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A B S T R A C T   

The bistability of embedded elements provides a natural route through which to introduce 
reprogrammability to elastic meta-materials. One example of this is the soft morphable sheet, in 
which bistable elements that can be snapped up or down, are embedded within a soft sheet. The 
state of the sheet can then be programmed by snapping particular elements up or down, resulting 
in different global shapes. However, attempts to leverage this programmability have been limited 
by the tendency for the deformations induced by multiple elastic elements to cause large global 
shape bifurcations. We study the root cause of this bifurcation in the soft morphable sheet by 
developing a detailed understanding of the behaviour of a single bistable element attached to a 
flat ‘skirt’ region. We study the geometrical limitations on the bistability of this single element, 
and show that the structure of its deformation can be understood using a boundary layer analysis. 
Moreover, by studying the compressive strains that a single bistable element induces in the 
surrounding skirt we show that the shape bifurcation in the soft morphable sheet can be delayed 
by an appropriate design of the lattice on which bistable elements are placed.   

1. Introduction 

The ability to change shape is as important to an emerging class of engineering applications as it is to biological organisms: just as 
animals and plants morph in response to external stimuli, soft robots must be able to change shape to adapt to different environments 
and complete different tasks (Alapan et al., 2020; Shah et al., 2021; Liu et al., 2021b). In both cases, our understanding of different 
artificial mechanisms through which this shape change can be achieved has exploded in recent years with examples including 
pneumatic inflation (Pikul et al., 2017; Siéfert et al., 2019), multi-material 4D printing (Boley et al., 2019), magneto-responsive 
elastomers (Zhang et al., 2021) and 3D-printed composites (Kim et al., 2018), designed director fields within liquid crystal elasto-
mers (Aharoni et al., 2018), designed cuts in planar sheets (Celli et al., 2018; Liu et al., 2020), as well as swelling of patterned 
hydrogels (Wang et al., 2017). 

In each of the above artificial examples, techniques have been developed that allow a particular three-dimensional target shape to 
be achieved by the actuation of an initially flat sheet. However, these techniques in general are only capable of generating one, or 
perhaps two, designed shapes. Nature, however, is able to adapt form repeatedly and in a variety of ways. To achieve something similar 
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in artificial systems requires a means of reprogramming the shape. 
There are two key hurdles to achieve this reprogrammability in practice: firstly, a means of reversibly actuating different elements 

of an object between two different states (Faber et al., 2020; Alapan et al., 2020). Secondly, interactions between neighbouring ele-
ments may lead to unwanted global deformation modes that make it impossible to reach a well-controlled state (Moessner and 
Ramirez, 2006; Gilbert et al., 2016; Siéfert et al., 2021): the system is then generically stuck in a local minimum, with many similar 
states ‘nearby’ — what may be termed ‘soft modes’. 

In this paper, we study a soft morphable sheet, illustrating another system in which shape can be changed by controlling the state of 
individual elements; we show how understanding the behaviour of these individual elements may yield new understanding, allowing 
the appearance of soft modes to be postponed. 

To achieve a fundamental element with two different stable (activated and natural, or de-activated) states, elastic snap-through is a 
natural candidate: curved elastic structures such as arches and shells often have two stable states and can be switched between these 
two states by the application of a suitable external load (Holmes and Crosby, 2007; Taffetani et al., 2018; Liu et al., 2021a). It is 
therefore somewhat natural to consider a simple elastic sheet with multiple bistable elements embedded at various locations within it. 
Conveniently, a similar system can be found in the silicone moulds used for moulding chocolate (see Fig. 1). Popping individual 
hemispherical dimples (the moulds) from their natural state to inverted state induces deformations in the neighbouring sheet that is 
reminiscent of the deformation induced by a localized dilation (Oshri et al., 2019; Plummer and Nelson, 2020; Oshri et al., 2020; 
Hanakata et al., 2022). However, as more snapping elements are activated, we see that the shape of the whole sheet changes globally 
from the initially flat state (Fig. 1A) to different stable curved states (Fig. 1B and C), depending on which dimples one chooses to pop. In 
this sense, the silicone mould represents a “Soft Morphing Sheet”. A rigid version of this idea was first presented by Seffen (Seffen, 2006, 
2007), but the use of an elastomer here allows deeper shells to pop reversibly (without plastic deformation), thereby creating larger 
local deformations and, as a result, greater global shape changes. We seek to understand this deformation, and so shall not focus on the 
means of switching the individual elements between different states, merely noting that this could be achieved using pneumatic 
pressure (Gorissen et al., 2020) or externally applied magnetic fields (Chen et al., 2021), for example. 

A similar system has been studied recently (Udani and Arrieta, 2022). This work showed that the system becomes frustrated with 
many co-existing states with similar energies: geometrical frustration of neighbouring elements leads to degeneracy of the global 
shape, which are sometimes called ‘soft modes’ of deformation (Moessner and Ramirez, 2006). The system can be switched between 
neighbouring frustrated states by gently teasing the system (e.g. by hand); however, this frustration cannot be eliminated. Examples of 
the different global shapes that can be achieved as a result of this frustration for dimples on square and triangular lattices are shown in 
Fig. 2. In the application to shape change, however, the aim is to control the state of the individual elements to be buckled (or not), and 
hence to understand how the macroscopic behaviour (i.e. global shape) emerges from the microscopic behaviour (i.e. local defor-
mation). In this paper, therefore, we seek to understand the buckling instability that leads to shape bifurcation, as well as illustrating 
one strategy to delay its onset. 

The paper is organized as follows. We start by analysing the individual snapping shell as a single element in Section 2. Here, we 
make use of shallow shell theory (presented in Section 2.2) to study first the conditions for bistability (Section 2.3). To understand the 
inverted state further we then present a boundary layer analysis of the deformed shape of a single element (Section 2.4); in each case, 

Fig. 1. A silicone chocolate mould is an everyday instance of a ‘Soft Morphing Sheet’: by popping individual hemispherical elements, the mould 
morphs from its initial flat state (shown in (A)) to different stable curved states ((B) and (C)). In (B) the sheet curves around its long axis (highlighted 
in red in panel A) in response to elements being popped along this axis. In (C) the sheet curves about its short axis (highlighted in blue in panel A) in 
response to elements along the short axis being popped. (The diameter of each spherical cap is 3.5 cm.). 
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we compare our theoretical results with those from both Finite Element Method (FEM) simulations and experiments. The boundary 
layer analysis of Section 2.4 lends insight into the root cause for the shape bifurcation that is observed and results in frustration. We 
therefore study, in Section 3, the effect of lattice design on shape bifurcation and hence on frustration, showing that shape bifurcation 
can be delayed by placing elements on a hexagonal lattice, rather than a triangular lattice. Finally, in Section 4, the paper is concluded 
with some remarks and suggestions for future work.  

