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ABSTRACT

A general theory of elastic stability is presented, In contrast
to previous works in the field, the present analysis is augmented by
an investigation of the behavior of the buckled structure in the
immediate neighborhood of the bifurcation peoint, This investigation
explains why some structures, e.,g., a flat plate supported along its
edges and subjected to thrust in its plane, are capable of carrying
loads considerably above the buckling load, while other structures,
e.g., an axially loaded cylindrical shell, collapse at loads far
below the theoretical critical load.
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SUMMARY

The theory of elastic stability has already been the subject of numerous investigations.
Of the researches dealing with the general theory those made by Bryan [3], Southwell
[4], Biezeno and Hencky [5], Trefftz {7, 8], Marguerre [9], Kappus [10] and Biot

[11 — 14] may be mentioned. For a survey of the many special problems that have

been discussed, reference may be made to Timoshenko's well-known hook [43] .

Hitherto the general theories of stahility have been restricted, however, to the investi-
gation of neutral equilibrium; they aim particularly at the determination of the stability
limit. The phenomena occurring on reaching and possibly on surpassing this limit
were left out of account. This restriction as to the extent of the investigations is
caused by two circumstances. First of all, there must be mentioned the great mathe-
matical difficulties that obstruct the theoretical treatment of elastic behaviour after
surpassing the stability limit. Whereas the investigation of states of neutral equi-
librium is still possible by means of linear differential equations, the equations
describing elastic behaviour after surpassing the stability limit are no longer linear.
Moreover engineering has long been satisfied with the knowledge of the stability limit
(critical or buckling load). The recognized principle, based on considerations of
safety, was that the load on a structure should always be kept below this limit so that

an investigation of the phenomena occurring above this limit seemed superfluous.

However, it has been known for a long time that some structures, e.g., a flat plate
supported along its edges and subjected to thrust in its plane, are capable of sustaining
considerably larger loads than the buckling one without exceeding the elastic limit at
any point of the structure; in modern engineering, especially in aircraft engineering
where saving on structural weight is of paramount importance, these higher loads are

actually allowed. The theoretical treatment of this plate problem has among others
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been given by Marguerre and Trefftz [19, 20] . Their results agree very well with

experience if the excess of the buckling load is not too great,

On the other hand, it has been noted that the experimentally determined buekling loads
of some shell structures, e.g., axially compressed thin-walled ¢ylinders, lie con-
siderably below the theoretical stability limit. Moreover the experimental results
are widely divergent, Flﬁgge's [21]) and Donnell's [22] explanation, based on initial
deviations of the test specimen from the true cylindrical form in consequence of
which the yield point of the material would soon be reached, is called in question by
Cox [23] and Von Kirman and Tsien 124]. The latter authors remark that the initial
deviations should have to amount to a multiple of the wall thickness; such deviations
could scarcely have escaped the notice of the investigators. Besides, Cox as well as
Von Karman and Tsien point out that Flugge's and Donnell's explanation requires a
gradual appearance of buckles with increasing load whereas in the experiments a
sudden, almost explosive buckling occurs; neither does this explanation satisfactorily
account for the great divergency of the experimental results. Cox, on the other hand,
has suggested a strut model to illustrate the possibility that the behaviour of the
cylinder may be explained purely elastically; in a somewhat modified form this model

has also been suggested by Von Karman, Dunn and Tsien [25].

From the above-mentioned examples it clearly appears that the general theories of
stability framed so far do not suffice. They have to be completed in such a way that
the so divergent behaviour of various structures in the case of loads in the neighbour-
hood of the theoretical buckling load can be described as well. The present treatise

aims at such an extension.

The loads acting upon a structure can usually be represented by the product of a unit
load system and a load parameter A, as yet indeterminate. It is then required to

find the states of equilibrium that occur at a given value of A and also to investigate
the stability of these states. Of particular importance in engineering is the state of

equilibrium that is obtained continuously from the unstrained: state by monotonously
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increasing A from zero. For sufficiently small values of A this so-called fundamental
state is always stable, in agreement with Kirchhoff's theorem on the uniqueness of
solution {cf. [39] and Sect. 31 of the present paper). On the other hand, in many cases
the fundamental state becomes unstable on exceeding a critical value A, . The load

1

belonging to this value A for which the equilibrium is at the stability limit and

hence neutral as well (cf.1[10]), is called the buckling or critical load. Consequently
at this buckling load there exist, in addition to the fundamental state, neighbouring
infinitesimally deviating states of equilibrium. It is then to be expected that likewise
at loads differing slightly from the buckling load, neighbouring states of equilibrium
exist that are obtained from the fundamental state by means of small but now finite
displacementsl Next the presumption arises that the discrepancy in elastic behaviour
of various structures in the case of loads in the neighbourhood of the critical load is
connected with a discrepancy in character of the possible states of equilibrium going
with these loads. From a preliminary tentative investigation it appeared that the
character of these states of equilibrium is essentially dependent on the stability of
eqn_lilibrium at the buckling load, i.e., on the question whether the limiting case of
equilibrium at the critical load should still be reckoned among the stable or already

among the unstable states of equilibrium.2

First of all, therefore, the equilibrium at the stability limit had to be subjected to a
closer examination. Before entering upon this, however, it seemed advisable to give

a brief survey of the theory of elasticity for finite deformations (Ch. 1); for the investi-
gation of stability belongs essentially to the domain of the non-linear theory of

elasticity.

1IE‘or an illustration of this possibility see Fig. la—d (p. 93). Here a is a measure
of the displacements from the fundamental state to a neighbouring state of
equilibrium.
Some possibilities for neighbouring states of equilibrium are given in Figs, la-d
(p- 93). Figures la, b, d relate to cases in which the equilibrium at the buckling
load is unstable; Fig. 1lc relates to a case in which this equilibrium is stable. The
characteristic difference is that neighbouring states of equilibrium in the former
cases do exist at loads below the buckling load whereas in the latter case they
do not,

ix



Following Thomson [2] the general equations of motion are derived by means of
Hamilton's principle, using the elastic potential or strain energy function to describe
the elasticity of the body. The equations of equilibrium are obtained by putting zero
all inertia forces. They are in complete agreement with Kappus's equations [10],
obtained by equating to zero the resultant of all forces acting upon an element of the

elastic body.

In Chapter 2 the general theory of stability is dealt with. Section 21 gives a precise
definition of stability by means of the energy criterion, while Sect. 22 treats of its
practical application. In accordance with Trefftz it leads to two conditions of stability.
The first condition is that the first variation of the potential energy is zero for any
kinematically possible variation of displacement; it is identical with the well-known
principle of virtual displacements. The second condition requires that the second
variation of the energy cannot be negative for any kinematically possible variation

of digplacement. After a reproduction of Trefftz's treatment of the latter condition
in Sect. 22, some assumptions introduced along with it are looked into more closely
in Sect. 23; it appears that these assumptions are justified for all practical purposes.
In the following articles the equilibrium at the stability limit is considered in more
detail (Sect. 24 — 27). It appears that the equilibrium at the stability Iimit is
“generally” unstable (Sect. 25), In Sect. 28 the method of investigation developed
here is connected with Mayer's researches [{31] on minima of functions of a finite
number of variables. Finally in Sect. 29 some formulae are given that are necessary

for the application of the general theory of stability to problems of elasticity.

In Chapter 3 the states of equilibrium at loads in the neighbourhood of the buckling
load are investigated. The approximative method used to this purpose gives better
results accordingly as the load differs less from the critical one. The character of
these states actually appears to be governed by the stability at the buckling load
(Sect. 35, 36). However, a restriction regarding the type of problems treated must
be made that is inherent to the method of investigation., This method exclusively

enables to deal with buckling problems corresponding with a so-called point of



bifurcation; so-called oilcanning problemsl are left out of account {(Sect. 37). Finally
in Sect. 38 an extension of the theory to loads further removed from the buckling load
is discussed. The most important result of Chapter 3 is that with stability of the
equilibrium at the critical load (the buckling or critical state) neighbouring states of
equilibrium exist only for larger loads; these states are stable. Therefore, apart
from the possibility of exceeding the elastic limit of the material, larger loads than
the buckling load can be sustained. With an unstable buckling state, on the contrary,
neighbouring states of equilibrium do occur at loads smaller than the buckling load;
these states are unstable, Though in some cases with unstable buckling state there
also exist stable states of equilibrium at larger loads, these loads can only be reached
by passing the unstable buckling state so that their practical importance is, to say the
least of it, doubtful.

