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I. INTRODUCTION 

In materials research and nanotechnology, instrumented indentation has evolved into a 

powerful tool for probing the mechanical response of a material at the micro- and nanometer 

length scales. Applications are widespread, ranging from metals and ceramics to polymers and 

biomaterials [1-3]. A number of material properties can be deduced from the measured load-

displacement (P-h) curve [1-3], although proper interpretation of the experimental results requires 

an accurate model of how the material interacts with the indenter. Sometimes direct imaging of 

the indentations may be required as well [4-9].  

One problem of technological interest that comes back time and again is how to measure 

the properties of a very thin film on a substrate using indentation techniques. Substrate effects in 

indentation experiments are well known, but a robust procedure for evaluating the substrate effect 

quantitatively and for extracting intrinsic film properties remains elusive. Often indentations are 

limited to less than 10% of the film thickness to avoid substrate effects. This rule of thumb does 

not work well, if there is a large elastic mismatch between film and substrate [10, 11] – especially 

so if the film is stiffer than the substrate [11, 12]. Furthermore, for very thin films the indentation 

depth required to avoid the substrate effect is so small that it is difficult if not impossible to obtain 

any meaningful experimental results.  

Extensive theoretical and experimental efforts have been devoted to understanding the role 

of the substrate in modeling the overall contact response and in the interpretation of experimental 

data [10-21]. A recent review on this subject is given in [22, 23]. Among these efforts, Yu et al 

solved the axisymmetric contact problem for a layered elastic half-space [16], providing results 

that generalize Sneddon's well-known equation for a monolithic material [24]. Yu’s solution has 

been employed for analyzing elasto-plastic indentations subject to various restrictions [17, 19].  

In this paper, we proceed along this line of development, and revisit two familiar scenarios 

where Yu’s analysis can be applied in a novel and simple way. We begin with a brief review of 
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Yu’s solution and relevant results. Following that, we present (1) an analysis of elastic 

indentations where the film and/or substrate materials are anisotropic, and (2) an analysis of 

elasto-plastic indentations where material pile-up around the indenter is significant. We 

demonstrate that the elastic modulus of the film can be accurately determined even if there is 

significant elastic mismatch between film and substrate.  

II. REVIEW OF YU’S ELASTIC SOLUTION  

The axisymmetric indentation of a layered half-space that consists of elastically isotropic 

and uniform materials is mathematically a mixed boundary value problem that can be reduced to 

a Fredholm integral equation of the second kind using Papkovich-Neuber potentials [16]: 

 
  
H τ( )−

1
π

K y + τ( )+ K y − τ( )⎡⎣ ⎤⎦0

1

∫ H y( )dy = F0 τ( ) (1) 

The solution of the contact problem is given in terms of a function ( )H τ  and a parameterγ . The 

function ( )H τ  can be regarded as a normalized pressure distribution within the contact region, 

with 0τ = at the indenter apex and 1τ =  at the contact periphery. ( )H τ  must satisfy the boundary 

condition ( )1 0H = , which physically means that for a smooth punch the pressure vanishes at the 

contact periphery. The parameter γ  is the ratio of the contact radius for an indentation in a 

film/substrate composite to the contact radius for an indentation to the same depth in a 

homogenous medium with the same properties as the film, i.e. γ = a aH . The kernel K y( ) of the 

integral equation is a continuous function that depends on the elastic properties of film and 

substrate, as well as on the bonding conditions at their interface. For a perfectly bonded interface, 

an explicit expression of K y( ) is given in [16, 17, 19]. The elastic properties of film and substrate 

enter this expression via their respective plane-strain moduli, fM and sM , and via their Poisson’s 

ratios, fν and  sν . The subscript denotes the film and substrate respectively. F0 τ( )  is a 

dimensionless function determined only by the punch geometry, the explicit expression for which 
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is given in [16] for conical, spherical and flat-ended punches. The integral equation can be solved 

numerically for ( )H τ  and γ  using Elgendi's algorithm [25]. ( )H τ  and γ  are then used to 

calculate the indentation load, P, and the contact radius, a, as functions of the indentation depth, h 

[16, 17, 19]. As the contact stiffness, S, is simply the derivative of P with respect to h for elastic 

indentations, relationships between P, h, a, and S are readily derivable in numerical form. More 

details on the calculation have been published elsewhere [17, 19]. A free solver written for 

MATLAB® is available on the archival website iMechanica [26]. 