2. The fundamental element: A single snapping shell 

As a first step to understand the properties of the collective dimpled sheet, we consider the fundamental element i.e. a single 
spherical cap embedded within a planar thin plate — a ‘skirt’. (Alternatively, the sheet consists of ‘inclusions’, the shells, embedded in 
a ‘matrix’. For a single element, we prefer to retain the term skirt as a reminder that it has a circular boundary, and to differentiate it 
from the matrix between multiple elements in a sheet.) We call this fundamental element a ‘snappit’ (analogous to the bits used in 
electronic devices) and assume that its material and geometrical properties (save for the natural curvature) are identical to those of the 
remainder of the collective sheet; moreover, we shall assume that all the snappits of a dimpled sheet have the same characteristics. It 
should be noted that in this section we shall focus on the axisymmetric behaviours of a single element in §2.1-§2.4; we will turn to 
consider the causes of asymmetry in §2.5. 

The simplest geometry for a single snappit is to have an axisymmetric flat plate beyond the spherical cap, as shown in Fig. 3A. The 
geometrical parameters of this system are then given by those of the spherical cap (radius of curvature R, half-width L, thickness t) and 
of the flat skirt region (outer radius L + ΔL and, again, thickness t). 

A typical example of this is shown in Fig. 3B and D: a 3D printed snappit can be popped from its natural state (see Fig. 3B and C) 
(Taffetani et al., 2018) to an inverted state (see Fig. 3D and E). This inversion induces a deformation of the plate that tends to be 
localized in the region near the interface with the shell. 

Two natural questions emerge from this first picture of an inverted snappit: firstly, when is the inverted state stable (i.e. when is the 
snappit bistable?) and secondly, what is the induced deformation in the sheet? 

We consider each of these questions in turn and will use a combination of experiments, simulations and theory to tackle them: 
physical experiments using 3D printed samples, FEM simulations using commercial software (ABAQUS) and detailed theoretical 
analysis using shallow shell theory. With this we obtain a quantitative comparison between simulations and experiments, as well as 
analytical and asymptotic results. 

2.1. Stability of a spherical cap: A review 

To get an indication of the sort of behaviour that might be expected for a single snappit, we briefly review the scenario of a single 
spherical cap (without any extra material around the edge), which has been considered previously (Taffetani et al., 2018). In this case 
the stability of the inverted state of a spherical cap is independent of the Young’s modulus E of the material: since there is no other force 

Fig. 2. The frustration of inverted dimples placed on a square lattice (top) and triangular lattice (bottom) leads to different global modes of 
deformation that can be easily shifted by hand (‘soft modes’). (A) The natural (undeformed) state of the sheet with natural dimples on a square 
lattice (with total size of 159 × 159 mm) leads to at least two deformation shapes when all of the dimples are inverted, (A-i) and (A-ii). (B) The 
natural (undeformed) state of the sheet with natural dimples on a triangular lattice (169 × 157 mm) leads to at least two deformation shapes 
when all of the dimples are inverted, (B-i) and (B-ii). In each case these sheets are 3D printed as described in Appendix A. 
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scale in the problem (assuming that gravity can be neglected) the transition between bistability and monostability is determined purely 
by the Poisson’s ratio, ν, and the geometrical properties of the shell, namely its radius of curvature R, half-width L, and thickness t. 

On dimensional grounds, it is clear that with three length scales in the problem, two dimensionless groups can be formed. One 
natural choice is the angle sub-tended between the pole and the edge of the shell, i.e. α (= sin− 1(L/R)). Shells with α ≪ 1 are shallow 
(Ventsel and Krauthammer, 2001), but with α = O(1) are deep. To determine a second dimensionless parameter, Taffetani et al. (2018) 
used energy arguments to consider the competition between bending and stretching energies: the bending energy density induced by 
inversion is E B ∼ B(1/R2) (where B = Et3/12(1 − ν2) is the bending stiffness of the shell) while the stretching energy density may be 
estimated to be E S ∼ Etα4. The relative importance of stretching to bending energy densities is, therefore, E S/E B = 12(1 −

ν2)(R2/t2)α4. We codify the relative importance of bending and stretching energies via the fourth root of this parameter (Libai and 
Simmonds, 2005), namely  

λd =
[
12

(
1 − ν2)]1/4

̅̅̅
R
t

√

α. (1)  

Clearly the parameter λd involves both the depth of the shell, measured via α, and its slenderness, t/R. However, Taffetani et al. (2018) 
found that the transition between monostability and bistability occurs at a critical value, λd = λcrit that is approximately independent of 
α for α≲1.0 (from their results, the variation in λcrit is less than 1% for α≲1.3). Finally, Taffetani et al. (2018) showed that the value of 
λcrit can be accurately calculated using shallow shell theory, which is only formally valid in the limit α ≪ 1. 

For the snappit with an attached outer skirt (see Fig. 3), there is an additional parameter, namely the size of the skirt ΔL measured 
relative to the size of the shell itself, L; we therefore introduce the ratio  

Δ = ΔL/L. (2)  

We now turn to characterize how the presence of a skirt affects the bistability of the snappit, as well as the overall shape in the inverted 
state. Ultimately, we will be interested in this variation as all three of the dimensionless parameters (λd, α and Δ) vary, but we initially 
simplify the problem by considering the problem for shallow shells, so that α ≪ 1. 

2.2. Shallow shell formulation 

A first description of the shape of an inverted element was presented by Sobota (2020); this involved employing a Rayleigh–Ritz 
approach with up to four degrees of freedom to solve the geometrically nonlinear shell model numerically. Here we provide some 
analytical insight by employing instead shallow-shell theory (Calladine, 1989; Ventsel and Krauthammer, 2001). 

