of degree n ≥ 2, the corresponding disturbance strain field inside the
inclusion is a inhomogeneous polynomial whose terms are of degree n, (n−2), (n−4), . . . .

This brilliant conclusion was extensively utilized by Moschovidis and Mura [9], Shodja and
Sarvestani [10], Shodja et al. [11], and Shodja and Ojaghnejhad [12] in dealing with various
fundamental problems of single and multi -inhomogeneity systems.

Nevertheless several problems in physics and mechanics of materials naturally give rise
to eigenstrain field which is best described by piecewise continuous nonuniform functions
other than polynomials. For example, a nonuniform temperature distribution in the vicinity
of a point heat within electronic chips leads to thermal eigenstrains which have Gaussian
or exponential form. Single or multilayered films containing strained islands encountered
in nano-electro-mechanical systems (NEMS) is another area of technological interest where
one may deal with piecewise continuous nonuniform eigenstrain distribution. For a rather
general treatment, it is proposed that the ellipsoidal inclusion is subjected to a class of piece-
wise continuous nonuniform eigenstrain field which can encompass a wide range of distri-
bution. The particular class of eigenstrain field utilized is due to Shodja and Shokrolahi-
Zadeh [13] who considered an ellipsoidal inclusion embedded in an infinite domain. Some
special cases of such eigenstrain distributions include Fourier series, spherical harmon-
ics, and series expansions in terms of special functions like Bessel’s function, Legendre
polynomial, etc. The nonuniform distribution under consideration has been instrumented
for treatment of nested infinitely extended elastic cylindrical media with general cylindri-
cal anisotropy embedded in an unbounded elastic isotropic medium under general remote
loading, Shokrolahi-Zadeh and Shodja [14]. Subsequently, they introduced the notions of
Eshelby-Fourier tensor and spectral consistency conditions for the first time.

Formation of an ellipsoidal inclusion near the interface of a bimaterial either deliberately
or undesirably is of great concern. For instance, in many practical cases such as those en-
countered in electronic packaging, it is interesting to consider the thermo-mechanical prob-
lems associated with an inclusion buried within one of the two joined elastic half-spaces.
But most available studies are related to an infinite medium rather than joined half-spaces.
There are a few contributions in the literature which address the inclusion problem associ-
ated with joined half-spaces but deal with uniform eigenstrain field. For example, Guell and
Dunders [15] utilized the Papkovitch-Neuber displacement potentials for determination of
the elastic fields of a spherical region in one of the joined elastic half-paces with constant di-
latational eigenstrain field. For the first time, a general stress vector function was applied by
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Yu and Sanday [16, 17] to obtain an analytical solution of the ellipsoidal inclusion problem
for isotropic joined half-spaces. Subsequently, Yu et al. [18] extended this approach to the
case where the half-spaces are transversely isotropic. A closed-form solution for the case of
a spherical inclusion with uniform thermal dilatational eigenstrain field was obtained by Yu
et al. [19]. Referring to the method of images, the Green’s function for the two joined half-
spaces was presented by Walpole [20]. Subsequently, Walpole [21] revisited the problem of
an inclusion with uniform eigenstrain in one of two joined isotropic elastic half-spaces and
evaluated the elastic strain energy which is of great importance in physical applications.

Overall, it appears that the studies on Eshelby’s problem in joined half-spaces are limited
to inclusions with simple distribution of eigenstrains, and the analysis of bimaterial spaces in
which one of the media contains a subdomain with piecewise nonuniform eigenstrain field
has not been reported in the literature. The present work aims to provide an analytical ap-
proach for determining the elastic fields for an arbitrarily oriented ellipsoidal inclusion near
the interface of two joined elastic half-spaces. In this problem, a general class of piecewise
nonuniform eigenstrain field is prescribed within the confocal ellipsoidal inclusions. In the
next section some important Theorems on prediction of the nature of disturbance displace-
ment field are stated and proved. The displacement field due to the dilatational distribution
of eigenstrains inside a single ellipsoidal inclusion is predictable via Theorem 1. As a con-
sequence the displacements due to an inclusion with piecewise nonuniform distribution of
eigenstrain field may be predicted by employing Theorem 2. Section 3 is devoted to deriva-
tion of the closed-form expressions for a new tensor A which is introduced in Theorem 1.
In Sects. 4 and 5 the robustness of present solution is established by proposing some illus-
trative examples. First, the example of a single ellipsoidal inclusion with one of its principle
axes perpendicular to the interface of the joined half-spaces is considered. Then a spherical
inclusion with Gaussian distribution of eigenstrain, because of its numerous applications
is examined. Closing section contains two examples of two concentric spheres and three
concentric cylinders. Prediction of the elastic fields due to the proposed distributions of
eigenstrain field in these examples is made possible via the presented theories.

2 The General Formulation

Consider a bimaterial body with perfect interface as shown in Fig. 1. Let μI and νI de-
note the shear modulus and Poisson’s ratio for the medium I and μII and νII indicate the
corresponding material properties for medium II; the media are assumed to be linear elas-
tic isotropic materials. The Cartesian coordinates xi , i = 1,2,3 are oriented in such a way
that the plane x3 = 0 coincides with the interface plane, and so x3 > 0 and x3 < 0 are the
half-spaces occupied by media I and II, respectively.

Define an ellipsoidal sub-domain �(ξ), ξ ≥ 0

�(ξ) =
⎧
⎨

⎩
x̄|x̄ ∈ R

3,

3∑

p=1

x̄2
p

a2
p

≤ ξ 2

⎫
⎬

⎭
, (2.1)

inside medium I. The dimensionless parameter ξ indicates the size of �(ξ) and ap ,
p = 1,2,3 are the principal half axes of �(ξ). Determination of the elastic fields of the
ascribed inclusion problem with piecewise nonuniform eigenstrain field via method of im-
age is of particular interest. Suppose that �m(ξ) is the mirror image of �(ξ). The local
Cartesian coordinates of the ellipsoidal subdomain, �(ξ) and �m(ξ) are respectively, de-
noted by x̄p and x̃p , p = 1,2,3 with their origins at ō and õ, Fig. 1. The coordinate axes x̄p
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Fig. 1 Ellipsoidal inclusion
�(ξ) and its mirror image �m(ξ)

in two joined semi-infinite solids

and x̃p coincide with the corresponding principle axes. Assume that ō is located at (x1 = 0,
x2 = 0, x3 = h). The orientation of the coordinate system x̄p relative to the global coordinate
system xp are described by the corresponding Eulerian angles αp . The relationship between
the coordinate systems xp and x̄p can be written in the form

x1 = x̄1C12 + x̄2(C1S23 − S1C3) + x̄3(C13S2 + S13),

x2 = x̄1S1C2 + x̄2(S123 + C13) + x̄3(S12C3 − C1S3), (2.2)

x3 = −x̄1S2 + x̄2C2S3 + x̄3C23 + h,

where Ci...k = cosαi . . . cosαk and Si...k = sinαi . . . sinαk . In a similar manner xp are re-
lated to x̃p , except that the associated Eulerian angles are replaced by α1, −α2 and −α3

respectively and h is replaced by −h.
Now, suppose that the ellipsoidal inclusion consists of a set of nested similar ellipsoidal

domains {�1,�2, . . . ,�N },
�t = �(ξt ), t = 1,2, . . . ,N, (2.3)

where

ξ0 = 0 < ξ1 < ξ2 < · · · < ξN. (2.4)

