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Abstract

The Kullback-Leibler (KL) divergence is widely used in state-of-the-art Bayesian Neural Networks (BNNs) to ap-
proximate the posterior distribution of weights. However, the KL divergence is unbounded and asymmetric, which
may lead to instabilities during optimization or may yield poor generalizations. To overcome these limitations, we
examine the Jensen-Shannon (JS) divergence that is bounded, symmetric, and more general. Towards this, we propose
two novel loss functions for BNNs. The first loss function uses the geometric JS divergence (JS-G) that is symmetric,
unbounded and offers an analytical expression for Gaussian priors. The second loss function uses the generalized JS
divergence (JS-A) that is symmetric and bounded. We show that the conventional KL divergence-based loss function
is a special case of the two loss functions presented in this work. To evaluate the divergence part of the loss we use
analytical expressions for JS-G and use Monte Carlo methods for JS-A. We provide algorithms to optimize the loss
function using both these methods. The proposed loss functions offer additional parameters that can be tuned to con-
trol the degree of regularisation. The regularization performance of the JS divergences is analyzed to demonstrate their
superiority over the state-of-the-art. Further, we derive the conditions for better regularization by the proposed JS-G
divergence-based loss function than the KL divergence-based loss function. Bayesian convolutional neural networks
(BCNN) based on the proposed JS divergences perform better than the state-of-the-art BCNN, which is shown for the
classification of the CIFAR data set having various degrees of noise and a histopathology data set having a high bias.

Keywords: Bayesian convolutional neural networks, Variational inference, KL divergence, JS divergence,
Uncertainty quantification.

1. Introduction

1.1. Background
Despite the widespread success of deep neural networks (DNNs) and convolutional neural networks (CNNs) in

numerous science and engineering applications [1–10], they suffer from overfitting when the data set is small, noisy
or biased [3, 11]. Further, due to a very large number of (deterministic) parameters, CNNs cannot provide a robust
measure of uncertainty. Without a measure of uncertainty in the predictions, erroneous predictions by these models
may lead to catastrophic failures in applications that necessitate high accuracies such as autonomous driving and med-
ical diagnosis. Several methods were developed to provide prediction intervals as a measure of uncertainty in neural
networks. Some of these include the delta method, bootstrap method, mean-variance estimation method, Bayesian
method, etc. [12]. Amongst these, Bayesian methods have gained eminence due to their rigorous mathematical foun-
dation for uncertainty quantification through their stochastic parameters [12, 13]. Key aspects of Bayesian Neural
Networks (BNNs) are briefly summarised in the following.
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1.1.1. Bayesian Neural Networks (BNNs)
A BNN is a neural network with stochastic parameters. The posterior distribution of these parameters is learned

through the Bayes rule. The first known BNN developed by Tishby et al [14] showed that the posterior distributions
of weights and biases can be obtained via the Bayes rule from a chosen prior. Though their work provided theoretical
insights, a method to perform inference on the posterior distribution of parameters was still unavailable. To perform
inference a Laplace approximation was proposed by Denker and LeCun [15]. Detailed reviews on BNNs are pro-
vided in [16, 17]. The two most commonly used techniques to approximate the posterior distribution of parameters
(i.e. Bayesian inference) of a BNN are the Variational Inference (VI) and the Markov Chain Monte Carlo Methods
(MCMC). MCMC methods comprise a set of algorithms to sample from arbitrary and intractable probability distribu-
tions. Inference of posterior using MCMC algorithms can be very accurate but they are computationally demanding
[18]. An additional limitation of MCMC algorithms is that they do not scale well with the model size. In view of
these, the VI-based approaches are focused on this work. A brief review of some of the early works VI techniques is
presented in the following.

1.1.2. Variational Inference (VI) in Bayesian Neural Networks
The VI is a technique to approximate an intractable posterior distribution by a tractable distribution called the

variational distribution. The variational distribution is learned by minimizing its dissimilarity with respect to the
true posterior. The first work that resembles VI was proposed by Hinton and Van Camp [19] to learn the posterior
distribution of network parameters using an information theory-based approach. Their work factorized the posterior
distribution of neural network parameters thereby neglecting the correlations between them. A full correlation between
the network parameters was introduced by Barber and Bishop [20]. These two methods ([19, 20]) are focused on
analytical representations of the optimization objective which restricts their use to single hidden layer networks and
could not be used for larger networks.

1.1.3. Recent Advances on Bayesian Neural Networks
High computational cost was the bottleneck for BNNs in the late 90s. With the advancement in GPU computation,

research in the field of BNN has resurged. A data sub-sampling technique to scale for large amounts of data in
a VI objective has been proposed by Graves [21]. In addition, their method minimized the evidence lower bound
(ELBO) to learn the network parameters. While their method enabled the application of VI for large networks, it
performs poorly due to high variance in the computed gradients via Monte Carlo approximation and also due to a lack
of correlations between weights. To improve upon their approach a novel algorithm for backpropagation has been
proposed by Hernandez et al. [22]. Blundell et al. [23] reparametrized the stochastic variables and obtained unbiased
gradient estimates of the loss function to facilitate backpropagation.

To summarise, VI methods are efficient and they scale well for larger networks and have gained significant popu-
larity. Most of the VI techniques in the literature use the KL divergence as a measure of dissimilarity between the true
and the variational posterior. However, the KL divergence has two key limitations, first, it is asymmetric with respect
to its arguments, and second, its values are unbounded. These limitations may lead to poor generalization or failure
during training as reported in Hensman et al. [24]. Therefore, it is imperative to explore alternative divergences for
VI that can alleviate these limitations.