Governing equations. 
Shallow-shell theory is based on the equations of axisymmetric plate theory modified to incorporate the finite radius of curvature of 

the shell. As a result, the same equations can be used to describe the vertical (normal) deflection, w(r), and stress potential, ψ(r), in a 
cylindrical polar geometry for both the shell and the skirt region if we introduce a spatially varying natural curvature  

κ(r) = R− 1H(L − r),

where H(·) is the Heaviside step function. We therefore have  

Fig. 3. An individual snappit: (A) Geometrical parameters of a spherical cap with radius of curvature R, half-width L, thickness t, attached to a flat 
plate of thickness t, inner radius L, and outer radius L + ΔL (blue shape). When pushed in, the spherical cap is able to invert, deforming the outer 
plate in the process (yellow shape). (B)-(E) Photos and Scanned 3D profiles of the snappit in the natural configuration (B and C) and the inverted 
configuration (D and E). Here L = 15 mm, R = 18.75 mm, t = 1 mm and ΔL = 2L (corresponding to α = 0.93, λd = 6.95). Here U3,max = 9.0 and 
8.0 mm for C and E, respectively. Details of the experimental protocols are given in Appendix A. 
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B∇4w + κ(r)
1
r

d
dr

(rψ) − 1
r

d
dr

(

ψ dw
dr

)

= 0, (3)  

and  

1
Y

r
d
dr

[
1
r

d
dr

(rψ)
]

= κ(r)r
dw
dr

−
1
2

(
dw
dr

)2

, (4)  

where Y = Et is the stretching modulus of the material and the stress potential ψ is the derivative of the Airy stress function (defined 
such that σrr = ψ/r and σθθ = dψ/dr). 

Non-dimensionalization. 
We follow Taffetani et al. (2018) by introducing dimensionless variables  

ρ =
r
L
, W(ρ) = w(r)

R
L2 and ψ̃(ρ) = ψ(r) R2

YL3,

so that the governing Eqs. (3)–(4) become  

λ− 4
s ∇4 W +

S (ρ)
ρ

d
dρ (ρψ̃) − 1

ρ
d
dρ

(

ψ̃dW
dρ

)

= 0, (5)  

and  

ρ d
dρ

[
1
ρ

d
dρ (ρψ̃)

]

= S (ρ)ρ dW
dρ −

1
2

(
dW
dρ

)2

(6)  

where S (ρ) = H(1 − ρ) is the indicator function for the shell region (i.e. S = 1 in the shell region, 0 < ρ < 1, and S = 0 in the skirt 
region, 1 < ρ < 1+ Δ). This non-dimensionalization introduces two dimensionless parameters: Δ as expected, and  

λs =
[
12

(
1 − ν2) ]1

4 L
(tR)1/2. (7)  

(Note that λs, which characterizes the geometry of the shell, is the shallow shell version of the parameter, i.e. λs ≈ λd for α ≪ 1.) 
To be able to solve Eqs. (5)–(6), we must specify appropriate boundary conditions at the boundaries, ρ = 0 (shell centre), 1+ Δ 

(skirt edge) and, crucially, the join between the shell and skirt regions, ρ = 1. 

Boundary conditions. 
The appropriate boundary conditions at the shell centre, ρ = 0, and skirt outer edge, ρ = 1+ Δ, are relatively straightforward: at 

the shell centre, we use the symmetry and no displacement conditions W′

(0) = W(0) = Ur(0) = 0, where Ur is the horizontal (radial) 
displacement. (Note that since the governing equations only involve W′ , not W itself, there is some freedom in the choice of W(0).) At 
the outer boundary of the skirt, ρ = 1+ Δ, we assume there is zero bending moment, zero shear force and no radial stress (σrr = 0). 

The interface between the shell and skirt region at ρ = 1 deserves further discussion. We have immediately that the horizontal and 
vertical displacements are continuous here, as is the radial stress, so that [W]

1+

1− = [Ur]
1+

1− = [σrr]
1+

1− = 0. It is also natural to assume that 
the bending moment and out-of-plane shear force are continuous. (The in-plane shear force, σrθ = 0 from our assumption of 
axisymmetry.) The slope of the deflection at the boundary may, in principle, be discontinuous (depending on how this join is 
implemented); however, we assume that this join is rigid so that the angle between the tangent to the shell at its edge and the tangent to 
the skirt remains constant at α. Given the difference in natural shapes, this means that the slope of the displacement is continuous, i.e. 

[W′

]
1+

1− = 0. The boundary conditions discussed above are summarized in terms of W, ψ̃ and their derivatives in Table C.1 of 
Appendix C. 

The Eqs. (5)–(6) can be solved subject to these boundary conditions using, for example, the multipoint boundary value problem 
solver bvp4c in MATLAB. We shall discuss the behaviour of the inverted solutions of these equations in Section 2.4 but first focus on 
determining when this inverted shape exists numerically, i.e. the critical condition for the bistability of the snappit. Note that this 
numerical system is controlled by just two dimensionless parameters, Δ and λs, since the shallow shell formulation assumes that the 
shells are shallow, i.e. α ≪ 1. 

2.3. Bistability 

Our first goal is to understand the geometrical conditions under which a single snappit is bistable, i.e. when does the inverted shape 
actually exist without the application of any external loads? As already discussed, there remain only three dimensionless parameters in 
the problem (α, λ and Δ), together with the material property ν. We present two approaches to determine the critical condition for 
bistability here: firstly, we use FEM simulations (see Appendix B for details) with a range of values of α, λd and Δ and determine 
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whether the inverted state is stable (and hence the snappit is bistable). This gives a rough indication of the behaviour of the critical 
value λcrit

d (Δ,α; ν); our results are shown in Fig. 4A, with the dependence of the threshold λcrit
d as a function of Δ shown in Fig. 4B. Note 

that here we determine the threshold, λcrit
d , as the mean of the smallest λd with bistable behaviour and the largest λd with monostable 

behaviour for given Δ; error bars are then used to record the difference between these two values. Secondly, we use arc-length 
continuation in AUTO (Doedel et al., 2007) to solve the shallow shell system (5)–(6) and determine the critical value λcrit

s (Δ) at 
which the inverted state ceases to exist. Our continuation calculation involves three key steps: first, the perfectly everted solution is 
used as an initial guess to the solution of the system (5)–(6) for an arbitrary, but large, value of λs and ΔL/L = 3. The true solution is 
‘close’ to the everted solution for large λs, and so the true solution can readily be found using a relaxation method. Secondly, we 
perform a one parameter continuation analysis, reducing the value of λs, but holding ΔL/L = 3 constant. This allows the branch of 
stable everted solutions to be followed until a fold bifurcation in the system is reached. The position of the fold bifurcation in terms of λs 

corresponds to the λcrit at the monostable-bistable threshold for the given ΔL/L = 3. Finally, we perform a two-parameter continuation, 
following the fold while varying ΔL/L and λs accordingly. This allows us to extract the value of λcrit for each ΔL/L down to ΔL/L = 0. 
This calculation gives the solid curve in Fig. 4B, which agrees very well with the FEM results. 