In this manner, N regions denoted by �t are defined

�1 = �1 and �t = �t − �t−1 for t = 2,3, . . . ,N. (2.5)
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A general piecewise nonuniform dilatational eigenstrain field

ε∗
ij (x̄) =

⎧
⎨

⎩

f
(t)
kl...m

(∑3
p=1

x̄2
p

a2
p

)
x̄kx̄l . . . x̄mδij , x̄ ∈ �t ,

0, x̄ ∈ (R3 − �N)
(2.6)

is proposed, where x̄kx̄l . . . x̄m is of order n, and f
(t)
kl...m represents N(n+1)(n+2)/2 different

piecewise continuous functions whose arguments are
∑3

p=1 x̄2
p/a2

p .
Throughout this paper, “ij . . . k” which appear as indices of a quantity indicate the partial

derivatives of that quantity with respect to the coordinate xi, xj , . . . , xk .

Theorem 1 If the distribution of eigenstrains in the local coordinate system {x̄1, x̄2, x̄3}
has the form given by (2.6), then the displacement components for points inside materials I
and II are

uI
i (x) =

N∑

t=1

Aikl...m(x; ξt )f
(t)
kl...m

(
ξ 2
t

)−
N∑

t=1

Aikl...m(x; ξt−1)f
(t)
kl...m

(
ξ 2
t−1

)

−
N∑

t=1

∫ ξt

ξt−1

Aikl...m(x; ξ)df
(t)
kl...m

(
ξ 2
)
, (2.7)

and

uII
i (x) = − (1 + νI)μI

π(μI + κμII)
×
{

N∑

t=1

f
(t)
kl...m

(
ξ 2
t

)
φkl...m,i(x̄; ξt ) −

N∑

t=1

f
(t)
kl...m

(
ξ 2
t−1

)
φkl...m,i(x̄; ξt−1)

−
N∑

t=1

∂

∂xi

∫ ξt

ξt−1

φkl...m(x̄; ξ)df
(t)
kl...m

(
ξ 2
)
}

, (2.8)

respectively, where φkl...m(x̄, ξ) is the Newtonian potential function

Aikl...m(x; ξ) = − (1 + νI)

4π(1 − νI)

{

φkl...m,i(x̄; ξ)

+ μI − μII

μI + κμII
(−1)K [κ(1 − 2δ3i )φkl...m,i(x̃; ξ) + 2x3φkl...m,3i (x̃; ξ)]

}

, (2.9)

κ = 3 − 4νI and K is the number of 3’s which appear in the indices of φ.

Proof The displacement components due to an arbitrary distribution of eigenstrain field
ε∗
ij (x) over the region �N = �(ξN) are obtained from

uD
i (x) =

∫

�N

Cjkmnε
∗
mn(x

′)
∂

∂x ′
k

GD
ij (x,x′)dx′, (2.10)

where the superscript D ≡ I or II refers to the region, and GD
ij (x,x′) is the Green’s function

for joined half-spaces with perfect bonding. The Green’s function for this problem was first
given by Rongved [22]. Using the image method, Walpole [20] has presented a more attrac-
tive form of the Green’s function. For material I, GI

ij (x,x′) is interpreted as the xi -direction



122 R. Avazmohammadi et al.

displacement at point x due to the unit body force applied at x′ in the xj -direction. Define
R1 = |x − x′| and R2 = |x − x′′| with x′′ the image point of x′, then in view of (2.6) and
(2.10)

uI
i (x) = − (1 + νI)

12π(1 − νI)

∫

�N

ε∗
kk(x

′)
{(

1

R1

)

,i

+ (μI − μII)

(μI + κμII)

×
[

κ(1 − 2δ3i )

(
1

R2

)

,i

+ 2x3

(
1

R2

)

,3i

]}

dx′, (2.11)

and

uII
i (x) = − (1 + νI)μI

3π(μI + κμII)

∫

�N

ε∗
kk(x

′)
(

1

R1

)

,i

dx′. (2.12)

Switching to the local coordinate systems x̄p and x̃p and inserting the expression for the
eigenstrains given by (2.6), lead to

uI
i (x) = − (1 + νI)

4π(1 − νI)

×
{

N∑

t=1

∂

∂xi

∫

�t

1

|x̄ − x̄′|f
(t)
kl...m

(
3∑

p=1

x̄ ′2
p

a2
p

)

x̄ ′
kx̄

′
l . . . x̄

′
m dx̄′

+ μI − μII

μI + κμII

N∑

t=1

{

(−1)Kt

[

κ(1 − 2δ3i )
∂

∂xi

+ 2x3
∂

∂x3∂xi

]

×
∫

�m
t

1

|x̃ − x̃′|f
(t)
kl...m

(
3∑

p=1

x̃ ′2
p

a2
p

)

x̃ ′
kx̃

′
l . . . x̃

′
m dx̃′

}}

, (2.13)

and

uII
i (x) = − (1 + νI)μI

π(μI + κμII)

N∑

t=1

∂

∂xi

∫

�t

1

|x̄ − x̄′|f
(t)
kl...m

(
3∑

p=1

x̄ ′2
p

a2
p

)

x̄ ′
kx̄

′
l . . . x̄

′
m dx̄′, (2.14)

where Kt is order of x̄3 in expression of the eigenstrain field over �t , and �m
t is the image

of �t . Now, by converting the volume integrals to line integrals, (2.13) becomes

uI
i (x) = − (1 + νI)

4π(1 − νI)

×
{

N∑

t=1

f
(t)
kl...m(ξ 2

t )φkl...m,i(x̄; ξt ) −
N∑

t=1

f
(t)
kl...m(ξ 2

t−1)φkl...m,i(x̄; ξt−1)

−
N∑

t=1

∂

∂xi

∫ ξt

ξt−1

φkl...m(x̄; ξ)df
(t)
kl...m(ξ 2) + μI − μII

μI + κμII

×
[

N∑

t=1

(−1)Kt f
(t)
kl...m(ξ 2

t )[κ(1 − 2δ3i )φkl...m,i(x̃; ξt ) + 2x3φkl...m,3i (x̃; ξt )]
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−
N∑

t=1

(−1)Kt f
(t)
kl...m(ξ 2

t−1)[κ(1 − 2δ3i )φkl...m,i(x̃; ξt−1) + 2x3φkl...m,3i (x̃; ξt−1)]

−
N∑

t=1

(−1)Kt

[

κ(1 − 2δ3i )
∂

∂xi

+ 2x3
∂2

∂x3∂xi

]∫ ξt

ξt−1

φkl...m(x̃; ξ)df
(t)
kl...m(ξ 2)

]}

.