In this regard, Renyi’s α-divergences have been introduced for VI by Li and Turner [25]. They proposed a family
of variational methods that unified various existing approaches. A χ-divergence-based VI has been proposed by Dieng
et al. [26] that provides an upper bound of the model evidence. Additionally, their results have shown better estimates
for the variance of the posterior. Along these lines, an f-Divergence based VI has been proposed by Wan et al. to use
VI for all f-divergences that unified the Reyni divergence [25] and χ divergence [26] based VIs. A modification to the
skew-geometric Jensen-Shanon (JS) divergence has been proposed by Deasy et al. to introduce a new loss function
for Variational Auto Encoders (VAEs) [27] which has shown a better reconstruction and generation as compared to
existing VAEs. However, a JS divergence-based loss function is not yet available for BNNs or Bayesian CNNs which
are widely used.

1.2. Present work

In the present work, we propose the following two novel loss functions for BNNs, which are based on:
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1. The skew-geometric JS divergence.
2. A modified generalized JS divergence.

These loss functions are obtained through a constrained optimization approach in contrast to the variational inference
used in BNNs. These JS divergence-based loss functions are generalizations of the state-of-the-art KL divergence-
based ELBO loss function [21–23]. We explain why these loss functions should perform better. In addition, we derive
the conditions under which the proposed skew-geometric JS divergence-based loss function regularises better than the
KL divergence-based loss function. Further, we show that the loss functions presented in this work perform better for
image classification problems where the data set has noise or is biased towards a particular class.

The rest of the manuscript is organized as follows: Sec. 2 provides the necessary mathematical backgrounds.
Sec. 3 describes the proposed modification to the JS divergence and the proposed loss functions. The details of the
numerical experiments are provided in Sec. 4. The results obtained by the present method are described and discussed
in Sec. 5. Finally, conclusions are provided in Sec. 6.

2. Mathematical Background

In this section, we provide some of the mathematical backgrounds for KL and JS divergences and the variational
inference.

2.1. Background: KL and JS divergences

The KL divergence between two random variables P and Q on a probability space Ω is defined as

KL[p || q] =

∫
Ω

p(x) log
[

p(x)
q(x)

]
dx (1)

where p(x) and q(x) are the probability densities ofP andQ respectively. For two n-dimensional multivariate Gaussian
distributions3 N1(µ1,Σ1) and N2(µ2,Σ2), the KL divergence is given by

KL(N1 || N2) =
1
2

[
tr(Σ2

−1Σ1) + ln
|Σ2|

|Σ1|
+ (µ2 − µ1)TΣ2

−1(µ2 − µ1) − n
]

(2)

The KL divergence is widely used in literature to represent the dissimilarity between two probability distributions for
various applications such as VI. However, it has limitations such as the asymmetric property i.e KL[p ||q] , KL[q || p],
and unboundedness. These limitations may lead to difficulty in approximating light-tailed posteriors as reported in
[24].

To overcome these limitations a symmetric JS divergence can be employed. JS divergence is defined as

JS[p || q] =
1
2

KL
[
p
∣∣∣∣∣∣∣∣∣∣ p + q

2

]
+

1
2

KL
[
q
∣∣∣∣∣∣∣∣∣∣ p + q

2

]
(3)

The above divergence can be further generalized with the weighted arithmetic mean of p and q defined as Aα =

(1 − α)p + αq,
JSAα [p || q] = (1 − α)KL (p || Aα) + αKL (q || Aα) (4)

Although this JS divergence is symmetric and bounded, unlike the KL divergence its analytical expression cannot be
obtained even when p and q are Gaussians. To overcome this difficulty a generalization of the JS divergence using
abstract means, specifically the geometric mean was proposed by Nielsen [28]. By using the weighted geometric
mean Gα(x, y) = x1−αyα, where α ∈ [0, 1], for two real variables x and y, they proposed the following family of skew
geometric divergence

JSGα
[
p || q

]
= (1 − α)KL (p || Gα(p, q)) + αKL (q || Gα(p, q)) (5)

3 N denotes a Gaussian distribution throughout this work.
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The parameter α, called a skew parameter, controls the divergence skew between p and q. However, the skew-
geometric divergence in Eq.(5) fails to capture the divergence between p and q when α = 0 or α = 1 since it yields a
value of zero for the divergence. To resolve this issue, Deasy et al. [27] used the following reverse form of geometric
mean G′α(x, y) = xαy1−α, with α ∈ [0, 1] to implement JS divergence in variational autoencoders. Henceforth, only
this reverse form is used for the geometric mean. The JS divergence with this reverse of the geometric mean is given
by

JS-G
[
p || q

]
= (1 − α)KL

(
p || G′α(p, q)

)
+ αKL

(
q || G′α(p, q)

)
(6)

This yields KL divergences in the limiting values of the skew parameter.
In the case of two multivariate Gaussian distributions, the JS-G can be written as

JS-G(N1||N2) = (1 − α)KL(N1||N
′
α) + αKL(N2||N

′
α)

=
1
2

[
tr

(
(1 − α)Σ1 + αΣ2

Σ′α

)
+ log

(
|Σ′α|

|Σ1|1−α|Σ2|α

)
+ (1 − α)(µ′α − µ1)TΣα

−1(µ′α − µ1) + α(µ′α − µ2)TΣα
−1(µ′α − µ2) − n

]
(7)

where, N ′α = N(µ′α,Σ
′
α) is the geometric mean distribution of N1 and N2 which has the following the parameters

Σ′α =
[
αΣ1

−1 + (1 − α)Σ2
−1

]−1
; µ′α = Σα

[
αΣ1

−1µ1 + (1 − α)Σ2
−1µ2

]
(8)

Note that for α ∈ [0, 1], JS-G(N1||N2)|α = JS-G(N2||N1)|1−α which is not symmetric. However, for α = 0.5, the
JS-G is symmetric with JS-G(N1||N2)|α=0.5 = JS-G(N2||N1)|α=0.5.