On the whole, Fig. 4 shows that the presence of a skirt decreases the threshold value of λd at which the shell becomes bistable: 
compared with the case of a spherical cap without the skirt (λcrit(Δ = 0) ≈ 5.75), the presence of a skirt region makes the element 
‘more’ bistable because, for a given Δ, all the geometrical configurations with λd in between λcrit(Δ) and λd ≈ 5.75 are now within the 
bistable region. An interesting feature of the behaviour seen in the phase diagram (Fig. 4A) is that, while there is some dependence of 
the critical shell depth λd for bistability on the size of the plate region, Δ, this dependence is (perhaps surprisingly) small: over a wide 
range of Δ, the critical value of λd changes by less than 10%. We also see that, as observed previously (Taffetani et al., 2018), the effect 
of the angle α = sin− 1(L/R) on the bistability is quite limited (indeed, it is not detectable in the results presented in Fig. 4B). As a result, 
we shall follow Taffetani et al. (2018): we use shallow shell theory to understand the importance of the parameter λ = λs, and apply 
these results to less shallow shells (with α≲1, not α ≪ 1) simply by letting λ = λd. 

2.4. Shape of an axisymmetric deformed element 

Having determined when the element is bistable, we now move on to understand the shape in the inverted state. Given the success 
of shallow shell theory in describing the transition from mono- to bi-stable just demonstrated, it would be convenient to be able to use 
shallow shell theory to study in detail the deformed shape. First, however, we should confirm whether the effect of nonlinear elasticity 
is significant experimentally. In Fig. 5A we compare results from FEM simulations (see Appendix B for details), both using hyperelastic 
and linearly elastic constitutive models with results from physical experiments (see Appendix A). We see first that FEM results with 
each constitutive law are indistinguishable at the scale of the plot and, further, that either constitutive law does an equally satisfactory 
job of describing the experimental data. We shall therefore continue to study the shape assuming a linearly elastic model and, since we 
have also seen that the parameter α has a limited effect on the transition from mono- to bistability if we identify λd → λs, we use shallow 
shell theory. The numerical solution of the shallow shell equations gives a good account of the simulation results (see Fig. 5B); 
crucially, however, we will be able to gain some analytical insight in the limit of thin shells λs ≫ 1, even though shallow shell theory is 
formally only valid for α ≪ 1. 

Fig. 4. Bistability of the single snappit (or shell-skirt element). (A) Phase diagram characterizing the stability of an element with α = 0.52 as the 
shell depth parameter, λd, and the relative plate size, Δ = ΔL/L, vary. The symbols represent results obtained from FEM simulations, in which red 
diamonds represent the bistable cases, and blue squares represent the monostable cases. The phase boundary, calculated as the mean of the limiting 
cases, is indicated by the green dashed curve. (B) The transition from monostable to bistable as determined from FEM simulations with different 
values of α (points) agrees well with the theoretical prediction of shallow shell theory (pink solid curve). Circular, square and triangular symbols 
correspond to the transition from bistable to monostable for cases with α = 0.20, 0.52 and 0.80, respectively. 
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Boundary layer analysis for λs ≫ 1. 
Both our FEM simulations and numerical solutions of the shallow shell equations suggest that the deformation from the perfectly 

inverted shape becomes increasingly localized to the boundary between skirt and shell, at ρ = 1, as λs increases (see Fig. 5B). We see 
from (5) that as λs → ∞ the bi-Laplacian term becomes less important, except possibly in small regions where the derivatives become 
large — this term may therefore be neglected except in spatial boundary layers, which we expect to be centred on ρ = 1. Moreover, the 
‘outer’ solution in the majority of the shell corresponds simply to “perfect eversion” within the shell region, W ∼ ρ2 − 1, and a constant 
vertical displacement within the skirt region, W ∼ cst; this deformation also results in zero stress within the majority of the shell. In this 
limit, therefore, the deformation is localized within the boundary layer, and the size of the boundary layer gives the scale over which 
the snappit deformation is expected to decay. We shall see that this length scale is ∼ λ− 1, which in physical variables corresponds to the 
Pogorelov length scale, ℓp ∼ (tR)1/2, as seen in many other problems involving the inversion of spherical caps (Libai and Simmonds, 
2005; Pogorelov, 1988; Gomez et al., 2016). 

Firstly, we can decompose the displacement of the snappit as a perfect inverted shape plus a small perturbation, i.e.  

W(ρ) = S (ρ)
(
ρ2 − 1

)
+ ζ(ρ) (8) 

For the moment, however, we proceed generally by letting  

ρ = 1 + λ− μ
s ξ  

ζ(ρ) = λ− β
s Z(ξ)

ψ̃(ρ) = λ− γ
s Ψ(ξ). (9)  

Examining the transformed (5) in the plate region, and requiring terms to balance, we find that:  

4(1 − μ) = γ − 2μ (10) 

Fig. 5. The deformed shape of a single snappit. (A) Comparison between experimental measurements of the deformed, inverted shape (blue solid 
lines with plus sign) and two sets of FEM simulations with linear elastic (larger open symbols) and hyperelastic (smaller filled symbols) material 
properties. Results are shown for two values of λd: λd = 8.63 (red circles) and λd = 7.05 (green diamonds), but constant α = 1.08 and Δ = 2. (B) 
Comparison between FEM simulations (open symbols) and the predictions of shallow shell theory (solid curves) with λ = λd = 13.32 (red), 7.69 
(green) and 5.96 (blue), respectively. (C) The boundary layer scaling collapses FEM simulations with different values of λd ≫ 1 (open symbols, with 
λd = 13.32, circles, 24.31, squares, and 42.11, triangles) as λd → ∞; moreover, these FEM simulations tend to the solution of the boundary layer 
problem based on the shallow shell assumption, found by solving (12)–(13) (solid curve). (D) Comparison between experiment (solid blue line with 
plus sign and error bar), FEM simulation (open symbols) and the boundary layer prediction (solid green line) for a shallow shell with λd = 7.69. In 
(B)-(D), we fix α = 0.38 and Δ = 2. 
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while from (6) we have:  

γ = 2β. (11)  

Combining this with (10), we therefore find that μ+ β = 2. To make any further progress requires information from the shell region; 
since this information only enters through the ρζ

′ term in (6), we require this to enter at the same order as the other terms so that μ = β, 
and hence μ = β = 1, γ = 2. 