The theory of Chapter 3 does not yet give an explanation of the fact that for some
structures the experimental buckling loads are considerably smaller than the theo-
retical buckling load. To come to such an explanation the influence of small deviations
of a real structure from the simplified model, designed to represent the structure, is
considered in Chapter 4. The necessity of this consideration is demonstrated on the
basis of the example of the prismatic bar subjected to combined bending and com-
pression. The method of investigation is similar to that of Chapter 3, the only
modification being the allowance for smail deviations; the smallness of these deviations
is expressed by neglecting all second order terms in these deviations. The most
important result of this investigation is that with an unstahle buckling state of the
model the buckling load of the structure may be considerably lower in consequence

of very small differences between structure and model (Sect. 455)2 Hence the

discrepancy between theoretical and experimental critical loads can be explained

1This term was introduced by Von Karman and Tsien [24] .

2This drop of the critical load is illustrated by Fig. 2 (p. 137). Here ¢ is a measure
of the magnitude of the initial deviations, Ay is the buckling load of the model, A*
the buckling load of the structure. Note the vertical tangent to the € —A* curve in
the point of transition of structure to model € =0, A* =21 .

xi



purely elastically by assuming small deviations of such a structure from the corre-
sponding model; moreover, the great sensibility of the buckling load of the siructure
for small variations in the magnitude of the deviations explains too the wide divergency
of experimental results. It is self-evident that the collapse is precipitated by elastic

failure of the material; this complication, however, is not further considered.

The most interesting example for application of the theory developed here is the axially
compressed thin-walled cylinder; for in this technically important case the great
discrepancy between the theoretical and experimental buckling loads has up to now
not been accounted for satisfactorily. To apply the general theory it is necessary

to dispose of the knowledge of the elastic energy of the thin-walled cylindrical shell
for finite displacements. With a view to the possibility of application to other shell
structures as well, a general theory of thin shells for finite displacements is given

in Chapter 5. 1f is based on the same assumptions as the well-known technical theory
of shells for infinitesimal displacements (Sect. 51). After calculating the strains and
the elastic potential (Sect. 53, 54) the consequences of these assumptions are looked
into more closely in Sect. 55. The most important conclusion to which they lead is
that the elastic energy is the sum of stretching energy and bending energy. Finally,

in Sect. 57 the influence of small deviations is again considered.

Before passing on to the already rather complicated theory of the thin-walled cylinder
it seemed advisable to deal first with some simpler applications to elucidate the
general theory (Ch. 6). The well-known problem of the elastica was chosen as a
first example (Sect. 61). Next, in Sect. 62 Cox's problem [23] is dealt with.

Finally, in Sect. 63 the problem of equivalent width of compressed flat rectangular
plates is considered. In this case the general theory supplies a justification of the

theory of Marguerre — Trefftz [19], based on more arbitrary assumptions.
The last application is Chapter 7 concerns the axially compressed cylindrical shell.

Neglect of boundary conditions leads to the same result for the buckling load as

known from existing literature (Sect. 74). The same neglect leads to the conclusion
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that equilibrium in the buckling state is unstable (Sect. 75). In Sect. 76 the neighbouring
states of equilibrium at loads in the neighbourhood of the critical load are investigated.
It is found that all existing neighbouring states of equilibrium are unstable. As far as
possible the results obtained are compared with a paper by Von Karman and Tsien
(Sect. 51), which became available during the compilation of the present treatise.
Because the displacements assumed by the above-mentioned authors are less general
their results are less good at least for loads in the neighbourhood of the critical load.

In Sect. 77 the influence of small deviations from the true cylindrical form is discussed.
As the investigation is rather complicated, the detailed calculations are restricted to
one form of deviations. In this case a very marked decrease of the buckling load is
tound already with very small deviations. This result is in striking contrast to that

of Donnell [22] as the amplitude of the initial deviations, required to explain the
discrepancy between the mean value of the experimental buckling loads and the
theoretical buckling load, according to the present theory amounts to about 10% of

the amplitude required by Donnell. Although of course it is desirable to extend the
investigation to other forms of deviations, at this stage already the conclusion may

be drawn that the theory given here supplies an explanation of the large discrepancy
between theoretical and experimental critical loads. The wide divergency of experi-
mental results is likewise satisfactorily accounted for by the extreme sensibility of

the critical load for small variations in the magnitude of the deviations.
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INTRODUCTION

For a long time various investigators have been interested in the problem of elastic
stability. Euler's pioneering investigations of the elastica [ 1] have probably become

most widely known,

If some brief remarks by Thompson [2] are disregarded, the first attempt to derive

a general stability theory seems to have been undertaken by Bryan [3]. His considera-
tions are based on the energy criterion according to which an equilibrium state is
stable or unstable depending on whether or not the potential energy possesses a true
minimum in that state. However, when calculating the elastic energy, he takes into
account only terms which are quadratic in the displacements. In that case the second
variation is of the same form as the energy itself, and thus is always positive. If

the displacements are prescribed at all points where forces are acting on the body, in
which case the constant energy of the applied forces can be equated to zero, then it
follows that the variation of the total potential energy is equal to the variation of elastic
energy. Hence, the second variation of the total potential energy is always positive

so that instability would be excluded in such cases.1 This conclusion is contradicted
by experience, for instance, in the example of the axially compressed prismatic bar

which is subjected to a prescribed end shortening.

Southwell [4] has derived equations which govern the so-called neutral equilibrium of
the uniform state of stress and deformation. He considers a neighboring deformed
state which is derived from the uniform state by infinitesimal additional displacements
u, v, w. Apart from the loads given by the initial force field, which are required

for the maintenance of the initial state, additional loads should be applied to the body

1Thomson [2] pointed already at this circumstance.



in order that it is again in equilibrium. On account of the smallness of the displacements
u, v, w these extra loads are homogeneous in and linearly dependent on u, v, w and
their derivatives. Equilibrium in the initial uniform state is called neutral if a neighboring
state exists for which the required additional loads are supplied by the initial force field.
The equations and boundary conditions which hold for the neighboring state are linear and
homogeneous in the displacements u, v, w and their derivatives. The equilibrium of
the initial state will be neutral only when the equations admit a nontrivial solution — which
in that case is determined apart from a constant factor on account of the homogenity of

the equations and boundary conditions .1 For the description of the state of stress and
deformation, Southwell chooses as independent variables the coordinates of a point of the

undeformed body. He also relates the stresses to the surface elements of this state.

Biezeno and Hencky [5] have made an extension of Southwell's considerations in dealing
with the general state of stress with a corresponding force field acting on the body.
Consideration is given to a body in a supposedly known state of stress I, and to a stress
state II that has been derived from I by means of infinitesimal displacements. Equilibrium
in state Iis again neutral if there exists a state of equilibrium II such that the required
additional loads, which are homogeneous and linear in the additional displacements, are
again supplied by the external force field. Again, the equations of neutral equilibrium
are homogeneous and linear. The coordinates of a point in state I are chosen as inde-
pendent variables while the stresses are always related to the surface elements of the
corresponding state. Consequently, it is not necessary to know the manner in which
state I has been obtained from the undeformed state. It is only necessary to formulate

an elasticity law for the transition of state I to state II.

lIn some cases the equations possess several independent solutions (uj s Vi wj). The
general solution (Y c¢;u;, etc.) possesses in that case a corresponding number of
undetermined coefficients. Such a case can occur for an axially compressed, elas-
tically supported bar (see [52}). For some ratios of the stiffness of the elastic sup-

ports to the bending stiffness, the bar possesses at the same load two buckling modes
which differ in the number of waves.



Reissner [6] has tried to improve on Bryan's argument which utilized the energy

criterion.