The geometric JS divergences, JSGα and JS-G, given in Eq.(5) and Eq.(6) have analytical expressions when p and
q are Gaussians. However, they are unbounded like the KL divergence. Whereas, the generalized JS divergence JSAα

in Eq.(4) is both bounded and symmetric.

2.2. Background: Variational inference

Given a set of training data D = {xi, yi}
N
i=1 and test input, x ∈ Rp, we are interested in learning a data-driven model

(for instance a BNN) to predict the probability P(y|x,D) of output y ∈ Υ, where Υ is the output space. Towards
this, we train a neural network with random parameters w and learn the posterior probability distribution of these
parameters P(w|D) from the training data D using the Bayes’ rule as follows:

P(w|D) =
P(D|w)P(w)

P(D)
(9)

Where, P(D|w) is the likelihood of the training data D given parameters w. P(w) is the prior distribution of weights.
The term P(D), called the evidence, involves marginalization over the distribution of weights: P(D) =

∫
Ωw

P(D|w)P(w)dw
Using the posterior distribution of weights, the predictive distribution of the output can be obtained by marginal-

izing the weights as

P(y|x,D) =

∫
Ωw

P(y|x,w)P(w|D)dw (10)

The term P(D) in Eq. (9) is intractable due to marginalization over w, which in turn makes P(w|D) intractable. To
alleviate this difficulty, the posterior is approximated using variational inference.

In variational inference, the unknown intractable posterior P(w|D) is approximated by a known simpler distribution
q(w|θ) over the model weights. q(w|θ) is referred to as the variational posterior having parameters θ. For example,
if q is assumed to be a Gaussian distribution then the parameters θ are the mean µ and the standard deviation σ. In
variational inference, the set of parameters θ for the model weights are learned by minimizing the divergence (e.g. KL
divergence) between P(w|D) and q(w|θ) as shown in [23].

θ∗ = arg min
θ

KL
[
q(w|θ) || P(w|D)

]
= arg min

θ

∫
q(w|θ) log

[
q(w|θ)

P(w)P(D|w)
P(D)

]
dw

(11)
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Note that the term P(D) can be eliminated from Eq. (11) since it is a constant and does not affect the optimization.
The resulting loss function F (D, θ), which is to be minimised to learn the optimal parameters θ∗ is expressed as:

FKL(D, θ) = KL
[
q(w|θ) || P(w)

]
− Eq(w|θ)[log P(D|w)] (12)

This loss function is known as the variational free energy or the evidence lower bound (ELBO) [21, 23].

3. Methods

In this section, we provide a modification to the generalized JS divergence, formulations of JS divergence-based
loss functions for BNNs, algorithms for minimization of these loss functions, and insights into the advantages of the
proposed loss functions.

3.1. Proposed modification to the generalized JS divergence

The Generalised JS divergence given in Eq. (4) fails to capture the divergence between p and q in the limiting
cases of α since, [

JSAα (p || q)
]
α=0

= 0;
[
JSAα (p || q)

]
α=1

= 0 (13)

To overcome this limitation we propose to modify the weighted arithmetic mean as A′α = αp+ (1−α)q which modifies
the generalized JS divergence as,

JS-A[p || q] = (1 − α)KL
(
p || A′α

)
+ αKL

(
q || A′α

)
(14)

This modification yields KL divergences in the limiting cases of α as,[
JS-A(p || q)

]
α=0 = KL(p || q);

[
JS-A(p || q)

]
α=1 = KL(q || p) (15)

Theorem 1: Boundedness of the modified generalized JS divergence
For any two distributions P1(t) and P2(t), t ∈ Ω, the value of the divergence JS-A is bounded such that,

JS-A ≤ −(1 − α) logα − α log(1 − α)

Proof:

JS-A = (1 − α)
∫

Ω

P1 log
P1

A′α
dt + α

∫
Ω

P2 log
P2

A′α
dt

=

∫
Ω

A′α

[
(1 − α)

P1

A′α
log

P1

A′α
+ α

P2

A′α
log

P2

A′α

]
dt

=

∫
Ω

A′α

[
(1 − α)
α

αP1

A′α

(
log

αP1

A′α
− logα

)
α

(1 − α)
(1 − α)P2

A′α

(
log

(1 − α)P2

A′α
− log(1 − α)

)]
dt

=

∫
Ω

−(1 − α)P1 logα dt −
∫

Ω

αP2 log(1 − α) dt −
∫

Ω

A′α

[
(1 − α)
α

H
(
αP1

A′α

)
+

α

(1 − α)
H

(
(1 − α)P2

A′α

)]
dt

= −(1 − α) logα − α log(1 − α) −H
≤ −(1 − α) logα − α log(1 − α)

Where, H( f (t)) = − f (t) log f (t) and

H =
∫

Ω
A′α

[
(1−α)
α

H
(
αP1
A′α

)
+ α

(1−α) H
(

(1−α)P2
A′α

)]
dt

Note, H( f (t)) ≥ 0; ∀ f (t) ∈ (0, 1]
Therefore,H ≥ 0; ∀t ∈ Ω

We provide a comparison of symmetry and boundedness for various divergences used in this work in Table 1.
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Table 1: Properties of various divergences

Divergence Bounded Symmetric Analytical expression
KL × × X

JS-A X X ×

JS-G × X X

3.2. Intractability of the JS divergence-based loss functions formulated through the variational inference approach
In this subsection, we demonstrate that the JS divergence-based variational inference is intractable. If the JS

divergence is used instead of the KL divergence in the VI setting (see Eq. (11)), the optimization problem becomes,

θ∗ = arg min
θ

JS-G
[
q(w|θ) || P(w|D)

]
(16)