Plotting the results of FEM simulations in terms of the boundary layer variables suggested by this analysis (specifically, plotting 
Z(ξ) = ζ(ρ) × λs as a function of ξ = λs(ρ − 1)), shows a good collapse as λs → ∞ (see Fig. 5C). To understand the limiting behaviour, i. 
e. with λs = ∞, we note that (9) transforms (5) and (6) to  

d4Z
dξ4 − S (ρ) dΨ

dξ
−

d
dξ

(

Ψ
dZ
dξ

)

= 0 (12)  

and  

d2Ψ
dξ2 = − S (ρ) dZ

dξ
−

1
2

(
dZ
dξ

)2

. (13)  

These equations are to be solved subject to the condition that displacement and stress should vanish away from the join region; within 
the shell region we take Z′

s,Z
′ ′
s ,Ψ s → 0, as ξ → − ∞ (since the natural shell curvature has already been subtracted). Within the skirt 

region we take Zp,Z
′

p,Ψp → 0, as ξ → ∞, setting zero vertical displacement at infinity to fix the object in space. At the interface between 
shell and skirt, we also require continuity of these fields as well as the horizontal displacement i.e. 0 = Zs − Zp = Z′

s − Z′

p = Z′ ′
s − Z′ ′

p =

Z′ ′′

s − Z′ ′′

p and 0 = Ψ s − Ψp = Ψ
′

s − Ψ
′

p at ξ = 0. Solving (12)–(13) numerically subject to these condition yields the solid black curve 
shown in Fig. 5C. Note that this boundary layer solution is in good agreement not only with the results of FEM simulations (Fig. 5C), but 
also agrees well with experiments when cast back into the shape variables (Fig. 5D). 

This analysis shows that the join between the skirt and shell is the cause of the deformation observed in an inverted snappit: there is 
an incompatibility between the perfectly inverted shape (an inverted spherical cap joined to a flat skirt region) and the (fixed) angle 
between the shell and the flat region at the join. This geometrical origin of the boundary layer is distinct to the boundary layer region in 
an inverted spherical cap (Libai and Simmonds, 2005; Taffetani et al., 2018), which is caused by a mismatch between the zero applied 

Fig. 6. Azimuthal buckling of a single snappit. (A) Experimental observation and (B) FEM prediction for the vertical displacement, U3, of the 
buckling of an element with α = 1.08, Δ = 2 and λd = 8.63; here U3max = 27.1 mm. The distribution of the scaled (C) hoop stresses (σθθ = σθθ · λ, 
blue symbols) and (D) radial stresses (σrr = σrr · λ2, red symbols) stresses within the snapped elements with λd = 8.63 (squares) and λd = 17.26 
(circles) as calculated from FEM simulations, plotted as a function of ξ = (ρ − 1)λ. The corresponding predictions of the boundary layer theory (solid 
curves in both (C) and (D)) show that the compressive hoop stress |σθθ| = O(λ− 1), and hence is significantly larger than the typical compressive 
radial stress |σrr | = O(λ− 2); this explains the azimuthal, rather than radial, buckling instability observed here. 
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moment condition and the finite, but constant, bending moment required to maintain the inverted spherical shape. 
As well as showing that the join region is what is responsible for the deformation of the skirt region, the boundary layer analysis also 

gives us insight into the structure of the stress profile within the deformed snappit. In particular, the boundary layer scaling gives σθθ(=

dψ̃/dρ) = O(λ− 1
s ) while σrr(= ψ̃/ρ) = O(λ− 2

s ); as a result, we expect that σθθ ≫ σrr, which is consistent with the numerical results. We 
also observe that both of these stresses are negative at some point within the vicinity of the join between the sheet and shell regions: the 
snappit is under both radial and azimuthal compression. In general, such a compression may be expected to lead to a buckling 
instability, and so we turn now to consider this instability. 

2.5. Origin of instability 

The analyses of Sections 2.3 and 2.4 were predicated on the assumption that the deformation remains axisymmetric. However, in 
some scenarios, a visible azimuthal instability occurs (see Fig. 6A,B). It is natural to treat this as a buckling instability and the boundary 
layer theory just presented gives two insights: firstly, both the hoop and radial stresses are negative (compressive) in some region close 
to the join between sheet and shell, see Fig. 6C,D. Secondly, in the axisymmetric state, the hoop stress is an order λs larger than the 
radial stress (from Fig. 6C, σrr ∼ λ− 2

s , while from Fig. 6D, σθθ ∼ λ− 1
s ); therefore we might expect relieving the hoop compression by 

azimuthal buckling to be more energetically favourable than relieving the radial compression by buckling in the radial direction. 
While this qualitative discussion explains the origin of the instability, to go further would require a more detailed analysis, along 

the lines of standard post-buckling analyses. On the face of it, the fundamental problem we consider has some similarities with the 
Lamé problem (Coman and Bassom, 2007; Davidovitch et al., 2011) in which an annular sheet is subject to different internal and 
external tensions; in particular, here an annular sheet (the skirt) is subject to a radial displacement at its inner edge and suffers an 
azimuthal instability as a result. 

However, there are some important differences with the standard Lamé problem. Most notably, in the Lamé problem, there are two 
dimensionless parameters: one corresponding to the ratio of the applied tensions (or imposed displacements) and the other related to 
the ease with which the sheet bends (the ‘bendability’ defined by Davidovitch et al. (2011)). As a result, for a fixed bendability one can 
consider gradually increasing the tension ratio until a small, buckled perturbation with a preferred wavenumber appears (as an 
eigenfunction of the problem). This is a ‘Near threshold’ analysis. In contrast, in the inversion-induced instability we report here, there 
is only a single dimensionless parameter (λ), which encodes both how easily bent the sheet is and the magnitude of the inward 
displacement that occurs at the inner edge. In some sense, the difference arises because there is no external tension applied at the outer 
boundary. This is similar to the case of an elastic ring subject to an internal tension, but no external tension, which has been shown to 

buckle with a wavelength λ ∼ (B/TR2
in)

1/2 (Box et al., 2020), which would correspond to a mode number of instability n ∼ λ. However, 
the instability studied by Box et al. (2020) is driven by the dynamics of buckling and cannot occur statically — this is therefore not 
relevant to the static problem considered here. Instead, it seems that the mode number of instability is determined in some other way, 
as discussed in the tensionless Lamé problem by Pal et al. (2022). We do not consider this problem further here, leaving it for the future, 
but focus instead on how the system collectively chooses to relieve compression. 

3. Many elements: Global response to distributed compression 

The response of a single skirt region to the azimuthal compression caused by the presence of an inverted dimple is naturally to 
buckle azimuthally. When multiple elements are combined in a single sheet, i.e. the skirt region is shared between multiple elements to 
become a matrix, it is not clear what the global response to compression should be. We therefore begin by studying experimentally and 
numerically the response of the smallest symmetric system that contains multiple elements embedded within a circular sheet: a single 
snappit surrounded by six (hexagonally packed) other snappits. In this case, the snappits form a triangular lattice. 