Trefftz [7, 8] has developed a stability theory based on the theory of elasticity for

finite deformations. He also makes use of the energy criterion for the prediction of
stability. A sufficient condition for stability is that the second variation of the total
potential energy should be positive for every kinematically possible variation of the
displacements. The stability limit will be reached if the second variation becomes
positive semi-definite; i.e., that the second variation is zero for one or more suitably
chosen displacement variations, but non-negative for any other possible displacement
variation. In his first paper, Trefftz chooses as independent variables the coordinates
of a point in the undeformed state. In his second publication he chooses as independent
variables the coordinates of a point in the deformed state I the stability of which is to be
investigated. In agreement with this, the stresses in state I which deviate from state 1
are in his first publication related to the surface elements of the undeformed state and in
his second publication to the surface element of state I. The tractions in state II are
decomposed in the directions of those line elements which are parallel to the coordinate
axes in the undeformed state and state I, respectively. The stability equations (derived
from state II which deviates from state I in an infinitesimal sense) then take a rather

simple form.

In connection with the treatise of Trefitz, Marguerre [9] has examined the relation
between the various minimum principles as they are applied to stability problems in
engineering, and the general principle of the minimum of the potential energy. He
also gives a detailed illustration by means of the example of the axially compressed

bar.



A further development of the theory of elasticity for finite displacements, only briefly
indicated by Trefftz, has been given by Kappus [10] .l He derives the equations for
neutral equilibrium from the general equations of equilibrium, It appears along with
this, that the equilibrium state is neutral in the sense of Southwell and Biezeno-

Hencky when the stability limit, as defined by Trefftz, is reached,

Also Biot [11—14] has derived equations for neutral equilibrium from a theory of
elasticity for finite deforma.ticm,1 For simplicity he introduces a new way to
describe the deformed state. With this, he succeeds in bringing the stability equa-
tions to such a form that it is possible to render a mechanical meaning of the various
terms in the equations. This improved lucidity can be of much value in the search
for those terms which may be neglected in the application of these equations to a

special problem.

The stability considerations which have so far been established and which were dis-
cussed in the foregoing, are restricted to the analysis of neutral equilibrium. They
aim in particular at the determination of the stability limit. The phenomena which
occur as this limit is reached or posgibly exceeded were not considered. This
limitation of the extent of the investigations was caused by two circumstances. First,
the great mathematical difficulties should be mentioned which obstruct the theoretical
treatment of the elastic behavior beyond the stability limit. While it is stil] possible
to analyze the neutral equilibrium states with linear differential equations, the equa-
tions describing the elastic behavior beyond the stability limit are no longer linear.

In addition, for a long time engineering science was satisfied with the knowledge of the
stability limit (buckling load) alone. The point of view had been adopted that for safety

1Neither Kappus nor Biot seem to have been acquainted with the older literature about
finite deformations of an elastic body. Already in 1839 Green expressed the assump-
tion of the existence of an elastic potential for finite deformations; by use of this
assumption, Kirchhoff [16] andThomson [2] derived the equilibrium equations. Other
publications in the field of finite deformations are of minor importance for the stability
analysis following here, but those by Hamel [17] and Murnaghan [18] should still be
mentioned,



reasons the load on the structure should always be kept below this limit, so that an
investigation of what occurs beyond this limit seemed superfluous. However, it has
been known for some time that certain structures are able to withstand loads signifi-
cantly above the buckling load, and this without stresses in excess of the elastic

limit of the material. (For instance, the flat plate simply supported along its edges
and subjected to an inplane thrust.) Indeed, - in modern engineering especially in
seronautics where economy of weight is of primary importance — loading in excess

of the buckling load has already been tolerated. The theoretical treatment of this
plate problem is presented by Marguerre and Trefftz [19,20]. The agreement of
their results with experimental results is very good if the loads are not too far in
excess of the buckling load. On the other hand, it has been established that experi-
mentally determined buckling loads of several shell structures (such as axially
compressed thin-walled cylinders) are congiderably below the theoretical stability
limit. Moreover, the experimental results show much scatter. An explanation for
this given by Flugge [21] and by Donnell 122] has been questioned by Cox [23] and by
Von Karman and Tsien [24]. The explanation is based on the initial deviation of the
test model geometry from that of the perfect cylinder, which deviations will cause
siresses beyond the yield limit at moderate loads. The last two of these authors
remark that the initial imperfections must be several times the wall thickness of the
eylinder in order to serve as an explanation of the low experimental values; such a
deviation would not have escaped the attention of the investigators., Further, Cox,
Von Karman and Tsien point out that the explanation given by Flﬁgge and by Donnell
implies a gradual occurrence of buckles, while experiments have shown that buckling
takes place in a sudden, almost explosive manner. Also, the great scatter in the test
results has not been cleared up satisfactorily by this explanation. On the other hand,
the possibility to explain the behavior of the cylinder from a purely elastic point of view
was illustrated by Cox [23]by means of a suggestive bar model. Von Karman, Dunn and

Tsien also proposed this model but in a somewhat different form [25].

The examples mentioned above show clearly that the stability theories s0 far estab-

lished do not suffice. They should be supplemented with a theory which describes also



the different behavior of the structure at loads in the neighborhood of the theorétical
buckling load. The present treatise intends to give such an extension. It is assumed
that the loads which act on the structure can be represented by a product of a unit

load system and an as yet undetermined load parameter A. One seeks equilibrium
states corresponding to a given value of A as well as the stability of these states.

Of particular importance in engineering are those equilibrium states which are
obtained by continuous deformation from the undeformed state as A is monotonically
increased from zero. This so-called fundamental state is always stable for sufficiently
small values of A, inagreement with the uniqueness theorem of Kirchoff (see [89], and
Sect, 31). On the other hand, the fundamental state in many cases becomes unstiable

ag A exceeds a certain qritical value ?Ll . The load corresponding to this limit value,
(equilibrium is at the stability limit and hence also neutral, see [10)) is called the
buckling load or critical load. Consequently, apart from the fundamental state,
infinitesimally near states of equilibrium exist at the buckling load. It is then to be
expected that neighboring equilibrium states also exist, which are obtained by small
but now finite displacements, at loads slightly differing from the buckling load.1
Further, the suspicion arises that the difference in elastic behavior of various struc-
tures is connected with the different nature of the neighboring equilibrium states
corresponding to these loads. From a preliminary tentative investigation, it appears
that the character of the equilibrium states is essentially dependent on the stability

of equilibrium at the buckling load; i.e., on the question as to whether the limiting
case of equilibrium should still be reckoned among the stable or among the unstable

states of equilibrium 2

l]?‘or an illustration of this concept see figures 1a-d (page 93). Here (a) is 2 measure
of the displacements from the fundamental state to an adjacent state of equilibrium,
Some possibilities for neighboring equilibrium states are shown in figures 1a-d

(page 93). The figures 1a,b,d relate to cases in which equilibrium is unstable at
the buckling load, fig. 1c relates to the case in which equilibrium is stable at the
buckling load. The characteristic difference is that in the cases first mentioned,
adjacent states of equilibrium for loads smaller than the buckling load do exist, while
in the latter case such adjacent states do not exist.



Therefore, in the first place, equilibrium at the stability limit should be examined
more closely. However, it seemed desirable to give first a brief summary of the theory
of elasticity for finite deformations as the stability analysis belongs essentially to the

domain of the nonlinear theory of elasticity (Chapter 1).

In Chapter 2 the general stability theory is treated. After an account of the theory of
Trefftz in the first two sections, some of its assumptions are examined more closely
in Sect. 23. The following sections consider equilibrium at the stability limit

(Sect. 24-27); it appears that "in general” this equilibrium is unstable (Sect. 25).

In Sect. 28 the method of analysis developed is related to Mayer's investigations on

the minima of functions of a finite number of variables [31].