The loss function can then be written as,

FJS G(D, θ) = JS-G
[
q(w|θ) || P(w|D)

]
= (1 − α)KL

(
q || G′α(q, P)

)
+ αKL

(
P || G′α(q, P)

) (17)

Where, G′α(q, P) = q(w|θ)αP(w|D)(1−α).
Rewriting the first term in Eq. (17) as,

T1 = (1 − α)KL
(
q || G′α(q, P)

)
= (1 − α)KL[q(w|θ)||q(w|θ)αP(w|D)(1−α)]

= (1 − α)
∫

q(w|θ) log
[

q(w|θ)
q(w|θ)αP(w|D)1−α

]
dw

= (1 − α)2
∫

q(w|θ) log
[

q(w|θ)
P(w|D)

]
dw (18)

which is equivalent to loss function in Eq. (12) multiplied by a constant (1 − α)2. Similarly rewriting the second term
in Eq. (17) as,

T2 = αKL
(
P || G′α(q, P)

)
= αKL[P(w|D)||q(w|θ)αP(w|D)(1−α)]

= α

∫
P(w|D) log

[
P(w|D)

q(w|θ)αP(w|D)(1−α)

]
dw

= α2
∫

P(w|D) log
[

P(w|D)
q(w|θ)

]
dw (19)

The term P(w|D) in Eq. (19) is intractable as explained in section 2.2, which makes T2 intractable.4 Therefore the JS-G
divergence-based loss function given in Eq. (17) cannot be used to find the optimum parameter θ∗ which contrasts the
KL divergence based loss function in Eq. (12). Similarly, the JS-A divergence-based loss function obtained through
VI is also intractable. We address this issue of intractability in the following subsection.

3.3. Proposed JS divergence-based loss functions formulated through a constrained optimization approach
To overcome the intractability of the variational inference, we propose to use a constrained optimization frame-

work [27, 29] to derive JS divergence-based loss functions for BNNs. We also show that such a loss function is a
generalization of the loss function obtained through the variational inference.

4 We obtain a similar result when the geometric mean Gα is used instead of G′α. Only the constants outside the integral change in that case.
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Given a set of training data D, we are interested in learning the probability distribution q(w|θ) of network pa-
rameters such that, the likelihood of observing the data given the parameters are maximized. Thus, the optimization
problem can be written as

max
θ

Eq(w|θ)
[
log P(D|w)

]
(20)

Where θ is a set of parameters of the probability distribution q(w|θ). This optimization is constrained to make q(w|θ)
similar to a prior P(w). This leads to a constrained optimization problem as given below:

max
θ

Eq(w|θ)
[
log P(D|w)

]
subject to D(q(w|θ) || P(w)) < ε (21)

where ε is a real number that determines the strength of the applied constraint and D is a divergence measure. Follow-
ing the KKT approach, the Lagrangian function corresponding to the constrained optimization problem can be written
as

L = Eq(w|θ)
[
log P(D|w)

]
− λ(D(q(w|θ) || P(w)) − ε) (22)

Since ε is a constant it can be removed from the optimization. Also changing the sign of the above equations leads to
the following loss function that needs to be minimized 5.

F̃D = λD(q(w|θ) || P(w)) − Eq(w|θ)
[
log P(D|w)

]
(23)

This loss function reproduces the ELBO loss [23] when KL divergence is used and λ is taken as 1.
In the following, we obtain loss functions for two JS divergences, namely, the Geometric J-S divergence, and the

Modified Generalised J-S divergence.

3.3.1. Geometric J-S divergence
Using the modified skew-geometric J-S divergence as the measure of divergence in Eq.(23) leads to the following

loss function:

F̃JS G = λ JS-G(q(w|θ) || P(w)) − Eq(w|θ)
[
log P(D|w)

]
(24a)

= λ(1 − α) KL(q ||G′α(q, Pw)) + λα KL(Pw ||G′α(q, Pw)) − Eq(w|θ)
[
log P(D|w)

]
(24b)

Note,

KL(q ||G′α(q, Pw)) =

∫
q(w|θ) log

q(w|θ)
q(w|θ)αP(w)1−α dw

= (1 − α)
∫

q(w|θ) log
q(w|θ)
P(w)

dw
(25)

and

KL(Pw ||G′α(q, Pw)) =

∫
P(w) log

P(w)
q(w|θ)αP(w)1−α dw

= α

∫
P(w) log

P(w)
q(w|θ)

dw
(26)

Hence, the loss function can be written as,

F̃JS G = λ(1 − α)2
∫

q(w|θ) log
q(w|θ)
P(w)

dw + λα2
∫

P(w) log
P(w)

q(w|θ)
dw − Eq(w|θ)

[
log P(D|w)

]
(27)

Eq. (27) can be rewritten in terms of expectations as,

F̃JS G = λ(1 − α)2Eq(w|θ)

[
log

q(w|θ)
P(w)

]
+ λα2EP(w)

[
log

P(w)
q(w|θ)

]
− Eq(w|θ)

[
log P(D|w)

]
(28)

5 The constrained optimization approach-based loss functions are marked by an overhead tilde.
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In Eq.(27), the first term is the the mode seeking reverse KL divergence KL(q(w|θ)||P(w)) and the second term is
the mean seeking forward KL divergence KL(P(w)||q(w|θ)). Therefore, the proposed loss function offers a weighted
sum of the forward and reverse KL divergences in contrast to only the reverse KL divergence in ELBO. Whereas the
likelihood part remains identical. The relative weighting between the forward and the reverse KL divergences can
be controlled by the parameter α. The proposed loss function would ensure better regularisation by imposing stricter
penalization if the posterior is away from the prior distribution which will be demonstrated in detail in Sec. 3.5.1. The
parameters λ and α can be used to control the amount of regularisation.