(2.15)

Noting that the first derivative of Newtonian potential function φkl...m(x; ξ) is continuous
everywhere in R

3 and its second derivative is continuous everywhere except on the boundary
of �(ξ) with a finite jump, the order of differentiation and integration may be changed. Sub-
sequently, after some manipulations and use of the definition of Aikl...m(x; ξ) given by (2.9),
(2.15) reduces to (2.7). Similarly, changing the volume integral in (2.14) to line integral,
leads to (2.8). �

Theorem 2 Suppose that the piecewise nonuniform dilatational eigenstrain field is defined
by

ε∗
ij (x̄) =

⎧
⎨

⎩

f (t)
(∑3

p=1
x̄2
p

a2
p

)
δij + f

(t)
k

(∑3
p=1

x̄2
p

a2
p

)
x̄kδij + · · · , x̄ ∈ �t ,

0, x̄ ∈ (R3 − �N)
(2.16)

with respect to the local coordinates, then the corresponding displacement field in the joined
isotropic half-spaces become:

uI
i (x) = − (1 + νI)

4π(1 − νI)

×
{

N∑

t=1

[
Ai(x; ξt )f

(t)(ξ 2
t ) + Aik(x; ξt )f

(t)
k (ξ 2

t ) + · · · ]

−
N∑

t=1

[
Ai(x; ξt−1)f

(t)(ξ 2
t−1) + Aik(x; ξt−1)f

(t)
k (ξ 2

t−1) + · · · ]

−
N∑

t=1

∫ ξt

ξt−1

[
Ai(x; ξ)df (t)(ξ 2) + Aik(x; ξ)df

(t)
k (ξ 2) + · · · ]

}

(2.17)

and

uII
i (x) = − (1 + νI)μI

π(μI + κμII)

×
{

N∑

t=1

[
f (t)(ξ 2

t )φ,i(x̄; ξt ) + f
(t)
k (ξ 2

t )φk,i (x̄; ξt ) + · · · ]

−
N∑

t=1

[
f (t)(ξ 2

t−1)φ,i(x̄; ξt−1) + f
(t)
k (ξ 2

t−1)φk,i(x̄; ξt−1) + · · · ]

−
N∑

t=1

∂

∂xi

∫ ξt

ξt−1

[
φ(x̄; ξ)df (t)(ξ 2) + φk(x̄; ξ)df

(t)
k (ξ 2) + · · · ]

}

. (2.18)
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Proof The proof of this theorem readily follows Theorem 1 and principle of superposi-
tion. �

3 Closed-Form Expressions for the Tensors Aikl...m Associated with the Interior
Points of Spherical and Cylindrical Inclusions

In the next two sections the exact closed-form solutions of some inclusion problems, for
which the distribution of eigenstrains inside the inclusion is described by a piecewise con-
tinuous function are addressed. To this end, the closed-form expressions for the correspond-
ing tensors Aikl...m(x; ξ) are required. In order to evaluate its components for the interior
and exterior points of �(ξ), following Ferres [23] and Dyson [24], the potential functions
φkl...m(x; ξ) may be linked to elliptic integrals. Subsequently, for the interior points of spher-
ical and cylindrical inclusions the closed form expressions for these tensors are obtained.
Whereas for the exterior points is not possible to derive such brief expressions. In this regard,
for the interior points of the spherical inclusion with radius a only the following components
of the first and second order tensors are needed:

Ai(x; ξ) = 1 + νI

3r̃5(1 − νI)

[
(μI − μII)

(μI + κμII)
a3ξ 3x̃i (κr̃2 − 6x3x̃3) + x̄i r̃

5

]

, i = 1,2,

A3(x; ξ) = 1 + νI

3r̃5(1 − νI)

{
(μI − μII)

(μI + κμII)
a3ξ 3

[
(2x3 − κx̃3)r̃

2 − 6x3x̃
2
3

]+ x̄3r̃
5

}

,

A11(x; ξ) = − 1 + νI

30(1 − νI)

{

(5a2ξ 2 − 6x̄2
1 − 3r̄2)

− 2
(μI − μII)

(μI + κμII)

a5ξ 5

r̃7

[
6x3x̃3(r̃

2 − 5x̃2
1 ) − κr̃2(r̃2 − 3x̃2

1 )
]
}

,

A21(x; ξ) = 1 + νI

5(1 − νI)

[

x̄1x̄2 − (μI − μII)

(μI + κμII)

a5ξ 5

r̃7
x̃1x̃2(10x3x̃3 − κr̃2)

]

,

A31(x; ξ) = 1 + νI

5(1 − νI)

{

x̄1x̄3 − (μI − μII)

(μI + κμII)

a5ξ 5

r̃7
x̃1

[
r̃2(κx̃3 − 2x3) + 10x3x̃

2
3

]
}

,

(3.1)

where r̄ = |x̄|, r̃ = |x̃|. For the interior points of the circular cylindrical inclusion with ra-
dius a, the following components of the first and third order tensors would be used:

A1(x; ξ) = 1 + νI

2r̃4(1 − νI)

[
(μI − μII)

(μI + κμII)
a2ξ 2x̃1(4x3x̃3 − κr̃2) − x̄1r̃

4

]

,

A3(x; ξ) = 1 + νI

2r̃4(1 − νI)

{
(μI − μII)

(μI + κμII)
a2ξ 2

[
2x3(x̃

2
3 − x̃2

1 ) + κx̃3r̃
2
]− x̄3r̃

4

}

,

A111(x; ξ) = − 1 + νI

24(1 − νI)

{

x̄1(3a2ξ 2 − 7x̄2
1 − 3x̄2

3 )

+ (μI − μII)

(μI + κμII)

a4ξ 4

r̃8
x̃1

{
3κr̃6 − 4(3x3x̃3 + κa2ξ 2)r̃4

+ 12x3x̃3a
2ξ 2r̃2 + a2ξ 2

[
κ(5x̃4

1 + 6x̃2
1 x̃

2
3 + x̃4

3 ) + 12x3x̃3(x̃
2
3 − 3x̃2

1 )
]}
}

,
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A311(x; ξ) = − 1 + νI

24(1 − νI)

{

x̄3(3a2ξ 2 + 3x̄2
1 − x̄2

3 ) + (μI − μII)