Figure 1(a) shows the relationship between the contact stiffness S and the contact radius a 

for different values of the film/substrate elastic mismatch and for several indenter geometries. 

Both conical punches with different apex angles and spherical punches of different radii are 

considered. Here S is normalized by the product of sM  and film thickness t, and a is normalized 

by t. Clearly, the S-a relationship does not depend on indenter geometry; it depends solely on the 

elastic properties of film and substrate. This is a well-known result for bulk indentation of 

monolithic materials [27] that is recovered here for the case of a layered medium. Because the S-a 

relationship is independent of indenter geometry, one can define an effective indentation modulus 

for the film/substrate system as Meff = S π 2 A = S 2a . In general, the effective modulus is a 

function of indentation depth. For indentation of a homogeneous material, it reduces to the plane-

strain modulus of the material. In Figure 1(b), we compare the effective modulus obtained from 

Yu's analysis with finite element calculations reported by Gao [20] and by Sakai [28]. Very good 

agreement is achieved, giving confidence in both the numerical solution of the integral equation 

and the finite element calculations. 

III. APPLICATION A: ELASTIC INDENTATIONS ON EPITAXIAL FILMS  

When analyzing indentation experiments in epitaxial films, one needs to take into account 

that the film and/or substrate are very often elastically anisotropic; solutions including Yu’s 
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solution for isotropic materials are not immediately applicable. First consider a monolithic crystal 

with a three- or four-fold rotational axes perpendicular to its surface. Examples include cubic 

single crystals with their surface parallel to the (100) or the (111) plane, and hexagonal crystals 

with their surface parallel to the basal plane. It was shown by Vlassak and Nix [29, 30] that the 

contact area between an axisymmetric indenter and such a crystal is exactly circular. Therefore, 

the indentation modulus defined as M = S π 2 A = S 2a is consistent with the isotropic case. 

The elastic indentation response of the crystal is identical to that of an isotropic material with the 

same indentation modulus. Using the appropriate definition of the indentation modulus and the 

concept of equivalent isotropic solution, this approach can be further extended to crystals with 

arbitrary orientation as discussed by Vlassak et al in  [31].  

A rigorous solution for the elastic indentation of an anisotropic film on an anisotropic 

substrate is not readily available. Instead we propose to use Yu’s isotropic solution, where we 

replace the anisotropic materials with equivalent isotropic materials that have the same elastic 

indentation behavior. Specifically, we require that the corresponding material have a plane-strain 

modulus and Poisson’s ratio identical to the indentation modulus and average anisotropic 

Poisson’s ratio of the original material. The assumption here is that the depth-dependence of the 

indentation response is similar for isotropic and anisotropic materials. To substantiate this 

assumption, figures 2(a) through 2(c) show the indentation loads, the contact stiffnesses, and the 

effective indentation moduli versus indentation depth for several (100)-oriented metallic films on 

(100)-silicon substrates, calculated using both finite elements and the modified Yu solution. A 

Berkovich-equivalent conical tip is considered. The material parameters used in the calculations 

are listed in table 1. Evidently, the results from the modified Yu solution are in good agreement 

with those obtained from the anisotropic FEM simulations, although the modified Yu solution 

yields more accurate results for very shallow indentations. Note that the Poisson’s ratios of film 

and substrate have only minimal effect on the results [19], and the values used are those for the 
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random polycrystalline aggregates [32]. 