3.3.2. Modified Generalised J-S divergence
Using the modified Generalised JS divergence as the measure of divergence in Eq.(23) leads to the following loss

function:

F̃JS A = λ JS-A(q(w|θ) || P(w)) − Eq(w|θ)
[
log P(D|w)

]
= λ(1 − α) KL(q || A′α(q, Pw)) + λα KL(Pw || A′α(q, Pw)) − Eq(w|θ)

[
log P(D|w)

] (29)

Where, A′α(q, Pw) = αq + (1 − α)Pw. The above equation, Eq.(29), can be expanded as,

F̃JS A = λ(1 − α)Eq(w|θ)

[
log

q(w|θ)
A′α(q, Pw)

]
+ λαEP(w)

[
log

P(w)
A′α(q, Pw)

]
− Eq(w|θ)

[
log P(D|w)

]
(30)

It is to be noted that the proposed loss functions in Eq. (28) and Eq. (30) yield the ELBO loss for α = 0 and λ = 1.
The minimization of the two loss functions Eq. (28) and Eq. (30) are given in the following subsection.

3.4. Minimisation of the proposed loss functions
3.4.1. Evaluation of the JS-G divergence in a closed-form

In this subsection, we describe the minimization of the JS-G divergence-based loss function by evaluating the
divergence in closed form for Gaussian priors. The closed-form expression of the JS-G divergence for two Gaussian
distributions is presented earlier in Sec.3.3. Assuming the prior and the likelihood are Gaussians, the posterior will
also be a Gaussian. Let the prior and posterior be diagonal multivariate Gaussian distributions denoted by PN(w|θ) =

N(µ2,Σ2
2) and qN(w) = N(µ1,Σ1

2) respectively 6. The closed-form expression of the JS-G divergence between
qN(w) and PN(w|θ) can be written as,

JS-G(qN ||PN) =
1
2

n∑
i=1

 (1 − α)σ2
1i + ασ2

2i

σ2
αi

+ log
(σ′αi)

2

σ2(1−α)
1i σ2α

2i

+ (1 − α)
(µ′αi − µ1i)2

(σ′αi)
2 +

α(µ′αi − µ2i)2

(σ′αi)
2 − 1

 (31)

where,

(σ′αi)
2 =

σ2
1iσ

2
2i

(1 − α)σ2
1i + ασ2

2i

; µ′αi = (σ′αi)
2
αµ1i

σ2
1i

+
(1 − α)µ2i

σ2
2i


Therefore, the divergence term of the proposed loss function, the first term in Eq. (24a), can be evaluated by this

closed-form expression given in Eq. (31). The expectation of the log-likelihood, the second term in Eq. (24a), can be
approximated by a Monte-Carlo sampling 7. The details of the minimization process are given in Algorithm 1. Note,
for sampling wi the reparametrization trick is used to separate the deterministic and the stochastic variables.

3.4.2. Evaluation of divergences via a Monte Carlo sampling
In this subsection, we describe the minimization of the JS divergence-based loss functions by evaluating the

divergences using the Monte Carlo sampling technique. The algorithm provided in this subsection is more general as
it is applicable to both the JS-G and the JS-A divergences with no restrictions on the priors. The loss functions given
in Eq. (28) and Eq. (30) can be approximated using Monte Carlo samples from the corresponding distributions as
shown in Algorithm 2.

6 Where the subscript ()N indicates Gaussian distribution. µ1 and µ2 are n-dimensional vectors and Σ1
2, Σ2

2 are assumed to be diagonal matrices
such that µ1 = [µ11, µ12, ...µ1n]T and Σ2

1 = diag(σ2
11, σ

2
12, ...σ

2
1n) (similarly for µ2 and Σ2

2).
7The approximations to the loss functions are denoted by F
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Algorithm 1 Minimization of the JS-G loss function: Closed form evaluation of the divergence

Evaluate JS-G term of Eq. 24a analytically using Eq. 31
Evaluate Eq(w|θ)

[
log P(D|w)

]
term of Eq. 24a

Sample εi ∼ N(0, 1); i = 1, ...,No. of samples
wi ← µ + log(1 + exp(ρ)) ◦ εi.
f1 ←

∑
i log P(D|wi)

Loss:

F ← λ JS-G − f1

Gradients:

∂F
∂µ
←

∑
i

∂F
∂wi

+
∂F
∂µ

∂F
∂ρ
←

∑
i

∂F
∂wi

εi

1 + exp(−ρ)
+
∂F
∂ρ

Update:

µ← µ − β
∂F
∂µ

; ρ← ρ − β
∂F
∂ρ

3.5. Insights into the proposed JS divergence-based loss functions

To better understand the proposed JS divergence-based loss functions, we use a contrived example to compare
them against the conventional KL divergence-based loss function. In the following we explore two aspects of the
proposed loss functions:

1. The ability to regularize.
2. The advantage of using the closed-form expression over the Monte Carlo approximation while evaluating the

JS-G divergence.

3.5.1. Regularisation performance of JS-G divergence
Let two Gaussian distributions q = N(µ1 = µ, σ2

1 = 0.01) and P = N(µ2 = 0, σ2
2 = 0.1) represent the posterior

and the prior distribution of a parameter in a BNN. The closed-form divergences for KL and JS-G are evaluated
by varying the mean of the distribution q. This emulates the learning of the network parameter during training. In
Fig. 1, the values of the divergences are plotted against µ, which is the difference between the mean of the prior
and posterior distributions. Fig. 1 shows that as the mean of the posterior distribution moves away from the mean
of the prior distribution, the JS-G divergence increases more rapidly than the KL divergence. This implies that a
greater penalization is offered by JS-G divergence than the KL divergence as the mean of the posterior deviates away
from the prior. Thus, by assuming small values for the means of prior distributions we can regularize better by the
proposed JS-G divergence. This regularization process requires finding an optimal value of α through hyperparameter
optimization. In the following subsection, we provide the condition for the existence of α for any two arbitrary
Gaussian distributions P and q.