In Chapter 3, the equilibrium states at loads in the neighborhood of the buckling load are
investigated; the approximate method used for this purpose vields better results accord-
ingly as the load is closer to the buckling load. The nature of these states of equilibrium
indeed appears to be governed by the stability of equilibrium at the buckling load (Sect. 35,
36). However, a restriction should be made with respect to the nature of the problems
treated which is inherent in the method of investigation (Sect. 37). By this method one is
only able to treat buckling problems corresponding to a so-called branching point of
equilibrium ; consequently the so-called snapthrough problems are not considered. Finally
an extension of the theory is possible, with loads further removed from the buckling load.
This is treated in Sect. 38. The most important result of Chapter 3 is that for stable
equilibrium at the buckling load (the critical state), neighboring states of equilibrium can
exist only for loads greater than the buckling load; these states are stable. Therefore,
disregarding the possibility of stresses in excess of the elasticity limit, loads above the
buckling load can be sustained. For an unstable critical state on the other hand, neighboring
equilibrium states do exist at loads smaller than the buckling load; these states are unstable.
It is true that in some cases stable equilibrium states also exist at loads greater than the
buckling load, but these states can only be reached by passing through the unstable critical

state, so that their practical significance is to say the least doubtful.



The theory of Chapter 3 does not yet give an explanation of the fact that for some
structures the experimental buckling loads are considerably smaller than the theo-
retical buckling loads. Such an explanation is obtained in Chapter 4 through a study
of the influence of small imperfections in the actual structure in comparison to an
idealized model. The necessity of this consideration is illustrated by the example of
the straight bar subjected to combined bending and compression. The most important
result of this analysis is, that if the critical state is unstable, the buckling load of the
structure may be considerably smaller than that of the idealized model due to the
presence of small deviations; consequently the difference between theoretical and
experimental buckling loads can in prineiple be explained under purely elastic condi-
tions by use of the assumption of small deviations between the real structure and the
model, It goes without saying that the collapse of the structure will be precipitated if
there are stresses in excess of the elastic limit, This complication will not be further

considered.

The most interesting application for the theory developed is given by the example of
an axially compressed thin-walled cylinder, as the great difference between theo-
retical and experimental buckling loads for this very important case in engineering
has never been explained satisfactorily, The application of the general theory requires
an expression for the elastic energy of a thin-walled cylindrical shell undergoing finite
displacements. In view of a possible application to other shell structures, a general
shell theory for finite displacements is given in Chapter 5. This theory is based

on the assumptions of the well-known shell theory for infinitesimal displacements
(Sect. 51). After calculation of the deformations and the elastic potential (Sect. 53
and 54) the consequences of these assumptions are studied more closely in Sect. 55,
The most important consequence is that the elastic energy is the sum of the mem-
brane and bending energies. Finally, in Sect. 57 consideration is again given to the

influence of small imperfections.

As the analysis of the thin-walled cylinder is already rather complicated, it seemed
desirable to treat first some simpler cases for illustration of the general theory

(Chapter 6), The first example chosen is the well-known problem of the elastica



(Sect. 61). Further, in Sect, 62 the problem of Cdx is dealt with, Chapter 6 is con-
cluded in Sect. 63 with consideration of the problem of the simply supported flat plate
subjected to a uniformly distributed in-plane edge thrust. In this case the general theory
gives a justification of the theory of Marguerre-Trefftz [9] which was based on more
intuitive assumptions. As a last application the axially compressed cylindrical shell is
treated in Chapter 7. The ""classical result for the buckling load, as is well known
from the literature, is found if boundary effects are neglected. For this case the equi-
librium is unstable in the critical state (Sect. 75). The equilibrium states at loads in the
neighborhood of the buckling load are investigated in Sect. 76. It is found that all neighbor-
ing states of equilibrium are unstable. The results obtained are, as far as possible,
compared to those published by Von K.;lrms;n and Tsien [52] which became available during
the preparation of this treatise. As the displacements assumed by these writers are less
general, their results are less accurate, at least for loads in the neighborhood of the
buckling load. The influence of small deviations from the true cylindrical form are
investigated in Sect. 77. As this analysis is rather complicated, the evaluation remains
restricted to one form of imperfection. It is found that a very marked decrease of the
buckling load occurs even for small imperfections. Although it is of course desirable to
extend the analysis to other forms of imperfections, at present it can already be con-
chided that the theory presented gives an explanation for the large discrepancy between
theoretical and experimental results; also the great scatter of the experimental results
is satisfactorily explained by the sensitivity of the buckling load to small differences in

the magnitude of the imperfections.



Chapter 1
THEORY OF ELASTICITY FOR FINITE DISPLACEMENTS

11. DEFORMATIONS BY FINITE DISPLACEMENTS

In this section a short summary will be given of the theory of deformations
[26, 27].

The cartesian coordinates X1 Xy x3 of a point in the undeformed body are intro-

duced as indepéndent variables,

Every point P(Xi) is subject to a displacement with components u, in the direction
of the coordinate axes. Hence, the coordinates of this point in the deformed state
will be X, + u, . The deformations in the immediate neighborhood of the point P

are completely described by

— = ——i —j- —_—— . '
YT % T oam, +8xi+ E X, PR, . (11.1)

The new length d¢' of a line element through P, which originally had the length d¢, and
whose orientation in space is given by the angles @, , can be expressed by

2 2 2 2 2
(den” = @~ {1 + Y11) cos 4+ (1 + 7,,) cos @y + (1 + Yg4) cos @y

+ 2')/12 cosay cosa, + 2']/23 COS &, €OS iy + 2‘)/31 cos &y cos all. (11. 2)

The number e = (d¢' - d¢)/d¢ corresponding to the direction of df js called the

specific strain. If this direction is parallel to one of the coordinates axes, it follows
that

10



e, =V1+ vy, -1, (11.3)

In the deformed state the line elements which originally were parallel to the coordinate

axes X, and x].(i = j) will enclose the angles goij = @ determined by
cos ¢, = {i=7j). (11.4)

J
V@ )@+ %)
The relations (11.3) and (11.4) describe geometrically the components of deformation,

In the literature mentioned before, proofs are given that there exists at least one
system of mutually perpendicular directions at the point P for which among the six
deformation components the quantities 'yhk(h # k) are identically zero. These axes
Thic = ¢ for
The latter quantities

are called principal axes and the corresponding deformation quantities T’
h = k and th = Ph determine the principal extensions Eh.
are determined by

Ehz\}l-'-rh_l’ (11, 5)

Yip - T Y12 Y13
N - 0. 11.
Y91 Yoo = T Yo3 0 (11.6)
Y31 Y32 Y33 - T

The magnitude of the principal strains is independent of the choice of the coordinates.

This leads to the conclusion that the following three invariants exist

11



+ ¥,

22 T Y3y T I FT, AT R

17 " 2 37

~ 9 2 9
Iy = Y1Yan * YepVaz * Yau¥iy - (7’12 T Y33 '}’31)

= PIFZ + F2F3 + 1"3 1°

r (11.7)

_ 2 2 24
Is = M1%gYs + 2719737 (”117’23 T YooYy * ”337’12) = Ty )
12. THE ELASTIC POTENTIAL

In general, the law of elasticity offers a relation between the deformation and the
internal stresses. However, it can also be formulated in an indirect way by means
of the introduction of the elastic potential. It is assumed that each volume element
of the body possesses a potential energy which depends on the local state of deforma-
tion. As the state of deformation is completely described by the components of

deformation (11.1), the elastic potential energy per unit of volume can be written as

A = Ay (12.1)

where thermo-elastic phemonena are left out of congideration,

Experiments have shown that the elastic behavior of most construction materials is
described with sufficient accuracy by an elasticity law of the form (12.1). For
infinitesimal deformations, A is a homogeneous and positive definite quadratic
function of its arguments. With some exceptions, for instance cast iron, for

small but finite deformations it has so far not appeared that terms of order higher
than the second play a significant role; this should not be surprising as in the elastic
range the components of deformation are very small for most materials (order of
magnitude 0.001). Consequently, in the following it will be assumed that the elastic
potential is a homogeneous and positive-definite function of the deformation compo-

nents. It follows from (11. 1) that it will be a function of the fourth order of the

12



displacement derivatives. Alternativelytothe use of the deformation components

7ij , the deformed state can be completely described by ‘the direction and magni-

tude of the principal stresses. For an isotropic material, the elastic potential must
be independent of the directions of the principal strains. Furthermore, the magnitude
of the principal stresses is fully determined by the invariants (1.7), which leads to
the proposition

A = AQ (12.2)

10501y,

The only homogeneous quadratic function of the deformation components of the form

(12. 2) is given by

(12. 3)

in which oy and &, are material constants in the case of a homogeneous material.