(μI + κμII)

a4ξ 4

r̃8

{
3(κx̃3 − 3x3)r̃

6

+ [(3x̃2
1 + 15x̃2

3 + 4a2ξ 2)x3 − 2κx̃3a
2ξ 2
]
r̃4 − 12x3x̃

2
3a

2ξ 2r̃2

+ a2ξ 2
[
κx̃3(5x̃4

1 + 6x̃2
1 x̃

2
3 + x̃4

3 ) + 2x3(x̃
4
3 + 20x̃2

1 x̃
2
3 − 5x̃4

1 )
]}
}

,

A113(x; ξ) = − 1 + νI

24(1 − νI)

{

x̄3
[
(3a2ξ 2 − 2r̄2) − 4x̄2

1

]

− (μI − μII)

(μI + κμII)

a6ξ 6

r̃8

[
(6x3 − κx̃3)r̃

4 + 4κx̃3x̃
2
1 r̃

2 − 48x3x̃
2
1 x̃

2
3

]
}

,

A313(x; ξ) = − 1 + νI

24(1 − νI)

{

x̄1

[
(3a2ξ 2 − 2r̄2) − 4x̄2

3

]

+ (μI − μII)

(μI + κμII)

a6ξ 6

r̃8
x̃1

[
κr̃4 + 4x̃3(6x3 − κx̃3)r̃

2 − 48x3x̃
3
3

]
}

.

(3.2)

4 A Dilatational Eigenstrain Field Over a Single Ellipsoidal Inclusion in One
of the Joined Half-Spaces

An ellipsoidal region in a full space undergoing nonuniform dilatational eigenstrain field
which is described by Gaussian or exponential distribution has been considered by Sharma
and Sharma [25]. Their proposed Gaussian distribution falls within the family of functions
described by the first term of the expression (2.16). Sharma and Sharma [25] gave a con-
cise formulation of the stress field for the interior points of a spherical inclusion, but their
analysis for the exterior points contains an unfortunate mistake. Shodja and Shokrolahi-
Zadeh [13] re-examined the problem as a special case of one of their theorems on prediction
of the nature of the disturbance strain due to a broad distribution of piecewise nonuni-
form eigenstrain field over an ellipsoidal domain, which is embedded in an unbounded
medium.

This section extends the formulation to a perfectly bonded bimaterial, where an ellip-
soidal region of one of the joined half-spaces contains the piecewise nonuniform eigenstrain
field described by the first term of the expression (2.16). The interaction of the ellipsoidal
inclusion with the interface gives rise to physically interesting behavior of the interior and
exterior elastic fields. For this problem, as in the case of a full space made of the same ma-
terial, a closed-form solution is not available; however when the inclusion is spherical shape
with Gaussian distribution of eigenstrain field, the closed-form solution is possible.

In the context of the present work, suppose that the ellipsoidal region �(ξ) is situated
near the interface of a bimaterial in such a way that the Euler’s angles α1 = α2 = α3 = 0.
Moreover, consider

ε∗
ij (x̄) =

⎧
⎨

⎩

f
(∑3

p=1
x̄2
p

a2
p

)
δij , x̄ ∈ �,

0, x̄ ∈ (R3 − �).
(4.1)
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Using Theorem 2 along with the eigenstrain field defined by (4.1), the displacement fields
(2.17) and (2.18) are expressed as

uI
i (x) =

[

Ai(x;1)f (1) −
∫ 1

0
Ai(x; ξ)df (ξ 2)

]

, (4.2)

and

uII
i (x) = − (1 + νI)μI

π(μI + κμII)

[

f (1)φ,i(x̄;1) − ∂

∂xi

∫ 1

0
φ(x̄; ξ)df (ξ 2)

]

, (4.3)

where

φ(x̄; ξ) = πa1a2a3

∫ ∞


̄

(

ξ 2 −
3∑

p=1

x̄2
p

a2
p + s

)
ds

�(s)
, (4.4)

in which �(s) =
√

(a2
1 + s)(a2

2 + s)(a2
3 + s) and 
̄ is equal to zero if x ∈ �(ξ), otherwise


̄ is the largest positive root of the equation

3∑

p=1

x̄2
p

a2
p + 
̄

= ξ 2. (4.5)

After some manipulations, making the change of variable ξ 2 = t and change of the order of
integration, the displacement field in media I and II reduce to

uI
i (x) = − (1 + νI)

4π(1 − νI)

[
F,i(x̄) + F,�i (x̃)

]
, (4.6)

uII
i (x) = − (1 + νI)μI

π(μI + κμII)
F,i(x̄), (4.7)

where

∂

∂� = (μI − μII)

(μI + κμII)

[

κ(1 − 2δ3i )
∂

∂xi

+ 2x3
∂2

∂x3∂xi

]

, (4.8)

F(x̄) = πa1a2a3

∫ ∞

s=λ̄

ds

�(s)

∫ 1

t=h̄(s)

f (t)dt, (4.9)

in which

h̄(s) =
3∑

p=1

x̄2
p

a2
p + s

. (4.10)

The expression for F(x̃) is similar to that of F(x̄), except that, in (4.9), λ̄ and h̄(s) must
be replaced by λ̃ and h̃(s), respectively. Note that, λ̄ is equal to zero for the interior points,
x ∈ � and is equal to the largest positive root of equation h̄(λ̄) = 1 for the exterior points,
x /∈ �. Whereas λ̃ is the largest positive root of h̃(λ̃) = 1 in the entire domain, x ∈ R

3.
In presence of eigenstrain field, Hooke’s law reads σij = Cijkl(εkl − ε∗

kl). Accordingly,
the stress field in the entire domain due to the proposed dilatational eigenstrain field which
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is distributed over an ellipsoidal subdomain of medium I is obtained

σ I
ij (x) = 2μI

{
νI

1 − 2νI

[
1 + νI

2(1 − νI)
a1a2a3H

In(x) − 3f

(
3∑

p=1

x̄2
p

a2
p

)]

δij

+ 1 + νI

2(1 − νI)
a1a2a3H

In
ij (x) − f

(
3∑

p=1

x̄2
p

a2
p

)

δij

}

, x ∈ �, (4.11)

σ I
ij (x) = μI(1 + νI)a1a2a3

(1 − νI)

[
νI

1 − 2νI
H Ex(x)δij + H Ex

ij (x)

]

, x /∈ �, (4.12)

σ II
ij (x) = −2μIμII(1 + νI)a1a2a3

π(μI + κμII)

[
νII

1 − 2νII
LEx(x̄)δij + LEx

ij (x̄)

]

, (4.13)

where σ I
ij and σ II

ij denote the stress components in media I and II, respectively. In the above
expressions, the corresponding functions H In, H Ex, H In

ij , H Ex
ij , LEx and LEx

ij are defined in
Appendix A.