9



Algorithm 2 Minimization of the JS-G and JS-A loss functions: Monte Carlo approximation of the divergence

Approximate Eq(w|θ) terms of Eq. (28) or Eq. (30)
Sample εq

i ∼ N(0, 1); i = 1, ...,No. of samples
wq

i ← µ + log(1 + exp(ρ)) ◦ εq
i .

Evaluate first and third terms of Eq. (28):
f1 ←

∑
i c1 log q(wq

i |θ) − c1 log P(wq
i ) − log P(D|wq

i )
where, c1 = λ(1 − α)2

(or)
Evaluate first and third terms of Eq. (30):
f1 ←

∑
i c1 log q(wq

i |θ) − c1 log Aα(wq
i ) − log P(D|wq

i )
where, c1 = λ(1 − α)

Approximate EP(w) terms of Eq. (28) or Eq. (30)
Sample wp

j ∼ P(w); j = 1, ...,No. of samples

Evaluate second term of Eq. (28):
f2 ←

∑
j c2 log P(wp

j ) − c2 log q(wp
j |θ)

where, c2 = λα2

(or)
Evaluate second term of Eq. (30):
f2 ←

∑
j c2 log A′α(wp

j ) − c2 log q(wp
j |θ)

where, c2 = λα2

Loss:

F ← f1 + f2

Gradients:

∂F
∂µ
←

∑
i

∂F
∂wq

i

+
∂F
∂µ

∂F
∂ρ
←

∑
i

∂F
∂wq

i

εi

1 + exp(−ρ)
+
∂F
∂ρ

Update:

µ← µ − β
∂F
∂µ

; ρ← ρ − β
∂F
∂ρ
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Figure 1: The value of divergence is plotted against the mean µ of q. Since the mean of P is fixed to zero, µ is also the difference in the mean values
between the two distributions q and P
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3.5.2. Condition for better regularisation of F̃JS G

The above example shows that the JS-G divergence is greater than the KL for the given Gaussian distributions. To
generalize it further, we propose the following theorems that hold for any two arbitrary distributions.

Theorem 2. For any two arbitrary distributions P and q, ∃ α ∈ [0,∞) : F̃JS G > FKL

Proof:
In the following, we seek the condition for

F̃JS G − FKL > 0

(1 − α)2KL(q||P) + α2KL(P||q) − KL(q||P) > 0

(α2 − 2α)KL(q||P) + α2KL(P||q) > 0

This leads to the following necessary condition on α

α >
2 KL(q||P)

KL(q||P) + KL(P||q)

since KL divergence is always non-negative for any distributions, we have

2 KL(q||P)
KL(q||P) + KL(P||q)

≥ 0

Which yields,

α >
2 KL(q||P)

KL(q||P) + KL(P||q)
≥ 0 (33)

This proves the theorem, that there exists a positive value of α for any P and q such that F̃JS G is greater than FKL.

Theorem 3. If P and q are Gaussian distributions with P = N(µp, σ
2
p) and q = N(µq, σ

2
q) then, ∃α ∈ [0, 1] such that F̃JS G >

FKL if and only if σ2
p > σ

2
q

Proof:
From Eq.(33) and α ∈ [0, 1], the necessary condition on α is

1 ≥ α >
2 KL(q||P)

KL(q||P) + KL(P||q)
> 0 (34)

Which leads to the following necessary condition

1 >
2 KL(q||P)

KL(q||P) + KL(P||q)

or,

KL(P||q) > KL(q||P) (35)

Let, P and q be Gaussian distributions with P = N(µp, σ
2
p) and q = N(µq, σ

2
q). Then, Eq.(35) can be written as,

ln
σ2

q

σ2
p

+
σ2

p + (µq − µp)2

σ2
q

− 1 > ln
σ2

p

σ2
q

+
σ2

q + (µp − µq)2

σ2
p

− 1

σ2
p

σ2
q

+ ln
σ2

q

σ2
p

+
(µq − µp)2

σ2
q

−
σ2

q

σ2
p
− ln

σ2
p

σ2
q
−

(µp − µq)2

σ2
p

> 0

Denoting γ =
σ2

p

σ2
q
, we get,

γ −
1
γ

+ ln
1
γ
− ln γ +

(µq − µp)2

σ2
q

−
(µp − µq)2

γσ2
q

> 0
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γ −
1
γ

+ ln
1
γ2 +

(µq − µp)2

σ2
q

(
1 −

1
γ

)
> 0

ln
[
exp

(
γ −

1
γ

)]
+ ln

1
γ2 +

(µq − µp)2

σ2
q

(
1 −

1
γ

)
> 0

or,

ln
[

1
γ2 exp

(
γ −

1
γ

)]
+

(µq − µp)2

σ2
q

(
1 −

1
γ

)
> 0 (36)

This condition Eq.(36) is satisfied only when γ > 1 or

σ2
p > σ

2
q (37)

Thus, when P and q are Gaussian distributions with σ2
p > σ

2
q, there exists an α ∈ [0, 1] such that F̃JS G > FKL.

Therefore, Theorems 1 and 2 provide us with the conditions under which the JS-G divergence-based loss function
regularises better than the KL divergence-based loss function.