If the material is inhomogeneous the quantities ay and a, will generally be fune-
tions of the coordinates X - By use of (11.7), it is possible to write (12.3) in the

form

20 + &
_ 2, 2. 2 17 %
A= ol + Ty + Ty + —4

T.T
1 1

9 + I‘zf‘g + 1‘3I‘1) .

This expression is positive definite if and only if [33]

2 + o
@ s0 , -1<1 %

1 al

< 2,

from which follows that

>0 , 0>a,>-30. (12. 4)
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For infinitesimal deformations, (12.3) must reduce to the elastic potential of the
linear theory of elasticity. Comparison of (12.3) with [34] yields with the usual

definition of the constants of elasticity G and m

~lom-1 - .1
% =36m-2 » %36

It follows then that with G > 0 and m > 2 inequalities (12.4) are satisfied. Thus,
the elastic potential takes the following form

_ 1 1
A_4Gm—

zl(m—l)lf-z(m-z)lz . (12. 5)

13. HAMILTON'S PRINCIPLE AND THE EQUATIONS OF MOTION

The equations of motion can be derived from Hamilton's principle [2]. Following
this principle, the natural motion of holonomic mechanical system between the

time points tO and tl is determined in such a way that

t ty
5f (T-V)dt+f SWdt = 0. (13. 1)
to ty

This variation corresponds to the variation of the natural motion to a neighboring
motioin which differs from the original one in an infinitesimal sense and which yields
the real configuration at the points tO and t;. The neighboring motion, as well as
the natural one, should satisfy the kinematical conditions imposed on the mechanical
system. The quantities T and V are the kinetic and potential energy of the system
respectively; 6W is the work that would have been done by the external forces at the
time t if the mechanical system were brought into the corresponding state, which

differs from the original state in infinitesimal sense.
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The kinetic energy of the elastic body is given by

3 2
1, A,
T = ,[[[E fo (3{*) dxldxzdx3 . (13. 2)
1

In this expression p stands for the mass density of the undeformed body and integra-

tion should be carried out over the volume of the undeformed body.

According to (12. 1), the elastic potential energy is determined by

o [ g ot

where integration should be carried out over the volume of the undeformed body.

If pXi are the components of body forces in the deformed state which are related to
the volume elements of the undeformed body, then the work done by these forces on

transition to the neighboring state is given by

3
oW, = j f f o .):1 X du.dx, dx,dx, . (13. 4)
1= .

In this expression 6ui represents the variation of the displacement to the neighboring
state,

It is assumed that surface tractions are working on a part 0 of the surface, of which
the components p; are related to the surface elements of the undeformed state. On
the remaining part 0' of the surface the displacements are supposed to be prescribed,
During transition to a neighboring configuration the surface tractions perform the

work

15



3
oW, = H 'Z p,du.df. (13. 5)
0 i=1

The work done by the surface tractions acting on the part 0' of the surface is zero

because the displacement variations o6u; of that part of the surface are zero.

Hamilton's principle is now formulated

f dtfffp Z 5t 05t dx,dx,dxg - f dtﬂ'fz m—ayij 6vijdxldx2dx3
tO i=1 tO i,j

ty ty
3 3
+ f dthp Y. Xbudx,dxydxg + f dt UZ p,dudf = 0. (13.6)
tO i=1 t() o i=1

In the second integral, summation should be carried out over the six combinations

of i and j.

After the use of

5ui=0 for t=t0 and t=t1

and of integration by parts, the first integral reduces to

t t
1 1 3
N d oy bu,dx, dx, d
Jdtmpi ot ° ot dxldxzdxs‘"f ¢ pEStz Uy g Oy
i=1 i=
tO 1 tO i=1

(13.7)

Here use was made of the interchangeability of the sequence of the operations 6 and
a/at .
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For the reduction of the second integral the following expression is derived from (11. 1)

3
ou. du. ou Ju au ou.
v, = 86—+ 85— E hg h, _h, _h)
ij ax]. i) . . .

+
X i i
h=1 "' 1

Next, all terms with variations of the derivatives of u,-oare lumped together, Tor

m = 1 these are

9A duy oA %43 pa My uy
23 L+ o )V oy %, T av., o Oax. *
"1 X Yig g 973 X3

Ju au ou au
. 8A<1 1)+28A 1 sA M 1

o + 65— +
8721 Bxl 8’)/22 8x2 8'\/23 8x3 8x2
au ou du du
N aaA (1 . axl> . 8aA Bxl ' 8aA i 1l 158
| 9731 1 Y3g 9%y Y33 %3 3
For m = 2 and m = 3 similar forms are found.
For brevity is introduced
QA 1 JA DA . .
o8 e, 2= T2 =k =k (177 (13. 9)
a”yﬁ 2 il 8713. B’Vji ij ji
Expression (13. 8) can now be written
3 3 Bul 8111
2 Kip * 2 Kih Bx,, 3%,
i=1 h=1 )

It follows that the second integral of (13.6) can be written
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DA _
f dtfﬂz_ 9% oY ]dxldxzdxs N
3 ou du
] 1 1
f dt.”'j 2 z kflha_X}; 6 3 [ dxqdxgdx,y (13. 10)
1_'1 }_' h:l ]..

If the normal to the surface is denoted by n, where the outward direction is assumed
to be positive, then, after interchanging the sequence of variation and differentiation

and after application of Gauss's theorem, (13.10) becomes

tfl dtm%% dxldx2dx3
/“ﬂi

i=1llji=1

. |
[dt/j[} ks 2 —1 bu dx dx,dx . (13. 11)

With (13.7) and (13. 11) equation (13. 6) reduces to

3
+
z ih 8 cos (xj . ) éuidf

3

t 3 (3
dt 2 i _ .
[ 2 2 Bxj kg * 2 Kin ox, | * PRy~ p g [ Owydx drpdxy
t =1 i1 h=1
f d| SIS

i=1 _]=

7"1"

3
aui :
E kjh@ cos (xj,n) - by Guidf = 0, (13.12)
h=1
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Since (13.12) should be satisfied for arbitrary variations 6 u, the coefficients of du,
i

in the integrals must be equal to zero.

For the points in the interior of the hody it follows that

s, 5 2u
Ok, + Yk, M)+ px - i=0,i=1,23 13.13
z ax;\ it jh axh) PRy — P ) ’ ( )
=1 h=1

and for points on the part of 0 of the surface the boundary conditions

3 3
kji + . kjh axh cos(xj,n) - B = 0, i=1,2,3. (13.14)
j'_- _—.1

On the part 0' of the surface

u, = prescribed (13.15)
Equation (13.13) and (13.14) should of course agree with the equations of Kappus [10],
which were derived by consideration of the equilibrium of tensile and inertial forces
acting on an infinitesimal element of the body. Indeed the principal equations and
boundary conditions of Kappus for his stress components kij are formally identical

to equations (13.13) and (13.14). At the same time, in order to ensure the exist-

ence of an elastic potential, Kappus' stress components should satisfy conditions
which are expressed by equations of the form (13. 9). The elastic potential is then also
the specific energy of deformation.

The equations governing the elastic equilibrium can be obtained from (13.13) if one

equates to zero the derivatives with respect to time; they read

3 3 5u
Zik..+§:k. 1) +,X =0; 1= 1,2.3. (13.16)
5| i oy ). P T O 2
=1 3 h=1

The boundary conditions remain identically valid.
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Chapter 2
STABILITY OF EQUILIBRIUM .