We use the modified Yu solution to analyze elastic indentations of epitaxial gold films 

grown on (100)-oriented single-crystal sodium chloride substrates. The indentation experiments 

were performed by Dietiker and colleagues as reported in [33]. The gold film thickness ranged 

from 68 nm to 858 nm. The indentation tests were carried out in load-control mode using a blunt 

Berkovich indenter with an indenter tip radius of approximately 700 nm as determined by atomic 

force microscopy (AFM). A simple method for calculating the indentation modulus for a crystal 

with arbitrary symmetry has been provided by Vlassak and Nix [29]. Table 1 lists the 

corresponding values of the indentation moduli for sodium chloride and gold calculated using the 

elastic constants from [33].  

Figure 3 shows the experimental P-h data reproduced from figure 3(b) in [33]. For clarity, 

the starting points of the curves have been shifted. All films undergo reversible elastic 

deformation before the first pop-in event, which occurs at an indentation depth of approximately 

6 to 7 nm and indicates incipient plasticity. We note that a substrate effect in these measurements 

cannot be ruled out a priori for two reasons: (1) the indentation contact radii are significant 

compared to the thicknesses of the films, and (2) gold is stiffer than sodium chloride making the 

indentation response more sensitive to the presence of the substrate [12]. Figure 3 shows the best 

fit of Yu's solution (solid curves) to the elastic portions of the experimental P-h curves, where we 

have used Yu’s solution for a spherical tip because the experimental indentation depths are small 

compared to the tip curvature. The indentation moduli of the films were taken as the sole fitting 

parameters in this procedure; the indentation modulus of the substrate was set to the experimental 

value measured in [33]. It is evident from the figure that the modified Yu’s solution provides a 

very good description for the elastic portions of the indentation curves. The indentation moduli of 

the gold films determined from the fits are listed in table 2, along with the values obtained if the 

substrate effect is ignored. The indentation moduli obtained using Yu’s solution show little 

variation with film thickness. Only the thinnest film has a modulus that is approximately 10% 
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lower than that of the other films, possibly caused by an increased fraction of micro-voids in the 

film [33, 34]. If, by contrast, the substrate effect is ignored and the films are treated as monolithic, 

there is a strong apparent variation with film thickness [33]. Clearly substrate effects need to be 

accounted for, even if the indentation depth is significantly less than 10% of the film thickness. 

This is especially so if the substrate is more compliant than the film. The effect is illustrated 

graphically in the inset of figure 3, which plots load as a function of indentation depth for gold 

films of different thicknesses. The load is normalized by the load that would be required to indent 

a monolithic gold film to the same depth. It is obvious from the figure that the substrate effect is 

not negligible even for the thickest film at shallow depths.  

Finally it should be noted that pyramidal indenters are used in many experiments. It was 

shown that the indentation modulus obtained for a triangular contact is related to that for a 

circular contact by a correction factor close to unity and that the effect of the in-plane orientation 

of the indenter on an anisotropic surface is very small even for materials with very large 

anisotropy [29]. These statements imply that the approach proposed in this paper can also be used 

for these commonly used indenters.  

IV. APPLICATION B: ELASTO-PLASTIC INDENTATIONS WITH 
SIGNIFICANT PILE-UP 

The second application of Yu’s solution is for elasto-plastic materials where indentation 

pile-up is significant. In an elasto-plastic indentation, the process of unloading from a hardness 

impression can be modeled as an elastic contact between a flat surface and an effective indenter 

[35]. Although the shape of the effective indenter depends on the elastic and plastic properties of 

the indented materials and is usually unknown, the relationship between contact stiffness S and 

contact radius a, which is independent of the precise indenter shape, can still be calculated. The 

same argument is valid when the indentation is performed on a film/substrate composite, as long 

as the presence of the substrate is taken into account in the elastic analysis [19]. Chen and 
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Vlassak modeled the elasto-plastic indentation of a film on a substrate with finite elements [12]. 