3.1. A triangular lattice 

The fundamental geometry is shown in Fig. 7E. This geometry is characterized by the properties of each, identical, snappit (i.e. its 
thickness, radius of curvature and base width) but also the separation between the centres of each snappit, d. We focus here on the 
effect of the snappit separation, d, on the behaviour of the whole sheet. Heuristically, we might expect that if the separation between 
snappits is ‘large’ then they are effectively isolated with no significant interaction between them. Moreover, our analysis of the single 
snappit suggests that the boundary layer thickness ℓBL = L/λ is the natural horizontal length scale over which the deformation induced 
by each snappit decays. Fixing λ, we therefore focus on the effect of the dimensionless gap width between snappit edges:  

δ = (d/2 − L)/ℓBL. (14)  

Defined in this way, δ measures the half-spacing between two snappits in terms of the boundary layer width surrounding each snappit; 
we therefore expect that for δ sufficiently small the interaction between snappits should be strong, while for sufficiently large δ the 
snappits are effectively isolated. 

Fig. 7A–D show comparisons between the shapes observed experimentally and in FEM simulations as the distance between snappits 
changes. The shapes predicted by FEM simulations agree well with those observed experimentally. As expected, both approaches show 
that as the separation between snappits increases the collective deformation of the sheet decreases. More interestingly, however, we 
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see that it is not just the magnitude of deformation observed that changes with δ, but also the type of deformation: for small δ the sheet 
deforms cylindrically (forming a taco-like shape, as in Fig. 7A) while for large δ the shape is (approximately) axisymmetric, see Fig. 7D 
for example. More specifically, in fig.  7F we plot profiles, taken along the dashed magenta line, of snapped dimpled sheets with dimple 
spacing d varying in the range 32 mm ≤ d ≤ 56 mm. It is clearly seen that decreasing d is associated with a significant change in 
shape. We claim that the appearance of this buckling transition is crucial in the appearance of soft modes in the soft shapeable sheet: on 
a triangular lattice, the cylindrical mode has a multiplicity of three (the fold can happen along each of the three axes) and so multiple 
global shapes can be formed in a larger sheet. 

To understand this global transition in shape, it is natural to draw analogies to other systems in which out-of-plane deformation 
occurs as a result of in-plane strain. While this is the fundamental origin of Euler buckling, two more specific examples are worthy of 
some discussion: deformation caused by inhomogeneous growth or shrinkage in a thin, single-layer material (Klein et al., 2007; 
Dervaux and Ben Amar, 2008; Sharon and Efrati, 2010) and that caused by differential thermal expansion in a bilayer material (Freund 
and Suresh, 2006). In both cases, deforming out of plane relaxes some of the in-plane strain when the system is flat, but the means of 
doing so, and conditions under which it occurs, are quite different. When the strain profile through the sheet thickness is uniform, a 
radial inhomogeneity in growth/shrinkage must be introduced to obtain buckled shapes; moreover, bowl-like shapes (positive 
Gaussian curvature) are obtained from increasing shrinkage at the edge while azimuthally oscillating shapes (negative Gaussian 
curvature) are observed with increased shrinkage at the centre (Klein et al., 2007). In contrast, a bilayer with differential strains in the 
two layers adopts a bowl-like shape (positive Gaussian curvature) before transitioning to a more cylindrical shape (though still with 
positive Gaussian curvature) above a critical strain (Freund and Suresh, 2006). 

It is natural to assume that reducing the spacing between identical snapping elements (i.e. reducing δ) corresponds to increasing the 
level of strain in the material. Given this, the qualitative behaviour observed as δ varies in a dimpled sheet is essentially the same as that 
observed in the bilayer sheet: Fig. 7 shows that sheets with largest δ appear to be rotationally symmetric in the inverted state, while 
those with smallest δ clearly break the underlying rotational symmetry. This similarity to a bilayer sheet might be rationalized by the 
observation that the contraction applied by the individual dimples lies below the neutral plane of the unstrained parts of the matrix 
region between them. 

To quantify the transition from rotational symmetry to two-fold symmetry, we measure the horizontal displacement perpendicular 

Fig. 7. Demonstration of the shape-morphing of a soft dimpled sheet with snappits arranged on a triangular lattice. (A–D) Experiments (top row) 
and FEM simulations (bottom row) of snapped dimpled sheets (fixing α = 1.08, λd = 8.25, L = 12 mm) with different dimple spacing, from (A) to 
(D), d = 32, 40, 44 and 56 mm, in which, U3max = 53.97, 51.80, 30.09, 29.35 mm, respectively. (E) Overlaid plan views of the original 
(faint) and snapped (foreground) shape of a dimpled sheet with radius Rs =

̅̅̅
3

√
d and d = 40 mm. Here, the snapped state is curved along a major 

axis. The magenta and green dashed lines show the direction in which displacements perpendicular (⊥) and inclined (∠) to the major curved axis are 
measured. (F) The profiles of snapped sheets along the perpendicular axis (i.e. the magenta line in panel E) as the dimple spacing, d, varies in the 
range 32 mm ≤ d ≤ 56 mm. (G) The normalized horizontal displacement of snapped sheets u⊥

r and u∠
r (as marked in panel E) as functions of the 

normalized dimple spacing, δ = (d/2 − L)/ℓBL. Note that for the cases shown in (A)-(D), δ = 2.75, 5.50, 6.88 and 11.00, respectively. 
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to the fold that ultimately forms (denoted u⊥
r ), as well as the horizontal displacement measured at 60◦ to this axis (denoted u∠

r ) — see 
sketch in Fig. 7E for these definitions. (Quantifying the curvature in different directions is difficult because of the dimples’ shape; we 
argue that measuring u⊥

r and u∠
r is both more reproducible and clearer.) Plotting these displacements as a function of δ, see Fig. 7G, 

shows a sharp transition as δ decreases: for δ≳10, we have u⊥
r ≈ u∠

r (see Fig. 7D), while for δ≲6, u⊥
r ≫ u∠

r (Fig. 7A and B); there is also a 
notable intermediate range, i.e., 6≲δ≲10, in which u⊥

r is slightly larger than u∠
r ; this corresponds to the slightly curved state shown in 

Fig. 7C. We also note that the shape transition that occurs as δ increases through δ ≈ 6 corresponds to the deformation and stress 
profiles within the two boundary layers of the interacting snappits no longer overlapping: from Fig. 5C and Figs. 6C and D we see that 
the effects of the boundary layer are localized within a region |r − L|≲5ℓBL (|ξ|≲5) of the join between element and skirt. 