3.5.3. Regularisation performance of JS-A divergence
In absence of the closed-form expressions for the JS-A divergence, it is evaluated using a Monte Carlo method

and compared against the KL divergence for the distributions q = N(µ1 = µ, σ2
1 = 0.01) and P = N(µ2 = 0, σ2

2 = 0.1)
in Fig.2. The JS-A divergence part of the loss function can be tuned with the parameter λ to achieve a desired level of

D
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KL
JS-A, =0.4, = 1
JS-A, = 0.4, =10

Figure 2: The JS-A divergence evaluated using an MC method is compared against the KL divergence for various means of q.

regularization as shown in Fig. 2. Thus, the JS-A-based loss function F̃JS A should result in better regularisation than
the KL divergence-based loss function when an appropriate value for the hyperparameter λ is chosen.

3.5.4. Monte Carlo estimates
A closed-form solution does not exist for KL and JS divergences for most distributions. In cases where such

a closed-form for the divergence is not available for a given distribution, we resort to Monte Carlo (MC) methods.
However, the estimation of the loss function using MC methods is computationally more expensive than the closed-
form evaluation as shown in Appendix Appendix A. In addition, for networks with a large number of parameters,
the memory requirement increases significantly with the number of MC samples. Therefore, utilizing the closed-form
solution when available can save huge computational efforts and memory.
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4. Experiments

In order to demonstrate the advantages of the proposed losses in comparison to the KL loss, we performed ex-
periments. We have implemented the JS-G loss and the JS-A loss via a closed-form expression and a Monte-Carlo
method respectively, in these experiments 8.

4.1. Data sets

The following experiments were performed on two Data sets: the CIFAR-10 data set and a benchmark histopathol-
ogy data set.

4.1.1. CIFAR-10 data set
To demonstrate the effectiveness of regularisation, varying levels of Gaussian noise were added to the normalized

CIFAR-10 data set for training, validation, and testing.

4.1.2. Histopathology data set
We used a benchmark breast histopathology data set [30] which is highly biased towards one class.

Further details on these data sets and the pre-processing steps used here are provided in Appendix Appendix B.

4.2. Hyperparameter optimisation and network Architecture

Hyperparameters for all the networks considered here are chosen through hyperparameter optimization. A Tree-
structured Parzen Estimator (TPE) algorithm [31] is used here which is a sequential model-based optimization ap-
proach. In this approach, models are constructed to approximate the performance of hyperparameters based on histor-
ical measurements. New hyperparameters are chosen based on this model to evaluate performance. A python library
Hyperopt [32] is used to implement this optimization algorithm over a given search space. Data is split into a training
set and a validation set as explained in Appendix Appendix B. An optimization is performed to maximize the vali-
dation accuracy for different hyperparameter settings of the network. The results of the hyperparameter optimization
are given in Appendix Appendix C.

The architecture of all the networks used in this work follows the ResNet-18 V1 model [33] without the batch
normalization layers. The network parameters are initialized with the weights of ResNet-18 trained on the Imagenet
data set[34].

5. Results and discussions

This section presents the classification results on the aforementioned two data sets. A comparison of the perfor-
mance is presented between the KL loss and the JS losses proposed in this work.

5.1. Training and Validation

Three Bayesian CNNs were trained in this work by minimizing the KL loss and the proposed JS losses. Training
of the networks is done until the loss converges or the validation accuracy starts to decrease.

5.1.1. CIFAR-10
Training of the CIFAR-10 data set is performed with varying levels of noise intensity. Accuracy of training and

validation sets for noise N(µ = 0, σ = 0.9) is presented for both KL loss and the proposed JS losses in Fig. 3. It is
evident from Fig. 3 that KL loss over-fits the training data by learning the noise whereas the JS losses regularise better
implying a greater generalization. Fig. 3 provides the result for a representative case of σ = 0.9. A similar trend was
observed for all other noise levels as well.

8 In this section, the state-of-the-art KL divergence-based ELBO loss function, the JS-G-based loss function, and the JS-A-based loss function
are referred to as KL loss, JS-G loss, and JS-A loss respectively.
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Figure 3: Training and validation of CIFAR-10 data set with added Gaussian noiseN(µ = 0, σ = 0.9) using the KL-loss function and the proposed
JS losses.

5.1.2. Histopathology
Training of the histopathology data set is performed using the hyperparameters obtained in Table. C.3. A learning

rate scheduler is used during training in which the learning rate is multiplied by a factor of 0.1 in the 4th, 8th, 12th,
and 20th epochs. Fig. 4 shows the accuracy of training and validation sets for the KL loss and the proposed JS losses.

Epoch

A
cc

u
ra

cy

Training: KL

Validation: KL

Training: JS-G

Validation: JS-G

Training: JS-A

Validation: JS-A

Figure 4: Training and validation of histopathology data set using the KL loss and the proposed JS losses.

Similar to the CIFAR-10 data set, the KL loss learns the training data too well and fails to generalize for the unseen
validation set. Whereas, the proposed JS losses regularise better and provide more accurate results for the validation
set.

5.2. Testing

Results obtained on the test sets of the CIFAR-10 data set and the histopathology data set are presented in this
section. The test results correspond to the epoch in which the validation accuracy was maximum. Five runs were
performed with different mutually exclusive training and validation tests to compare the results of the KL loss and the
proposed JS losses.

5.2.1. CIFAR-10
The accuracy of the noisy CIFAR-10 test data set at varying noise levels is presented in Fig. 5a and Fig. 5b. It is

evident that the accuracy of both the proposed JS losses is better than KL for all the noise level cases. Further, the
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Figure 5: Accuracy on the test data set at different noise levels. Each box chart displays the median as the center line, the lower and upper quartiles
as the box edges, and the minimum and maximum values as whiskers.

difference in accuracy between KL loss and the JS losses shows an increasing trend with increasing noise levels. This
demonstrates the regularising capability of the proposed JS losses.