4.1 Some Limiting Cases

Using the above formulations, the closed-form solution pertinent to a spherical inclusion in
medium I of two jointed half-spaces where the eigenstrain distribution is Gaussian can be
obtained. The Gaussian type eigenstrain distribution is defined as

ε∗
ij (x̄) =

{
exp
(− k2

a2

∑3
p=1 x̄2

p

)
δij , x̄ ∈ �,

0, x̄ ∈ (R3 − �),
(4.14)

where k is a constant and a is the radius of the spherical inclusion. Under the above as-
sumptions the functions H In, H In

ij , H Ex, H Ex
ij , LEx and LEx

ij have closed-form expressions.
This is due to the fact that the integrals involved in the former problem (Appendix A) can
be integrated exactly for the latter special case (Appendix B).

Define normalized stress components σ̂ij = [3(1 − νI)/2(1 + νI)μI]σij and let νI = νII =
0.3, h/a = 1.5 and k = 1. Figures 2a and 2b show the variations of, respectively, σ̂11 and σ̂33

along the x3-axis for several ratios of shear moduli, μI/μII = 0.1, 1, 10 and ∞. Note that the
limiting cases μI/μII = 1 and ∞ correspond to the problem of spherical inclusion in infinite
and semi-infinite media, respectively. Interestingly, the results pertinent to the case of full-
space are in exact agreement with the results presented by Shodja and Shokrolahi-Zadeh
[13] for the dilatational Gaussian eigenstrain. As it is expected, the stress component σ̂33 is
continuous across the inclusion-matrix interface as well as the interface between media I and
II while the stress component σ̂11 has jumps at those interfaces. Note that σ̂33 is compressive
everywhere, while σ̂11 is compressive for the interior points and abruptly changes to tension
at the inclusion-matrix interface. Away from the inclusion the stress components decay to
satisfy the zero traction boundary conditions at infinity. For the case of half-space μI/μII =
∞ the stress σ̂33 satisfies the traction free boundary condition on x3 = 0 plane; whereas σ̂11

takes on its maximum value on this plane.
To this end it is noteworthy that some other special cases like the problem of spherical

inclusion in half-space with uniform eigenstrains (k = 0) considered by Mindlin and Cheng
[26] and Seo and Mura [27] has been verified.
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Fig. 2 Stress distribution along the x3-axis for dilatational Gaussian distribution of eigenstrain. (a) The
normalized stress σ̂11; (b) The normalized stress σ̂33
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4.2 Energy Consideration

Let us now examine the elastic strain energy stored in bimaterial body D which contains a
spherical inclusion � (in medium I) with Gaussian eigenstrain field (4.14). Using the diver-
gence theorem as well as the traction free condition at the remote boundary and equilibrium
condition, the total (elastic) strain energy of the bimaterial becomes:

W = −1

2

∫

�

σ I
iiε

∗
ii (x̄)dx̄ = W Inf + WBimat, (4.15)

where the term W Inf is the elastic strain energy for the case of an infinite space occupied
by medium I only. The second term WBimat is the correction needed to account for the
replacement of medium II with medium I in the bimaterial problem of interest. After some
manipulations, it may be shown that W Inf and WBimat can be expressed by

W Inf = 4π

k3

{
9(1 + νI)a3μI

16(1 − 2νI)

{√
2
[√

π − γ (0.5;2k2)
]− 4ke−2k2

}

+
∫ a

0

(1 + νI)�

r̄
[3γ (1.5; k2r̄2/a2) − 2γ (2.5; k2r̄2/a2)]dr̄

}

, (4.16)

WBimat = 2π

∫ a

0

∫
√

a2−ρ2

−
√

a2−ρ2

(μI − μII)a�

(a2r̃2 + r̃2 − a2)(μI + κμII)r̃5

× {6νIa2r̃2(a2 − a2r̃2 − r̃2)γ (2.5; k2)/k + a2r̃5(a2r̃2 + r̃2 − a2)

× {4x3x̃3(1 + νI)[2γ (3.5; k2) − 5γ (2.5; k2)]/k3r̃5 + (1 + 7νI)

× γ (1.5; k2)/k2r̃3 − 2(1 − 2νI)(ρ2 − x̃2)γ (2.5; k2)/k2r̃5
}

− 2e−k2{
a2κ(1 − 2νI)(ρ2 − x̃2)r̃4 + [10(1 + νI)(1 + a2)x3x̃3

− 3νIκ(a2 − 2)(a2r̃2 + r̃2 − a2)
]
r̃2 − 2(1 + νI)e−k2

a2x3x̃3

× [5a2 + (5 + 4k2)(a2r̃2 + r̃2 − a2)]}}ρ dx̄3 dρ (4.17)

where ρ =
√

x2
1 + x2

2 , r̄ and r̃ have been defined in Sect. 3, � = − 3μI(1+νI)

2(1−νI)(1−2νI)
e−k2 r̄2/a2

, and
the function γ (x;n) is the incomplete gamma function of x of order n.

The expression for W Inf and W Bimat corresponding to the limiting case where the eigen-
strain field is uniform (k = 0) are in exact agreement with those given by Walpole [21].
Sharma and Sharma [25] considered the strain energy expression for a dilatational Gaussian
distribution of eigenstrain within a single spherical domain which is embedded in an infi-
nite body. In their work, the expression for W Inf is not fully correct and has some evident
mistypes; the correct form of W Inf can be directly obtained from (4.16).

For νI = νII = 0.3, k = 1 and selected stiffness ratios μI/μII = 0, 0.5, 1, 2 and ∞, the
effect of relative depth of the inclusion center from the interface on the normalized total
strain energy (Ŵ = W/W Inf) can be observed in Fig. 3. Two extreme limits of the stiffness
ratios, i.e., μI/μII = 0 and ∞ correspond to the rigid-elastic bimaterial and semi-infinite
elastic solid, respectively. As expected for the case of a full space, the normalized strain
energy Ŵ = 1 for all values of h/a. For the cases where medium II is stiffer and softer than
medium I, Ŵ takes on, respectively, its maximum and minimum values when the spherical
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Fig. 3 The normalized strain energy Ŵ as function of the depth parameter h/a

inclusion becomes tangent to the interface. Moreover, in all cases, as h/a becomes larger Ŵ

approaches the value it has in the case of the full space.

5 Examples Pertinent to Multiple Spherical/Cylindrical Inclusions

In this section, further illustrations of applicability of Theorem 2 are provided through con-
sideration of two examples involving piecewise nonuniform eigenstrain distributions. The
closed-form solutions will be obtained with the aid of the tensors Aikl...m discussed in Sect. 3.

The examples of Sects. 5.1 and 5.2 are, respectively, pertinent to two concentric spheres
with radii a and qa and three concentric cylinders with radii a, q1a, and q2a. For the sake
of brevity, only certain components of the stress field are given in the following subsections.
Also, in the plots given in this section the Poisson’s ratio of the materials I and II are taken as
νI = νII = 0.3. In the expressions of the eigenstrain field distribution two constant parame-
ters, ε1 and ε2 are introduced for the sake of tracking the contribution of the corresponding
terms of eigenstrain field to the stress field. However, in the plots ε1 = ε2 = 1 is used for
simplicity.