3.2. A hexagonal lattice 

The cause of the bifurcation from rotational symmetry to the two-fold symmetry discussed above is the high level of strain within 
the sheet that is caused by the interaction of neighbouring elements. However, we find that, unlike the bilayer sheet, it is not simply the 
bare strain level that affects the point at which this bifurcation occurs. To demonstrate this, we consider removing a single snapping 
element from the centre of the sheet; this results in a hexagonal lattice as shown in Fig. 8E. The hexagonal lattice maintains the 
rotational symmetry of the triangular lattice already considered. 

Fig. 8A–D demonstrate that the dimpled sheet based on a hexagonal lattice shows behaviour that is phenomenologically similar to 
that observed for a triangular lattice. In particular, the global shape retains rotational symmetry for large dimple spacing δ but at 
smaller values of δ a bifurcation to a cylindrical shape occurs (compare Figs. 8A,B and C,D, for example). The profiles of the snapped 
dimpled sheets with d ∈ [30,40] mm are also plotted in Figs. 8F. Comparing to the triangular lattice, the transition from the rotational 
symmetry to the two-fold symmetry is much sharper for the hexagonal lattice. We also measure the horizontal displacements along two 
different directions, u⊥

r and u∠
r , and plot them as functions of δ in Fig. 8G. In this case, the bifurcation occurs with δ ≈ 3.2 (compared to 

δ ≈ 6 for dimples on a triangular lattice). Initially, this smaller separation at bifurcation might seem natural: there are only six dimples 
in the hexagonal lattice, rather than seven used in the triangular lattice — since the inversion of the dimples is the root of the strain and 

Fig. 8. Morphed shape of soft dimpled sheets with dimples arranged on a hexagonal lattice. (A–D) Experiments (top row) and FEM simulations 
(bottom row) of snapped dimpled sheets (each with α = 1.08, λd = 8.25, L = 12 mm fixed) with different dimple spacing; from (A) to (D), d = 30,
33,34 and 40 mm, in which, U3max = 49.05, 54.66, 31.29, 29.38 mm, respectively. (E) Overlaid plan views of the original (background) and 
snapped (foreground) shapes of a dimpled sheet with d = 33 mm. The magenta and green dashed lines show the directions in which the horizontal 
displacements in the directions perpendicular (⊥) and inclined (∠) to the major curved axis are measured. (F) The profiles of snapped sheets taken 
along the perpendicular axis (i.e. the magenta line of panel E) with dimple spacing d in the range 30 mm ≤ d ≤ 40 mm. (G) Normalized hori-
zontal displacement of the snapped dimpled sheets u⊥

r and u∠
r (as denoted in panel E), as functions of the normalized dimple spacing, δ = (d/2 −

L)/ℓBL. Note that the cases shown in (A)-(D) correspond to δ = 2.06, 3.09, 3.44 and 5.50, respectively. 
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hence shape bifurcation, having fewer of them will thus delay the shape bifurcation. However, a more detailed analysis shows that 
even after accounting for this difference the hexagonal lattice delays the shape bifurcation, as we now show.  

3.3. The effect of lattice spacing 

The standard theory for the buckling of a bilayer sheet (Freund and Suresh, 2006) leads to the conclusion that the buckling 
transition occurs at a fixed strain level. It is therefore natural to compare the strain levels between the cases of triangular and hexagonal 
lattices. Since the strain level within the inverted dimpled sheet is far from uniform, we seek a measure that gives a value of the strain 
averaged over the whole sheet and use the total elastic energy, Ue = 1

2
∫

Vσijϵij dV = 1
2 E

∫

Vϵ2
ij dV, of the sheet (with volume V). We 

therefore introduce a measure of the volume-averaged squared-strain, 〈ϵ2
ij〉 defined as  

ψe = 2
〈

ϵ2
ij

〉
=

Ue

E ·V
. (15) 

Fig. 9 shows how the anisotropy of the deformed shape, as measured by the difference between u⊥
r and u∠

r , varies as the volume- 
averaged strain, encoded by ψe, varies. This comparison confirms that the shape bifurcation occurs significantly earlier (i.e. at lower 
strain) for the triangular lattice than for the hexagonal lattice. Crucially, this measure accounts properly for the fact that there are 
fewer snapping elements in this case so that the resulting effect can be attributed solely to the geometry of the lattice packing of 
snapping elements.  

4. Discussion and conclusions 

In this paper, we have considered the properties of bistable elements (snappits) embedded within a larger soft, shapeable sheet. 
Such embedded elements are able to induce a global deformation of the resulting dimpled sheet when they switch from their natural 
state to their other, inverted, state: in this way, ‘activating’ snappits allows them to induce deformation within the sheet. 

We began by studying the deformation of a single, activated snappit in the framework of shallow shell theory. In particular, we 
showed that the lateral scale of the deformation induced by the inversion of a snappit scales with the Pogorelov length scale ℓp =

(tR)1/2. Moreover, by performing systematic FEM simulations, combined with the predictions of shallow shell theory, we found that 
the bistability of a single snappit is largely governed by the lateral size of the snappit relative to the Pogorelov scale, λ ∼ L/ℓp: the size 
of the outer skirt region has only a relatively weak influence on the threshold value of λ at the transition from monostable to bistable 
(see Fig. 4). 

Our analysis of the deformation of a single activated snappit showed an azimuthal instability that breaks the rotational symmetry. 
Using a boundary layer analysis of the shallow shell equations, we showed that this azimuthal instability results from a large 
compressive hoop stress, though understanding the mode number of instability remains an open problem. We also showed that when 
several snappits are combined in a matrix, moderate compressive strains (achieved with moderately spaced snappits) lead to a global 
buckling mode that respects the rotational symmetry of the underlying lattice; this contrasts with the breaking of rotational symmetry 
in the single snappit case. Nevertheless, at larger values of the compressive strain (achieved with more closely spaced snappits) the 
sheet deforms globally in a cylindrical shape, breaking the inherent rotational symmetry. Qualitatively, this transition occurs when the 