5.2.2. Histopathology
The results of the five runs of the KL loss and the proposed JS losses on the biased histopathology data set are

compared in this section. It is evident from Fig. 6 that both the proposed JS losses perform better than the KL loss
in all five runs with different training and validation sets. Since this data set is biased toward the negative class, the
improvement in performance shown by the proposed JS losses is attributed to better regularisation and generalization
capabilities of the loss functions. The receiver operating characteristic (ROC) curve is a performance evaluation metric
that visually plots the classification ability of a binary classifier when the discrimination threshold is varied. For the
present binary classification problem on histopathology data set the ROC curve is plotted in Fig. 7. The proposed JS
losses perform better than the KL loss in terms of the area under the curve (AUC).
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Figure 7: Receiver operating characteristic curve depicting the classification performance of the three binary classifiers studied.
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Figure 8: Confusion matrices for networks trianed with (a) KL loss, (b) JS-G loss, and (c) JS-A loss on the histopathology data set.

The confusion matrices for various divergences are compared in Fig.8. The confusion matrices show that in
addition to improving the accuracy of predictions, the proposed JS-G and the JS-A losses reduce the number of false
negative predictions by 11.7% and 12.8% respectively, as compared to the KL loss. Given that the data set is biased
towards the negative class, this is a significant achievement.
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6. Conclusions

In this study, we introduced two novel JS divergence-based loss functions for Bayesian neural networks that extend
the state-of-the-art KL divergence-based loss function. The proposed loss functions generalize well for data sets with
noise and bias. To conclude this study, we summarise its main findings as follows.

Firstly, we have utilized JS Divergence to formulate two novel loss functions for Bayesian neural networks and
have shown that the state-of-the-art KL divergence-based loss function is their special case.

Secondly, we have identified the reason for the better performance of the proposed losses compared to the state-
of-the-art. Further, for the case of JS-G divergence we have derived the conditions to obtain better regularisation.

Thirdly, we have provided algorithms for the minimization of the proposed loss functions. In the algorithms, the
JS divergences are evaluated by either closed-form expression or a Monte Carlo method. The relative merits of these
two approaches are discussed.

Fourthly, we have shown the improvement in performance achieved by the proposed loss functions in terms of
various performance metrics on data sets having bias and various degrees of noise.

This work would serve as a foundation for exploring other divergences for variational inferences in machine
learning models.

Appendix A. Monte Carlo estimates

To estimate the number of MC samples required to achieve a similar level of accuracy of the closed-form expres-
sion, JS-G divergence of two Gaussian distributions N(5, 1) and N(0, 1) are evaluated and compared with its closed
form counterpart. Fig. A.9 shows the results of the comparison. It is seen that at least 600 samples are required to
estimate the JS-G divergence within 5% error. This implies evaluating the loss function 600 times for a given input
and back-propagating the error which requires huge computational efforts.

0 200 400 600 800 1000

MC samples

7

8

9

10

JS
d
iv

e
rg

e
n
ce

MC estimate
Closed form
5% error

Figure A.9: Comparison of MC estimates and the closed form solution of JS-G divergence demonstrating the benefit of closed form solution.

Appendix B. Data sets

Appendix B.1. CIFAR-10

The CIFAR-10 data set consists of 60,000 images of size 32 × 32 × 3 belonging to 10 mutually exclusive classes.
This data set is unbiased data set with each of the 10 classes having 6,000 images.
Images were normalized using the min-max normalization technique. The entire data set was split into 60%-20%-20%
for training-validation-testing respectively.
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Appendix B.2. Histopathology

The histopathology data set consists of images containing regions of Invasive Ductal Carcinoma. The original data
set consisted of 162 whole-mount slide images of Breast Cancer specimens scanned at 40x. From the original whole
slide images, 277,524 patches of size 50 × 50 × 3 pixels were extracted (198,738 negatives and 78,786 positives),
labeled by pathologists, and provided as a data set for classification.

The data set consists of a positive (1) and a negative (0) class. 20% of the entire data set was used as the testing set
for our study. The remaining 80% of the entire data was further split into a training set and a validation set (80%-20%
split) to perform hyperparameter optimization. The images were shuffled and converted from uint8 to float format
for normalizing. As a post-processing step, we computed the complement of all the images (training and testing) and
then used them as inputs to the neural network. The pixel-wise normalization and complement were carried out as
pn = (255 − p)/255. p is the original pixel value and pn is the pixel value after normalization and complement.

Appendix C. Results of hyperparameter optimization

Results of the hyperparameter optimization (described in Section. 4.2) for the two data sets are presented in
Tables. C.2 and C.3. In Table. C.2 Div denotes the divergence measure and LR is the learning rate. λ is taken as 1 for
the JS-G divergence-based loss function throughout this work.

Table C.2: CIFAR10 data set

Div Parameter Noise level (σ)
0.1 0.2 0.3 0.4 0.5

KL LR 1e−4 1e−4 1e−4 1e−3 1e−3

JS-G α 0.004 0.1313 0.2855 0.3052 0.2637
LR 1e−4 1e−4 1e−4 1e−4 1e−5

JS-A
λ 1000 1000 1000 1000 1000
α 0.7584 0.6324 0.1381 0.6286 0.1588

LR 1e−4 1e−4 1e−4 1e−3 1e−4

Div Parameter Noise level (σ)
0.6 0.7 0.8 0.9

KL LR 1e−3 1e−3 1e−3 1e−3

JS-G α 0.2249 0.3704 0.3893 0.7584
LR 1e−4 1e−4 1e−5 1e−3

JS-A
λ 100 1000 1e4 1e5
α 0.4630 0.1220 0.2282 0.5792

LR 1e−3 1e−4 1e−5 1e−5

Table C.3: Histopathology data set

Divergence α λ Learning rate
JS-G 0.0838 1 1e−4
JS-A 0.0729 100 1e−4
KL - - 1e−4
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