5.1 Two Concentric Spheres

Consider two concentric spherical regions �1 and �2 in medium I of the joined half-spaces.
Suppose the eigenstrain field over those regions is prescribed as

ε∗
ij (x̄) =

⎧
⎪⎨

⎪⎩

ε1P1(r̄/a)δij , x̄ ∈ �1,

ε2P2(r̄/a)x̄1/aδij , x̄ ∈ �2,

0, otherwise,

(5.1)
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where Pn(r̄) is the Legendre polynomial of order n. For this problem, among all Aikl...m

for the interior points, only closed-form expressions of the tensors Ai and Aij are needed.
By employing Theorem 2, the displacement field and subsequently the stress field are de-
termined. For brevity, only the normal component of the stress field perpendicular to the
interface is given here:

σ I
33 = 2μI

(1 − 2νI)r̃7

{

ε1

{

− (μI − μII)(1 + νI)a3

(μI + κμII)(1 − νI)

× {κr̃4 + {[4(1 − νI) − 3κ]x̃2
3 − 2(1 − νI)ρ̃2 + 4(2 + νI)x3x̃3

}
r̃2

− 10
[
2(1 − νI)x̃2

3 − (1 − 4νI)ρ̃2
]
x3x̃3

}− (1 + νI)ξ r̃7

}

− ε2(μ
I − μII)(1 + νI)a4x̃1

70(μI + κμII)(1 − νI)r̃2

× {7κQ2r̃
4 + {{24[κ − 2(1 − νI)]Q1 + 7[8(1 − νI) − 5κ]Q2

}
x̃2

3

+ {6[2(1 − νI) − κ]Q1 − 14Q2(1 − νI)
}
ρ̃2 + 14Q2(8 + 5νI)x3x̃3

}
r̃2

− 2
{[90(1 − 2νI)Q1 + 49(5νI − 1)Q2]ρ̃2

+ [49(4 − 5νI)Q2 − 120(1 − 2νI)Q1]x̃2
3

}
x3x̃3

}
}

,

x ∈ �1, (5.2)

σ I
33 = μI

(1 − 2νI)a3r̄5r̃7

{

−a3(1 + νI)ε1

2(1 − νI)

{
(μI − μII)

(μI + κμII)

× {κr̃4 + {[4(1 − νI) − 3κ
]
x̃2

3 − 2(1 − νI)ρ̃2 + 4x3x̃3(2 + νI)
}
r̃2

− 10x3x̃3
[
(4νI − 1)ρ̃2 + 2(1 − νI)x̃2

3

]}
r̄5 − {[r̄2(1 + νI) − 3νIρ̄2 − 3(1 − νI)x̄2

3

]
r̃2

+ 4
[
νI(x̄1x̃1 + x̄2x̃2 − x̄3x̃3) + x̄3x̃3

]
r̄2
}
r̃5

}

+ ε2

105a3r̄2r̃2

{
(1 + νI)(μI − μII)a7x̃1

(1 − νI)(μI + κμII)

× {κ[98νIq5(1 − 3q2) + 7(14νI − 3)Q2 + 4νI(9Q1 + 49)
]
r̃4

+ {{42Q2(1 − νI) + 18Q1

[
κ(1 − 2νI) − 2(1 − νI)

]}
ρ̃2

+ 3
{
12Q1

[
4(1 − νI) − (2 + νI)κ

]+ 14Q2

[
4(νI − 1) − κ

]

+ 49
[
q5(3q2 − 1) − 2

]
κ
}
x̃2

3 − 42Q2(8 + 5νI)x3x̃3

}
r̃2

+ 6
{{

90Q1(1 − 2νI) − 49(5νI − 1)
[
2 − q5(3q2 − 1)

]}
ρ̃2

− {120(1 − 2νI)Q1 + 49(4 − 5νI)
[
2 − q5(3q2 − 1)

]}
x̃2

3

}
x3x̃3

}
r̄7

+ x̄1

{
(1 + νI)

(1 − νI)

{
3
[
15(1 + 5νI)ρ̄2 + 15(3 + νI)x̄2

3 − 7a2(1 + 3νI)
]
r̄7

+ 14a7(3 + 4νI)r̄2 + 2a7
[
(9 + 52νI)ρ̄2 + (69 − 68νI)x̄2

3

]}

− 105a2(1 + νI)(3ξ 2 − 1)r̄7

}

r̃9

}}

,

x ∈ �2. (5.3)
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In medium I but outside of spherical region �2

σ I
33 = − μI(1 + νI)a3

2(1 − 2νI)(1 − νI)r̄5r̃7

×
{

ε1

{
(μI − μII)

(μI + κμII)

{
κr̃4 − {2(1 − νI)ρ̃2 + [3κ − 4(1 − νI)

]
x̃2

3 − 4(2 + νI)x3x̃3

}
r̃2

+ 10
[
(1 − 4νI)ρ̃2 − 2(1 − νI)x̃2

3

]
x3x̃3

}
r̄5 − [(1 + νI)r̄2 − 3νIρ̄2 − 3(1 − νI)x̄2

3

]
r̃7

}

− 2aε2

105r̄2r̃2

{
(μI − μII)x̃1

(μI + κμII)

{
3κ(6Q1 − 7Q2)r̃

4

− 3
{
2(1 − νI)(6Q1 − 7Q2)ρ̃

2 + (6Q1 − 7Q2)
[
5κ − 8(1 − νI)

]
x̃2

3

+ 14Q2(5 + 8νI)x3x̃3

}
r̃2

+ 6
{[

90(1 − 2νI)Q1 + 49(5νI − 1)Q2

]
ρ̃2

− [120(1 − 2νI)Q1 − 49(4 − 5νI)Q2

]
x̃2

3

}
x3x̃3

}
r̄7

+ x̄1

{
7(3 + 4νI)Q2r̄

2 − 2
[
35Q2ν

I + 9Q1(1 − 2νI)
]
ρ̄2

+ [72Q1(1 − 2νI) − 35(3 − 4νI)Q2

]
x̄2

3

}
r̃9

}}

, (5.4)

and for medium II

σ II
33 = 2(1 + νI)μIμIIa3

(1 − 2νII)(μI + κμII)r̄5

{

ε1

[
(1 + νII)r̄2 − 3νIIρ̄2 − 3(1 − νII)x̄2

3

]+ 2aε2x̄1

35r̄2

× {7(1 + 3νII)Q2r̄
2 − {[6(1 − 2νII)Q1 + 35νIIQ2

]
ρ̄2

− [24(1 − 2νII)Q1 − 35(1 − νII)Q2
]
x̄2

3

}}
}

, (5.5)

where ρ̄2 = x̄2
1 + x̄2

2 , ρ̃2 = x̃2
1 + x̃2

2 and

Q1 = (q − 1)

6∑

k=1

qk,

Q2 = (q − 1)

[

3(q6 + q5) + 2
6∑

k=1

qk

]

.