Fig. 9. (A) The normalized radial displacements (ur) of the snapped dimpled sheets with both hexagonal and triangular patterns along perpen-
dicular and inclined directions as a function of the strain energy density (ψe) obtained from FEM simulations. (B) The ratio between the normalized 
radial displacements along perpendicular and inclined directions (Δu⊥

r /u∠
r ) as a function of the strain energy density (ψe). Both quantities show a 

transition, corresponding to global shape bifurcation, at a critical strain energy density; this critical value is higher with a hexagonal lattice than for 
a triangular lattice. 
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boundary layers surrounding each snappit overlap and is similar to the shape bifurcation that is well known in a bilayer sheet with 
mismatch strain [13]. We also showed that the average level of strain at which the shape transition occurs can be increased by 
modifying the lattice on which snappits lie: on a hexagonal, rather than triangular, lattice, the strain at which buckling occurs is almost 
doubled. Controlling shape bifurcation in shape-shifting structures in this way could open the door to more robust morphing strategies. 
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Appendix A. Experimental details 

The silicone mould shown in Fig. 1 is a commercially available chocolate mould. In all other experiments described in this paper, 
physical samples were 3D printed using a flexible thermoplastic polymer (Filaflex 60 A) using desktop 3D printers (Wanhao Duplicator 
i3 and Tool Changer — E3D). The reference and deformed shapes were measured with a custom 3D scanning technique based on 
Fourier Transform Profilometry, a structured light method that uses stripes shone on an object to measure its 3D shape (Van der Jeught 
and Dirckx, 2016).  

Table C.1 
Boundary conditions required for solving the problem in the shallow shell formulation of Section 2.  

Position Condition Description 

ρ = 0 W(0) = 0 Zero vertical displacement 
W′

(0) = dW
dρ
⃒
⃒ρ=0 = 0 Zero slope 

Ur(0) = ρd
̃
ψ̃

dρ − ν̃ψ̃
⃒
⃒ρ=0 = 0 

Zero radial displacement 

ρ = 1 [W]
1−
1+ = 0 Continuous vertical displacement 

[Ur ]
1−
1+ =

[
ρd
̃
ψ̃

dρ − ν̃ψ̃
]1−

1+ = 0 
Continuous horizontal displacement 

[σrr ]
1−
1+ =

[1
ρ
̃ψ̃
]1−

1+ = 0 
Continuous radial stress 

[M]
1−
1+ =

[
d2W
dρ2 + ν

ρ
dW
dρ

]1−

1+
= 0 

Continuous bending moment 

[Fr]
1−
1+ =

[
d3W
dρ3 + 1

ρ
d2W
dρ2 − 1

ρ2
dW
dρ

]1−

1+
= 0 

Continuous shear force 

[W′

]
1−
1+ =

[dW
dρ
]1−

1+ = 0 Continuous slope of the displacement 

ρ = 1+

Δ 
M(1+ Δ) = 0 Zero bending moment 

Fr(1+ Δ) = d3W
dρ3 + 1

ρ
d2W
dρ2 − 1

ρ2
dW
dρ

⃒
⃒
⃒ρ=1+Δ = 0 

Zero shear force 

σrr(1+ Δ) = 1
ρ
̃ψ̃
⃒
⃒ρ=1+Δ = 0 

Zero radial stress  
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Appendix B. FEM simulations 

Computational analyses were developed using the commercial finite element analysis software (ABAQUS) to simulate the defor-
mation of both a snappit (i.e. a single plate/shell element) and a dimpled sheet (consisting of many snappits). The type of element used 
to represent the system depended on the problem under consideration (see below): CAX4RH and S4R elements were used for 
axisymmetric and 3D shell models, respectively. Convergence was tested (by comparison with refined meshes) to ensure computa-
tional accuracy. The problem is essentially geometrical since no external forces were imposed. Within FEM material constants of 
density ρ = 1.3× 103 kg/m3, Young’s modulus E = 6 MPa and Poisson’s ratio ν = 0.4999 were taken for the majority of simula-
tions, which were performed using the linearly elastic constitutive relation. To assess the importance of material nonlinearity effects, 
some simulations were also performed using the Neo-Hookean constitutive model with C10 = 1 MPa and D1 = 0. 

B.1. Inversion of a single snappit 

To model the axisymmetric deformations of a single snappit (Section 2), we used 4-node hybrid bilinear axisymmetric quadrilateral 
elements (CAX4RH) for both the shell and the plate. Simulations were conducted in two steps (Static, General): first we applied 
pressure load to the top surface of the shell to invert the shell. The pressure was then removed in the second step, allowing the system to 
relax and find the closest equilibrium solution (an artificial global damping factor of ηstab = 1 × 10− 8 was specified to stabilize the 
simulations). We consider two types of boundary conditions at the outer edge: (i) a hinged boundary, i.e. the vertical displacement and 
bending moment vanish (uz = Mr = 0) at the outer edge (r = L+ ΔL) and, (ii) a clamped boundary, i.e. both the vertical displacement 
and the radial rotation vanish (uz = ∂uz/∂r = 0) at the outer edge. For some combinations of geometrical parameters, the system 
returns to its initial, undeformed state after relaxation. In this case, the system is monostable (since no alternative equilibrium to the 
natural undeformed state has been found). If an alternative equilibrium is found in this way, the system is bistable. In the bistable 
scenario, the inverted shape is extracted from the bottom surface of the shape; this is consistent with what is measured experimentally. 

B.2. Buckling of a single snappit and of a dimpled sheet 

For the azimuthal (non-axisymmetric) buckling of the snappit (in Section 2.5) and the global deformation of the dimpled sheet 
induced by the buckling of each dimples (in Section 3), we used 4-node doubly curved shell elements (S4R). The simulations were also 
conducted in three steps (here we chose the procedure type of Dynamic, Implicit): for a single snappit, we fixed the outer edge (r = L+
ΔL) and applied a displacement load at the centre (r = 0) in the first step, where the displacement is prescribed as twice the initial 
height of the shell (i.e. uz = W = 2(R − H)); we then removed the displacement load and released the fixed boundary condition at 
the outer edge in the second step, fixing the centre at the position as prescribed in the first step, allowing the system to relax; then a 
third step for relaxing the system is set to make sure the closest equilibrium solution is reached. For a dimpled sheet, the outer edge and 
central point were fixed, and a displacement load applied at the centre of each dimple (again, uz = 2(R − H)) in the first step; in the 
second step, we removed the displacement and released the fixed boundary condition at the outer edge to let the system relax and find 
the closest equilibrium solution. We then extracted the profile of the curved shape of the sheet in the snapped state, and measured the 
radius of curvature by fitting the extracted profiles. 

Appendix C. Boundary conditions 

To make the problem solved numerically in Section 2 clearer, we summarize the appropriate boundary conditions, expressed in 
terms of the unknowns of the problem, together with their physical meaning in Table C.1. 
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