They demonstrated that the elastic unloading process was well approximated by Yu’s elastic 

contact solution, which provided a unique relationship between S and a, even in the presence of 

significant plastic pile-up. This shape-independent S-a relation was later adopted by Han et al to 

determine the hardness of a thin film on an elastically mismatched substrate [17]. In Han’s 

method, the contact stiffness was measured experimentally and the contact area was then 

estimated using the S-a relation derived from Yu’s solution. This method was demonstrated to 

yield accurate results, but required that the elastic constants of both the film and the substrate be 

known a priori. In a recent paper [19], Li and Vlassak reported on a method for analyzing 

indentation experiments that combines Yu’s solution with the classic Oliver and Pharr approach 

[1]. This method does not require knowledge of the elastic constants of the film and works well as 

long as there is little plastic pile-up around the indenter. Here we extend this method to materials 

that do pile up significantly. In this case, the contact area between the indenter and the film needs 

to be measured independently using AFM or another suitable technique [5-9]. 

Before we describe the analysis procedure, we need to emphasize an important practical 

difference between the analysis of elastic and elasto-plastic indentations using Yu’s solution as 

follows. In an elastic indentation, the film thickness is well defined and application of the Yu 

solution is relatively straightforward. In elasto-plastic indentations, however, the film between 

indenter and substrate is thinned as a result of plastic flow and it is not immediately clear what 

thickness should be used. Saha and Nix [11] used the initial film thickness subtracted by the 

indentation depth, t h− , whereas Han et al [17] simply used t . In a previous report [19], we 

showed that the local thinning effect is well captured if an effective film thickness, efft , is defined 

as  

efft t hη= − ⋅                                                (2) 
where the dimensionless parameter η  quantifies the local thinning of the film caused by plastic 
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flow in the film. This parameter depends on the mechanical properties of film and substrate, as 

well as on the shape of the indenter. Preliminary finite element calculations show that η is nearly 

independent of indentation depth and that its value ranges from 0.3 to 0.7 for materials that do not 

work harden.  

We propose the following procedure for analyzing indentation experiments in films that 

show significant pile-up. At a given indentation depth, the contact area A is measured using a 

technique such as AFM. Here the equivalent contact radius a = A π  is referred to as the 

experimental contact radius aexp. The contact radius at this position can also be calculated from 

the S-a relationship derived from Yu’s solution, if the values of η and the plane-strain modulus of 

the film, fM , are assumed. The elastic S-a relation (as in figure 1) then yields a contact radius 

value that corresponds to the instantaneous contact stiffness S and that we call the theoretical 

contact radius ath. 

If a series of indentations are made to different depths, a sequence of (aexp, ath) pairs, one 

for each indentation, is obtained. If the assumed values of η and fM are correct, aexp should equal 

to ath for all depths. In actual practice, η and fM are not known and they can be treated as free 

parameters to obtain the best possible agreement between aexp and ath. The degree of agreement 

can be quantified using the sum of the residues squared, 

( )exp
2

2 th
i i

i
a aχ = −∑ ,                                                        (3)  

where the sum runs over all the indentations. The last step is to find the pair ( , fMη ) that 

minimizes 2χ  using a standard optimization algorithm. Note that the tip area calibration function 

is not needed in this analysis because the contact area between indenter and sample is measured 

directly. 

We proceed to verify the proposed procedure using load-displacement data obtained both 

from finite element simulations and from indentation experiments. The indentations are simulated 
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using the commercial code ABAQUS 6.7. For simplicity, the indenter is modeled as a rigid cone 

with a half-apex angle of 70.3º. The film and substrate are modeled as elastic-perfectly plastic 

von Mises materials, and are meshed with 8-node axisymmetric elements. The boundary 

conditions, model size, and meshing are similar to [12]. Frictionless contact is assumed between 

the indenter and the film material. All simulations are performed with the large-strain capability 

of ABAQUS enabled. Input material properties are listed in table 3 that includes both stiff films 

on a compliant substrate (Film-1 series) and compliant films on a stiff substrate (Film-2 series). 