The following results are obtained for q = 2. Figure 4 shows the variations of the normal-
ized stress components σ̂11 and σ̂33 along the x3-axis at selected stiffness ratios μI/μII = 0.1
and 10 when the inclusion makes contact with the interface (h = 2a). From this figure, it
can be seen that the stresses σ I

11 and σ I
33 attain their maximum magnitudes at the points

x3/a = 1,3 on the boundary of the inner sphere. Note that, all the normal components of the
eigenstrain field along the segment of x3-axis which is in �1 equal zero. As a result the σ̂11

component of stress field remains continuous across the boundary of x3/a = 4. Needless to
mention, σ̂33 is continuous along the entire x3-axis as it ought to be. Also, the results show
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Fig. 4 Stress distribution along the x3-axis for eigenstrain given by (5.1)

that a spherical region with nonuniform thermal strain in the lower semi-infinite space will
not cause any noticeable stress in the upper medium, especially when the lower space is
stiffer than the upper one.

The distribution of the normalized stress components σ̂11, σ̂33 and σ̂13 along the x1-axis
under the conditions μI/μII = 5 and h = 3a are illustrated in Fig. 5. It is observed that for
the eigenstrain distribution described by (5.1) σ̂33 has the largest magnitude at the x1 = ±2a

on the boundary of the outer spherical region as compared with σ̂11 and σ̂13. It is interesting
to note that the prescribed eigenstrain field is continuous at x1 = a, while it is discontinuous
at x1 = −a. Consequently, the normalized stress component σ̂33 along x1-axis follows a
similar behavior at x1 = ±a.

The variation of the dimensionless displacement component, uI
3/a over the interface for

h/a = 2.5 and μI/μII = 2 is shown in Fig. 6. This variation resembles a doublet formation
on the interface directly above the inclusion. If the sphere is projected on to the interface,
the maximum and minimum values of uI

3/a correspond to the boundary between �1 and �2,
and uI

3/a = 0 corresponds to the center of the spherical region. Also, by distancing from this
place to |x1/a| > 4 or |x2/a| > 4, the displacement magnitude is rapidly vanishing.

5.2 Three Concentric Cylinders

In the second example, the results are specialized for three concentric cylinders. Take x̄2-axis
as the axis of cylinder and parallel to the x2-axis. The following non-unifrom distribution of
eigenstrain field is prescribed

ε∗
ij (x̄) =

⎧
⎪⎨

⎪⎩

ε1P1(ρ̄/a)x̄2
1/a

2δij , x̄ ∈ �2,

ε2 exp(ρ̄/a)x̄1x̄3/a
2δij , x̄ ∈ �3,

0, otherwise,

(5.6)
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Fig. 5 Stress distribution along the x1-axis at x3 = h for eigenstrain given by (5.1)

Fig. 6 The normalized displacement component, uI
3/a on the interface as a function of the coordinates x1/a

and x2/a
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where exp(·) is the exponential function, and ρ̄2 = x̄2
1 + x̄2

3 . The stress field of this multi-
inclusion interacting with the interface can be readily obtained by utilizing Theorem 2 and
the closed-form expression of the third order tensors Aikl derived in Sect. 3. For example,
the stress component σ I

13 for the points x ∈ �1 is

σ I
13 = μI(1 + νI)

12(1 − νI)a2ρ̃10

{
2(μI − μII)ε1

35(μI + κμII)

{
84a4J4x̃1(x̃3 + 5x3)ρ̃

6

− 21a4x̃1

[
5a2J6(x̃3 + 2x3) + J4x3(12x̃2

1 + 44x̃2
3 )
]
ρ̃4

− 5a6J6x̃1
[
3x̃3(5x̃2

3 − 19x̃2
1 ) + 14x3(3x̃2

3 + 11x̃2
1 )
]
ρ̃2

+ 20a6J6x̃1x3(67x̃4
1 + 111x̃4

3 − 110x̃2
1 x̃

2
3 )
}− ε2

{
(μI − μII)a6

(μI + κμII)

{
4(x̃2

3 − x̃2
1 )

× {S6κ − [2(5x̃4
3 + 110x̃2

1 x̃
2
3 + 9x̃4

1 )S6 + 36x3x̃3(5x̃4
1 − 10x̃2

1 x̃
2
3 + x̃4

3 )S
]
ρ̃4
}

+ [8S6x3x̃3(9x̃2
1 + 5x̃2

3 ) + 18S(x̃4
1 − 6x̃2

1 x̃
2
3 + x̃4

3 )
]
ρ̃2 + 768S6x3x̃

2
1 x̃

3
3

}

+ 6a2(S1 − S0)ρ̃
10

}}

, (5.7)

such that ρ̃2 = x̃2
1 + x̃2

3 and

Jp = (q1 − 1)

p∑

k=1

qk
1 ,

Sk = (qk
1 exp(q1) − qk

2 exp(q2)), k = 0,1, . . . ,6

and

S = S5 − 5S4 + 20S3 − 60S2 + 120S1 − 120S0.

According to Theorem 4 of Shodja and Shokrolahi-Zadeh [13] when the eigenstrain of
the form given by (5.6) is considered in an infinite medium, the resulting stresses inside the
core �1 must be uniform. This is confirmed by μII = μI in the pertinent formulae obtained
from the present theory:

σ I
11 = (1 + νI)(1 − q3

1 )μIε1

6(1 − νI)
, x ∈ �1, (5.8)

σ I
33 = − (1 + νI)(1 − q3

1 )μIε1

6(1 − νI)
, x ∈ �1, (5.9)

σ I
13 = − (1 + νI)[(q2 − 1) exp(q2) − (q1 − 1) exp(q1)]μIε2

2(1 − νI)
, x ∈ �1. (5.10)

Thus, the stress field is uniform within the core region.
In the remainder of this section, let q1 = 1.5 and q2 = 2. Figure 7 illustrates the variation

of the calculated stresses σ̂11 and σ̂13 along the x1-axis for the extreme limits of the stiffness
ratios μI/μII = 0 and ∞. It is observed that, the interaction of multi-inclusion with the
interface results in nonuniform distribution of σ̂11 and σ̂33 within the core, in which the
eigenstrains are zero. Also, it is seen that, except for the core region, the stress distribution
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Fig. 7 Stress distribution along the x1-axis at x3 = h for eigenstrain given by (5.6)

for the fixed and free surface conditions, μI/μII = 0 and ∞,respectively follow the same
trend.

For the case of μI/μII = 1/3, the influence of the relative depth h/a on the distribution
of the stress σ̂33 within the interface along the x1-axis is displayed in Fig. 8. The eigenstrain
distribution (5.6) yields maximum tensile stress σ̂33 for x1 > 0 and maximum compressive
stress for x1 < 0. This specific distribution of the stress σ̂33 produces a considerable bending
at the interface, especially when the inclusion touches the interface.