21. THE STABILITY CRITERION

For the analysis of the stability of a mechanical system, the method of small
vibrations or the energy method are commonly used. The method first mentioned
congists of the derivation of equations of motion for small displacements from the
equilibrium state. The smallness of the displacements makes it possible to take into
account only terms which are homogeneous and linear in the displacements or their
derivatives. The homogeneous and linear equations derived in this manner have
solutions whose dependence on time is characterized by their common factor ept .
The equilibrium state under consideration is stable if and only if, for all solutions

of this form, the real part of p is nonpositive (the possible complication of
multiple roots of the characteristic equations are herewith disregarded). The stability
analysis by Southwell [4] and Biezeno-Hencky [5] can be related to this method; they

investigate under which circumstances the quantity p becomes zero,

The energy criterion states that an equilibrium configuration of a mechanical system
is stable if and only if the work done by the external loads during transition to a
neighboring kinematically possible configuration is not greater than the increase of
the internal potential energy. The application of this criterion is considerably simpli-
fied if the assumption is made that the external forces also possess a potential energy.
In that case, the work done by these forces is given by the difference between the
potential energy of the forces in the state of equilibrium and that of the neighboring
state. Then, the energy criterion demands that for stability the total energy, con-
sisting of the sum of internal and external energies, should possess a minimum in the

equilibrium state.
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In the case of an elastic body for which the potential energy consists of a sum of one
or more integrals, whose integrands are functions of the displacements and their
derivatives, this minimum condition requires yet more precise definition. If the
displacements of the equilibrium state are denoted hy Ui and those of neighboring
state by Ui + u o, the potential energy P(vi) possesses a minimum for v, = Ui
it and only if it is possible to find two positive constants g and h such that from the

inequalities

ouy

oX,
3

|
Ill.

il < 85

which are valid throughout the body, it follows that
P(Ui + ui) z P(Ui) . (21.1)

The methods for the determination of the stability limit [4, 5, 7, 8] as developed
from the theory of small vibrations and from the energy criterion are basically
identical [10] . Nevertheless, when,in the following, preference is given to the energy
criterion, it is because of the possibility offered by this criterion of an extension of

the analysis to a closer inspection of the stability at the stability limit.
22. APPLICATION OF THE STABILITY CRITERION

In the application of the energy criterion the assumption will be made that the
integrands of P(Ui + ui) may be expanded info a power series in the displacements
and their derivatives according to Taylor's formula. If the sum of the integrals, (the
integrands are complete homogeneous functions of the mth order in u, and their

derivatives) are denoted by Pm[u]:L , then the stability criterion is

P(U, + u) - P(U) =Plu] = Pl[u] + Pz[u_] + Pglul + ...z 0 . (22.1)

1In the following the subscript i of the coordinates x;, the displacements U; and
w; ete. are left out for as far as ambiguity can be excluded.
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Besides, it is also assumed that the kinematic conditions to which the extra displace-
ments are subjected, are linear homogeneous relations for the displacements u, and
their derivates. This assumption is satisfied if the kinematic conditions are linear

in the total displacements U + u . Every linear combination of kinematically pos-
sible displacements is in itself again a kinematically possible system of displacements.
Consequently, every possible configuration of U + v can be understood as a sample
irom a bundie of possible configurations U + @u , inwhich @ represents a param-
eter independent of the coordinatesl. Then condition (22.1) requires that it must be
possible to find a positive number k for every kinematically possible system of dis-
placements u , such that from the inequality |&| < k it follows that

Pl[au} + Pz[oz.u] + P3[oz.u] o =aP [ o+

+ a2P2[u] + a3P3{u] + ... > 0 . (22.2)

This requirement leads to the following necessary conditions
P ful =0, (22.3)
Pyfu] 2 0 . (22. 4)

Relation (22.3) is identical to the principle of virtual work applied to the equilibrium
state. For, according to this principle, the first variation of the potential energy,

i.e., the first term of the Taylor expansion

P(U; +8U;) - P(U) = P[6U] = P,[0U] + P,[dU] +...,

is zero for all kinematically possible, infinitesimal displacements. It is equivalent

to requirement (22.3) because of the homogenuity of the condition
in the displacement variation 6U.

1 The cases for which this assumption has not been satisfied require a closer inspection.
This could, for instance, result from consideration of an arbitrary kinematically pos-
sible configuration U +v as a sample of a system of possible configurations U + u(w).
Here « is a parameter independent of the coordinates.
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Condition (22.4) requires that the second variation of the potential energy does not
become negative for any kinematically possible system of functions. As it appears
from its derivation condition (22.4) can for the time being only be appreciated as a
necessary condition for stability. The question how far it can at the same time be

considered as a sufficient condition will be investigated in Sec. 23.

For the analysis of the second variation,Trefftz | 7] writes the integrand of P2 [u]
as a difference between two homogenecous positive definite quadratic forms of its
arguments. P2 [u] is understood to be a homogeneous quadratic form in which all
arguments are the displacements u and their derivatives appearing in the integrand
of P[u] . In general, this separation shall be different at different points of the
body. If the corresponding integrals are denoted by T, [u] and T [u} , then it
follows that

= ! " = T Tz‘ lu]
P,[u} = Tz[ul - T3] = T4 [u] ] - )

The sign of the second variation is governed by the second factor so that the determina—

tion of this sign leads to the analysis of the minimum problem

T, o]
Ty ol

A = Min

Naturally, instead of this problem it is possible to consider the modified problem

T, [u] ]
W = Min -1,
Tt
Ty [u]
or when written in another form
P, u]
W= i :
Min T2 ] (22. 5)
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Here, for simplicity in notation, Tz[u] is written in the place of TE [ul . For this
problem let W be the solution which is obtained for the function u = u(l) . Then
it follows that P, [u] is positive definite if @, 1s positive; on the other hand, if wy
is negative P2 [u] posseses negative values. According to Trefftz, in the first case
equilibrium is stable, in the second case unstable. According to Trefftz the limiting

case w, = 0 corresponds to the stability limit. In that case no decision about

1
stability can yet be made because with P2 [u(l)] = ( nothing can yet be said about
the sign of the lefthandside of (22.2). By use of a kinematically possible but other-
wise arbitrary system of functions { and an arbitrary constant € , the minimum

condition for the functions u(l) can be expressed as

2 M N I
] * T

or

pzl[u(l) + Eg] - wsz[u(l) + eg] 0. (22. 6)

In general, for an integral Sm [u] whose integrand is a complete homogeneous function
of order m in the arguments u and their derivatives, the following expansion for

u = v + w holds

S [v + w] = Sm[v] + 8 [v,w] + 8 v,w] + ...+

m-1,1 m-2, 2[

+ 8 [v,w] + 8wl .

1,m-1 (22.7)

In this expression Sm 11[V,W] is the integral of all terms which are obtained through

-—n,
development of the integrand of Sm[ v + w] , and which is homogeneous of the nth

order in the functions v and their derivatives and homogeneous of the (m - n)th

order in the functions w and their derivatives. The integrals Spq and S __ are

ap
interchanged when v and w are interchanged. Besides, the following also holds
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m m
Sm_n,n[v,v] = Sn,m-n[‘“"'] = (m_n) s Vi = ( n) s,V . (22.8)

m m
in which (m _ n) = (n ) represents as usual a binomial coefficient. By use of

this notation and of the relation
1 )l - [ (1)]
leu wsz u
(22. 6) becomes

G{Pll[u(l)’g‘ - W, T lu(l),;-]} + ez{Pz[E] - wsz[E]} z 0.

1711
This relation can be satisfied for arbitrary values of ¢ only if u = u(l) and
w = wl satisfy the equation
Pu[u,g] - lel[u,gl = 0 . (22. 9)

If in addition the second derivatives of the functions are assumed to be continuous,
then it follows that (22.9) is equivalent to a system of differential equations and
boundary conditions for the functions u . This system can be derived in the same
manner as was described in Sec. 13. Because these equations and boundary conditions
are homogeneous and linear in the functions u and their derivatives, they possess, in
general, non-zero solutions for u (the so called eigenfunctions) only for special
values of  (the so called eigenvalues); these solutions contain an undetermined

constant. The smallest eigenvalue «, determines the stability.

1

23. FURTHER CONSIDERATION OF THE THEORY OF TREFFTZ

Two points in the theory of Trefftz as discussed in the foregoing section need further

consideration.