For each case, the yield strength of the film is also varied over a wide range. At several 

indentation depths, the contact stiffness is determined from an elastic unloading step using a 

power-law fit [1], and the contact radius aexp is determined from the nodes in contact with the 

indenter. Figure 4(a) shows the results. The square symbols denote aexp obtained directly from the 

FEM simulations; the circle symbols are the best-fitting ath obtained from the Yu solution, where 

fM and η were used as fitting parameters. Close agreement is obtained for all depths. The results 

are summarized in table 3. For example, the values of fM  and η obtained from the fit for Film-1-

2 are 325.3±2.4 GPa and 0.40±0.01, respectively, where the uncertainties in fM and η are the 

standard errors of the parameters. The extracted value of fM  deviates less than 1.7% from the 

FEM input value. Similar accuracy is obtained for all material systems simulated in this study: the 

indentation moduli of the films deviate less than 4% from the input values over a wide range of 

film properties. 

For the indentation experiments, 1 μm copper films were deposited on (100)-silicon and 

fused silica substrates. The films were deposited using a direct-current magnetron sputter system 

with a high-purity copper target (99.999%) and a base pressure of 8x10-8 Torr. The depositions 

were performed at a DC power of 200W and with an Ar working gas pressure of 5 x10-3 Torr. 

Immediately prior to the deposition, the substrates were sputter-cleaned for 5 minutes using Ar 

plasma. A thin titanium layer (~10 nm) was deposited to enhance the adhesion of the copper films. 



 11

To minimize oxidation, the samples were kept in vacuum before testing. All nanoindentation tests 

were conducted in load-control mode using a calibrated Ultra Nanoindentation Tester (CSM 

Instruments, Switzerland) equipped with a diamond Berkovich tip. Thermal drift during 

indentation experiments has been demonstrated to be negligible for this system [36]. The 

indentation loading scheme was similar for all tests: the measurements started with increasing the 

load at constant rate until a specified peak value was reached in 10 seconds. The load was held 

constant for 60 seconds followed by a fast unloading at a constant rate. The duration of the hold 

and the unloading rate were selected to minimize the error introduced by time-dependent 

deformation during unloading according to the method proposed in ref. [37]. Peak loads were 

varied such that the corresponding indentation depths were spaced evenly from approximately 

10% to 90% of the film thickness for 9 different depths. The measurement was repeated ten times 

for each depth, and the results are the average of each group. After the indentation tests, 2 to 4 

indentations in each group were examined with an integrated high-resolution atomic force 

microscopy (AFM). The lateral magnification of the AFM was calibrated using a standard step 

sample. The projected area of contact was measured using the differentiated height profile, which 

provides a sharper contact contour than the regular height profile. The indentation moduli of the 

substrates were determined from indentation measurements on the bare substrates. Figure 4(b) 

shows the experimental results along with the best fit of the S-a relationship. Standard corrections 

for finite tip compliance and for non-axisymmetric tip shape were applied in the analysis of the 

experiments [2, 29]. The results are summarized in table 4. The values of fM  obtained from Yu’s 

solution are 136.8 ± 1.7 GPa and 142.1 ± 1.3 GPa for the Cu-1 and Cu-2 films, respectively. The 

corresponding values of η  are 0.44 ± 0.02 and 0.42 ± 0.03. Even though indentations up to 90% 

of the film thickness were used in the analysis, the indentation moduli for the Cu-1 and Cu-2 

films are in good agreement with each other, as well as with experimental values for bulk copper 

in the literature [38]. Evidently, the analysis is successful at eliminating the effect of the substrate. 
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V. CONCLUSIONS 

In summary, we have shown how Yu’s solution for the elastic indentation of a layered half-

space can be used to analyze indentation experiments where substrate effects are important. Two 

cases are considered: elastic indentations where film and substrate are anisotropic and elasto-

plastic indentations with significant material pile-up. In both cases, experiments and finite 

element simulations show that elastic substrate effects can be eliminated through use of Yu’s 

solution, even if there is significant elastic mismatch between film and substrate. Thus it is 

possible to obtain intrinsic properties for very thin films with current indentation technology.  
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Tables 
 