6 Summary

The problem of an ellipsoidal domain with a general class of piecewise nonuniform di-
latational eigenstrain distribution associated with two joined isotropic half-spaces having
a perfect planar interface was proposed. The stated theorems provide a rigorous and exact
solution of the pertinent problems. The multi-inclusion problems associated with the half-
spaces having fixed or free surface boundary conditions, and full space can be treated as the
limiting case. When one of the principal axes of the ellipsoidal inclusion is parallel to the in-
terface an exact closed-form solution was obtained. A special interface-inclusion interaction
problem involving a spherical inclusion with Gaussian distribution of eigenstrain field was
addressed. A concise note on the calculations of the relevant elastic strain energy was given;
followed by some numerical remarks. For further demonstrations of the theorems, in the
example sections two multi-inclusion problems involving two concentric spheres and three
concentric cylinders have been proposed and solved. In these examples, the closed-form
expressions for the stress field were obtained.
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Fig. 8 Stress distribution along the x1-axis at the interface for eigenstrain given by (5.6)

Finally, it should be emphasized that by finding elastic fields due to dilatational multi-
inclusions embedded in bimaterials and prescribed by a more general eigenstrains than
polynomial ones, the current paper can offer a wide range of applications in the solid state
physics and material science to deal with problems such as transient thermal strains in elec-
tronic chips, diffusion–induced type eigenstrains in materials, and so on in which a localized
source of misfit strains gives rise to a strongly nonlinear distribution of eigenstrains.

Appendix A

H In,Ex(x) = LIn,Ex(x̄) + (μI − μII)

(μI + κμII)

[

κ

(

2
3∑

k=1

x̃2
kFKK(x̃) +

3∑

k=1

Fk(x̃)

)

+ 2x3G(x̃) + 2κf (1)

�(λ̃)

(

1 − 2�2(x̃; λ̃)

�3(x̃; λ̃)

)]

,

H
In,Ex
ij (x) = L

In,Ex
ij (x̄) + (μI − μII)

(μI + κμII)

[

κ(2x̃i x̃jFIJ (x̃) + δijFI (x̃))(1 − 2δ3i )

+ 2x3Gij (x̃) − 2κf (1)(1 − 2δ3i )x̃i x̃j

�(λ̃)(a2
I + λ̃)(a2

J + λ̃)�3(x̃; λ̃)

]

,

LIn(x̄) = 2
3∑

k=1

x̄2
kFKK(x̄) +

3∑

k=1

Fk(x̄),
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LEx(x̄) = 2
3∑

k=1

x̄2
kFKK(x̄) +

3∑

k=1

Fk(x̄) − 2f (1)

�(λ̄)
,

LIn
ij (x̄) = 2x̄i x̄jFIJ (x̄) + δijFI (x̄),

LEx
ij (x̄) = 2x̄i x̄jFIJ (x̄) + δijFI (x̄) − 2x̄i x̄j f (1)

�(λ)(a2
I + λ̄)(a2

J + λ̄)�3(x̄; λ̄)
,

Gij (x̃) = 2[2x̃i x̃j x̃3Fij3(x̃) + Fi3(x̃)(δ3i x̃j + δ3j x̃i + δij x̃3)]

− 1

(a2
I + λ̃)�(λ̃)

[
2

(a2
J + λ̃)

f ′(1)x̃i x̃j λ̃,3 + f (1)(δ3i λ̃,j + δij λ̃,3)

]

− x̃if (1)

(a2
I + λ̃)�(λ̃)

(λ̃,3j − 
ij ),

G(x̃) = 2x̃3

{
2
[
x̃2

1F113(x̃) + x̃2
2F223(x̃) + x̃2

3F333(x̃)
]+ F13(x̃) + F23(x̃) + 3F33(x̃)

}

− λ̃,3

�(λ̃)

{

2�3(x̃; λ̃)f ′(1) +
[

1

(a2
1 + λ̃)

+ 1

(a2
2 + λ̃)

+ 2

(a2
3 + λ̃)

]

f (1)

}

− f (1)

�(λ̃)

[
x̃1

(a2
1 + λ̃)

(λ̃,13 − 
11) + x̃2

(a2
2 + λ̃)

(λ̃,23 − 
22) + x̃3

(a2
3 + λ̃)

(λ̃,33 − 
33)
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,

in which

�k(x̄; λ̄) =
k∑

p=1

x̄2
p

/
(a2

p + λ̄)2,


ij =
[

1

a2
i + λ̃

+ 1

2

3∑

p=1

1

a2
p + λ̃

]

λ̃,3λ̃,j

and the integrals are

Fi(x̄) =
∫ ∞

λ̄

1

(a2
i + s)�(s)

f

(
3∑

p=1

x̄2
p

a2
p + s

)

ds,

Fij (x̄) =
∫ ∞

λ̄

1

(a2
i + s)(a2

j + s)�(s)
f ′
(

3∑

p=1

x̄2
p

a2
p + s

)

ds,

Fijk(x̄) =
∫ ∞

λ̄

1

(a2
i + s)(a2

j + s)(a2
k + s)�(s)

f ′′
(

3∑

p=1

x̄2
p

a2
p + s

)

ds

where

f ′(χ) = df (χ)

dχ
, f ′′(χ) = d2f (χ)

dχ2
.

Note that �k(x̃; λ̃), Fi(x̃), Fij (x̃) and Fijk(x̃) are similar to that of �k(x̄; λ̄), Fi(x̄), Fij (x̄) and
Fijk(x̄), except that, λ̄ and x̄ must be replaced by λ̃ and x̃, respectively. Also, the Einstein
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summation convention is valid only for the repeated lower case indices. The upper case
indices have the same values as the lower cases, but are not summed.

Appendix B

The results for stress field are specialized for a spherical inclusion with radius a, for which
the closed-form expressions of the corresponding integrals are found to be

Fi(x̄) = γ (1.5; k2r̄2/a2)

k3r̄3
,

Fij (x̄) = −γ (2.5; k2r̄2/a2)

k3r̄5
,

Fijk(x̄) = γ (3.5; k2r̄2/a2)

k3r̄7
, x ∈ �,

and

Fi(x̄) = γ (1.5; k2)

k3r̄3
,

Fij (x̄) = −γ (2.5; k2)

k3r̄5
,

Fijk(x̄) = γ (3.5; k2)

k3r̄7
, x /∈ �,

where the function, γ (x,n) is the incomplete gamma function of x of order n. Also, the
functions Fi(x̃), Fij (x̃) and Fijk(x̃) can be effortlessly obtained from corresponding func-
tions by replacing r̄ with r̃ in the entire domain, x ∈ R

3.
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