In the first place,it has been assumed that the minimum problem (22. 5) indeed possesses

a solution, which is by no means an established fact. On the other hand,it can be

25



established that the ratio P, [u} /T2[l_1] possesses a lower bound since, as it is the
difference between Té[u] / T‘é[u} and unity, it can never become smaller than - 1,
If this lower bound is denoted by d, then it follows that every kinematically possible
function u should satisfy the inequality

P, fu)
T[] * d.,

while for every arbitrarily small positive number e, it should be possibie to find
yet another kinematically possible function v, for which the inequality

P,[v}

= <d *+ e
T,

holds. However, the existence of 2 minimum Wy cannot yet be concluded from the
existence of a lower bound, since it is not certain that the lower bound will correspond
to a kinematically possible function. This difficulty in the energy criterion about the
existence of the minimum Wy is bypassed through the replacement of @, by the
lower bound d . Equilibrium is stable or unstable depending on whether d is posi-
tive or negative; in the limiting case d = 0 the second variation Pz[u] is at least
semi-positive definite, but further conclusions about the stability cannot be drawn

for the time being. The significance of this sharper formulation should not be over-
estimated. The practical application of the energy criterion would meet grave diffi-

culties if the bound d is not also equal to the minimum w Therefore, the application

| -
of the stability analysis is dependent on Trefftz's method whereby the existence of the
minimum wy has been assumed; in cases for which such a minimum is nonexistent,

the method is bound to fail.

The second point which demands a more extensive consideration concerns the use of
' 0 certainly
is not a sufficient condition was mentioned already in Sect. 22). For concerning

the criterion wy > 0 as a sufficient condition for stability (that w
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condition (22.4) it was remarked in Sect. 22 that this condition,on the basis of its
derivation,can only be acknowledged as a necessary condition for stability. The appli-
cation of the criterion wy > 0 which is based on (22. 4) then needs a further motiva-
tion. This motivation can be given without many difficulties as the partition of the
integrand Pz[u] in two positive definite homogeneous quadratic forms is carried out
in such a way that the positive definite integrand of T} [u] = Tz[u] contains all the
arguments appearing in the integrand of P[u] (22.1) (in addition derivatives of the

function u should be considered as separate arguments).

The Taylor expansion of the integrand F of Pfu] withrespect toits twelve arguments
u, and aui/axj which now for simplicity will be called yA( A=1,2,...,12) , can be

written as
12 12 9
= OF 1 8°F
F = Z(ay> y# + 9 z (a—__._y 5y ) yuyy + R , (23.1)
- f/0 = p- v jo
p= (ps V=1
whereby
12 12 2
_ oF _1 oF
F o = Z(W) oo Bl =g D (5y—ay) LY 352
o A e

are the integrands of Pl[u] and P2[u]' respectively, and

12

!
1 F
R= > 5 AL P %3, =
— Oy Oy dy H
(.us V,p)—l i Fa p y
A
12 12 3 12
= 1 9°F _
-2 52 (ay# ayvayr)a y, P | T¥y 2 BWu¥y - (#3-3)
(s ) =1 p=1 A (u, v )=1
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The indices 0, By ¥ attached to the derivatives of F with respect to its arguments
indicate that the derivatives are meant for the values 0 and 0 W (0 = 97\ = 1;
A =1,2,...,12) of these arguments. For an assessment of the magnitude of the

remainder (23. 3) the greatest absolute value A is considered. It can take the form

12
A= Z AV Yy (23. 4)
(1, v)=1
subject to the side condition
12
2 _

#=1

in which ')/7\(7\ =1,2,...,12) are positive constants. As the absolute values of the

quantities Yy o under the restriction (23.5), cannof become greater than \/'—y—l*_— , A
A

will satisfy the inequality

i2

1
A= ; A —
2 | uvl "'Y#'Yu
(n, v)=1

As A is at the same time the greatest absolute value which the quotient

12

z Auvy Yo
(u,y ¥)=1

12

z 2
Yu¥pu

pu=1
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can acquire without restriction (23.5), it foliows from here that

12 12 AL 12
= ’ pv Z 2
| R | Z A#V Y, ¥p | = 2 T YuVyu - (23.6)
(1, V)= (o=t HT Jp=

The positive definite integrand of G[u] and Tz[u] is given in the form

12
Glu] = z C#V Y, Y, (23.7)
(p, v)=1

The positive minimum C of (23.7) under the side condition (23.5) is at the same time
the minimum of the quotient1

12

z Cov ¥ Yo

(L, v)=1

12

Z 2
YuYu

p=1

without this restriction, so that

12 12
- 2
Gy = z Cop ¥ ¥,%C z V¥ - (23.8)
(lia v)=1 p=1

Combination of (23.6) and (23.8) leads to the inequality

12]A

Ing% z po | G [u] . (23. 9)
(w, =1 N Yy

LThe fact that C is positive is essentially based on the circumstance that the positive
definite integrand of Tolul possesses all the arguments which appear in the integrand
of Plu] (see Sect. 22).
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The absolute value of the coefficient A pp can be made arbitrary small if the quan-
tities ¥y, are chosen sufficiently small (see 23.3). Consequently, it is always
possible to choose the quantifies g and h, introduced in Sect. 21, go small that

from the inequalities for the arguments Yy

ou,
Iyl <8, ax; <h
it follows that
1 § 1 Al
° (1, V=1 3L

in which c¢ 1is an arbitrarily small positive constant. It follows from (23.9) that
R| £ cG[u] . (23.10)
This inequality for the remainder of the integrand of Pfu] leads to

Plu] 2 P, u] + P, fu] — cT, [u] .

If in addition use is made of (22.3) and of the inequality

then it is found that
Plu 2 w — T, . (23.11)

Finally, it follows from (23.11) that the condition wy > 0 is indeed a sufficient condi-
tion for stability since ¢ can be made arbitrarily small by the choice of sufficiently

small values for g and h.

The proof given here is based on the assumption that the integrand of Tz[u] is posi-
tive definite. This assumption is unnecessarily restrictive. For, an integrand of

T; fu] which is not necessarily definite, but whose integral should of course be definite, a
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positive solution wi‘ of the minimum problem (22.5) is already sufficient for stability

provided that (22. 5) possesses also a solution for an integral Tz[u] whose integrand
is definite. That the latter solution also is positive follows easily from the assumption
of the opposite. If it were zero or negative, Pz{u] for the corresponding function and

1

tive respectively, which is in contradiction with the assumption mT > 0. This greater

consequently also the solution w¥* of (22.5) belonging to Tg[u] should be zero or nega-
freedom in the choice of Tz[u] is useful for applications.
24. THE STABILITY LIMIT

At the stability limit,the solution of the minimum problem (22.5) is Wy = 0. In this

case,the integral P, fu] will become zero at least for the vector function u(l), 50
that (22. 2) is not immediately satisfied by all functions u. Before entering upon the
derivation of the criteria which govern stability in this case, it is important to know

whether the integral Pz[u] can also become zero for functions other than u(l).

- For investigation of this question, it is remarked in the first place that for every

kinematically possible vector function u can be written [29]
u = auV + g with T,y ®), @] = o, (24.1)
in which a represents a constant. For, it follows from the identity

T, [0, 8] = 1y, [4®, u-au®] =, [u®, - ary [, ],

that the condition
Tll[u(l), il= o (4. 2)

is satisfied provided that the constant g is determined by

'I‘11 Iu(l), ul

Tll[u(l)’ u]m E‘Tll [u(l), u(l)] = 0ora = W
gl
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Next, the integral P2 [u] is written as
: 1 - 2 1 1) - -
Fylu = P, [éu( . “] = ab [“( )] T ek [“( g “] + By [a].

the first term of this development is identically zero; with use of (22.9) for u = u(l),

w= w. , {=1u, anduse of (24.2), the second term can be written as

1
aP [u(l), i = e, Tu[“(l)’ ﬁ] - o,
80 that
P, [u] = P, [gu(l) +a = p, [a] (24. 3)
remains.

Consequently, the integral Pz[u] can only become zero if it is zero for a vector func-
tion u that satisfies (24.2). In order to investigate whether the integral Pz[ﬁ] can

indeed become zero under the condition (24.2), the following problem will be considered

_ . Pyl e« . @)
& = Min Tg[u] under the side condition Tll[u s u] =0 . {24. 4)
Let u= u(z) be the function for which this minimum Wy has been established. 1
Then, for every function 7 satisfying
1) ] -
T11[u ,n| = o, (24. 5)
and for an arbitrary constant €, it follows that
p[u® s en) p[u®)
(4)2 or

T [u(z)'i" En] Tz[u(z)] )

Pz[u(z) + En] - szz[u(z) + E’fﬂ z 0,

From this it follows in a manner analogous to the-derivation leading to (22. 6},

Pu[ @) ] ‘”2T11[ (2),11] = 9. 24. 6)

Just as for the analysis of P, [u] in Sect. 22, the existence of a solution will be
assumed here and in all the followmg minimum problems.
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This equation is derived under the restriction (24.5) for the functions n . Yet, itis
also valid for functions { which are not restricted by (24.5). In order to show this,

an arbitrary function ¢ is written as
= w? + 1 with Tll[u(l) ,n] =0.