Table 1. Single-crystal elastic constants and indentation moduli 
 

Material c11 (GPa) c12 (GPa) c44(GPa) Poisson’s ratio a Indentation modulus on (100) plane(GPa) 

NaCl [33] 49.4 12.8 12.7 0.25 41.0 (theoretical),  44.5b (experimental [33])  

Au [33] 193 164 41.5 0.43  90.2 (theoretical) 

Cu [32] 170.2 114.9 61.0 0.35 129.0 (theoretical) 

Si [39] 165.7 63.9 79.56 0.22 164.8(theoretical) 

W [32] 522.4 204.4 160.8 0.28 442.0 (theoretical) 

a Value  for a polycrystal with random texture, calculated following [32]. 

b This value is used in the calculation.  
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Table 2. Experimental data from [33]  
 

Gold film thickness (nm): 858 429 207 134 68 

This study using Yu’s solution 100.6±4.3 101.5±5.1  98.3±3.7  97.9±2.9  89.0±7.4  Indentation 
modulus (GPa) From  [33], calculated using  equation 

for a monolithic material 
109.1 91.8 79.4 65.7 57.0 
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Table 3.    Summary of material properties in the FEM simulations  

 
a All films are 1 µm thick.   

Material Input Young’s 
modulus  (GPa) 

Poisson’s 
ratio 

Input 
fM  

(GPa) 
Yield stress 

(GPa) 
Calculated 

fM (GPa) η 

Film-1-1a 0.2 314.7±3.2 0.41±0.02 

Film-1-2 1 325.3±2.4 0.40±0.01 

Film-1-3 

300 0.25 320 

5 309.3±4.1 0.30±0.02 

Film-2-1 0.2 34.7±0.6 0.34±0.03 

Film-2-2 1 34.2±0.9 0.35±0.01 

Film-2-3 

33.3 0.25 35.6 

5 36.3±0.8 0.39±0.01 

Substrate 100 0.25 106.7 1 - - 
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  Table 4.    Summary of experimental data and results of copper films 
 

a  Literature values [14, 17, 32]. 
b Determined experimentally. 

Material Poisson’s 
ratio a 

Film thickness 
(µm) 

Indentation 
modulus (GPa) 

η 

Cu-1 0.35 1.084±0.006 136.8±1.7 0.44±0.02 

(100)-Si, substrate for Cu-1 0.22 - 173.2b - 

Cu-2 0.35 1.064±0.005 142.1±1.3 0.42±0.03 

fused silica, substrate for Cu-2 0.17 - 75.2b - 
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Figures 
 

 
Figure 1(a)   

 
Figure 1(b)   
 
Figure 1. (a) Normalized contact stiffness as a function of normalized contact radius for 
film/substrate composites with different elastic mismatch and for different indenter 
shapes [19]. (b) Comparison of the effective indentation moduli derived from Yu’s 
solution and from elastic finite element calculations [20, 28].  
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Figure 2. Comparison of (a) indentation load, (b) contact stiffness, and (c) effective 
indentation moduli as a function of indentation depth calculated from anisotropic FEM 
simulations (markers) and from Yu’s elastic solution (solid curves). Arrows indicate the 
theoretical indentation moduli of the film materials.  
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Figure 3. Comparison of the load-displacement curves for gold films of various 
thicknesses on sodium chloride substrates. The circular markers are experimental data 
from [33]; the solid curves are based on Yu’s elastic solution. Origins of the data sets 
have been shifted for clarity. The inset shows the deviation of the indentation response 
from the monolithic contact model due to the substrate effect; film moduli are the same. 
Tip radius (700nm) and elastic properties of the substrate (Ms = 44.5GPa, νs = 0.25) are 
taken as experimentally determined in [33].    
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Figure 4(a)  

 
Figure 4(b) 
 
Figure 4. Comparison of the experimental and theoretical estimations of the S-a relation 
for (a) finite element simulations (Film-1-2 and Film-2-2), and for (b) indentation 
experiments on Cu films on silicon and fused silica (FS) substrates. 