The possibility of this decomposition has already been explained. After replacement
of the veetor function n by a vector function ¢ = tu(l) + n , the left hand side of
(24. 6) becomes

P11[“(2) ’ ‘:] } “’zTn[“‘(Z) ’ é:] -t {P11I”(2) ’ “m] - 0J2T11[“(2) ‘ “(1)” *

" Pll.[u(Z) ’ ”] - szll[”(Z) ’“1
Here

Tll[u(l) : “(2)] - T11[“(2) ’ “(li] 0.

!

on account of the side condition (24.4). After application of (22.9) for u = u(l) .

w = @ and ¢ = u(z) , it follows from this condition that
(2) (1)] -
Pll[u , U 0

By use of these relations and of (24.6) it follows that u = u(l) and w = W, satisfy
(22. 9)

P].l[u ,é'] - (JJTll[u :g] =0 H

1)

so that the solution of the problem (24.4), as well as u , appear to be an eigen-
function of (22.9).
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Since the set of admissible functions u is more restricted for the problem (24.4)
than for the problem (22. 5), Wy = wy should always hold. If Wy _becon}\es positive
at the stability limit for which @, = 0, the investigation of sz:uj/ Tzru_‘, can be
abandoned because in that case Pz{'u] cannot become zero for functiorns other than
u(l) ; neither is the knowledge of the functions u(z) necessary inthat case. However, ifalgo
@, = 0, then the question arises if Pz[u] can also become zero for functions other
than u(l) and u(z) - In the same manner as is described above it can be shown that

this can only be the case if Pz[u] can be zero under the side conditions

Tll[u(l) . u-l =0, Tll[u(z) . u] =0

The posed question will in that case be answered by the solution of the problem

Pylu]
w = Min R under the side conditions
A

TlIEJ.(l) , u] =0 ; Tlll:u(z), u]= 0. (24.7)

On the same manner as is described in the above, it is proved that the function u(3) ,
for which the minimum co3 of (24.7) is obtained, is an eigensolution of equation (22. 9)
belonging to the eigenvalue o 3 - The analysis of the. minima

@ = Min under the side condition
o)

T u(j),u]=0(j 1,2, ....h - 1) (24.8)

should be continued until a positive minimum wp has been found.

The eigenvectors u(l) s u(z) ... all contain a constant still undetermined factor
since they are the solutions of the homogeneous equation (22.9). The conditions (24. 8)
do not determine this factor. It is assumed that this factor is available, for instance

by enforcement of a normalization condition of the form
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Tz[u(h)] =C , (24.9)
in which C is a positive constant. It follows from (24. 8) that

Pz[u(h)] R (24.10)
Further, from relation

Tll[u(h) , u(k)] =0 for h#k (24.11)

and by application of (22.9) for u = u(h) , W = Qh and ¢ = u(k) , it follows that

Pll[u(h) , u(k)] =0 for h # k . (24.12)

In some cases, the complete set of eigenfunctions belonging to Eq. (22.9) and to the
minimum problem (24.8) respectively, can easily be determined. Although not neces-
sary, the knowledgé of all eigenfunctions can be of advantage for the execution of the
calculations. For this purpose, the set should be complete and such that an arbitrary

kinematically possible vector function f can be developed in terms of the eigenvectors

e u® (24.13)

=

li MS

whereby the operations carried out on f may be applied to each term of the series

separately.

In general, the eigenvalues Wy and the eigenvectors u(h) depend on the form which
was chosen for the integrand of Tz[u] . However, if an eigenvalue zero has been
found, then also for other forms of the integrand of Tz[u] the eigenvalue zero will be
found as well as corresponding eigenfunctions. (See also Sect. 23). The correctness
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of this assertion follows immediately from the variational equation (22.9), which for

an eigenvalue wp = 0 transforms into the form
Pll[u,g] =9 (24.14)

which is independent of T2[u] . This equation is identical with the equation for neutral

equilibrium as derived by Kappus [10]
6P2[u] =0 ;

consequently, equilibrium is neutral in the sense of Southwell and Biezeno-Hencky as
soon as at least one eigenvalue wh is equal to zero. Conversely, the existence of a
solution of (24.14) results into at least one eigenvalue wy equal to zero. It is generally
true that if n eigenvalues wy, are zero, equation (24.14) will possess n independent
solutions. Conversely, it follows from the existence of n linearly independent
solutions of (24.14) that n eigenvalues are zero. As a proof of this, it is noticed

that the n solutions of (24.14) are also n solutions of (22.9) for the case that w = 0 .
By means of linear combination, n new linearly independent solutions of (22.9) can be
constructed which solutions also belong to W= 0 . The solutions last mentioned can

always be chosen in such a way that they satisfy
i ®] _ .
Tll[u , u 0, i#h

so that they can be identified with the n eigenfunctions u(l) . 1 = 1,2,...,n which

correspond to the n eigenvalues

For details of this so called orthogonalization process see [48] .
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25. STABILITY AT THE STABILITY LIMIT

This .section concerns the investigation of the stability at the stability 1inﬁt. At first
it is assumed that cuz is positive; how the following considerations must be changed

in the case that mz is zero will be shown in Sect. 27.

A set of necessary conditions for stability can immediately be derived from (22.2}).

Because of P2[u(1)] = 0 , for sufficiently small absolute values of
a3P3[u(1)] + 044P4[u(1)] +...2 0,
should hold, which can only be satisfied with
Pa[u(l)] -0 P4[u(l)] >0, 25.1)

and if in the last relation the equality sign holds, with

P5E1(1)] =0 ; PGEl(l)] 2 0 , and soon

It already appears from (25.1) that equilibrium at the stability limit shall "in general”
be unstable.

For the derivation of necessary and sufficient conditions of stability, in agreement

with (24.1), an arbitrary kinematically possible vector function is put equal to

u=a + G with Tll[u(l) , ﬁ] =N

For stability is required that two positive constants g and h exigt such that

(22.1)
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Plu] = PlauD) + a] = P [aul®) + ﬁ] +

+ Pfau® + 7] + B fau® - )+ ..z o 5. 2)
follows from the inequalities
Bui
]uil < g, %, < h . (22.17

Instead of this, it can be required that there-should exist three positive constants A,
g and h such that (25.2) follows from the inequalities

u.
81

89X,
]

g <a, [5]< .

<h . (25.2"

That this modified condition is a necessary condition follows immediately from the fact
that (22.1") results from (25.2').

That it is also a sufficient condition follows if it is shown that in reverse (25.2"

follows from (22.1'). From the relation

_ Tll[u(l) » 4

2T, u))

a

it follows that a is bounded if u and its derivatives are bounded; the same holds true for
u and its derivatives because

3 - @

u =u - au
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Evaluation of the integrals in (25. 2) by use of the symbols introduced in (22. 7) yields

Plul = ap [uM] + P [3) + 2P, () « ap, 'V, 5 +
+ Pz[ﬁ] + gSPS[u(l)] + gzpzl[u(l), u] + §P12[u(1), a] +

(1)

+ P3[ﬁ] + g4P4[u(1)] + e_a,3P31[u(1), u] + gzi’zz[u ,u] +

() - ,
+ §P13[u ,u] + P4[u] + ...,
or somewhat differently arranged

Plu] = g,Pl[u(l)] + §2P2[u(1‘h + _a__3P3[u(1)] + g4P4[u(1)] + oL+
+ pytal + e [ @)« a%p, w6+ % @ a4+
+ Pyl + 2P ™, ) + gz_Pzzlu‘l’, al + ...+ Plal +

+ 2_1P13[u(1), G +...+ PIa) + ... (25. 3)

In these expressions,the integrands of the terms following after Pz{ﬁ] are either of
the second order in U and contain in that case one or more factors a, or they are
of higher order in U and its derivatives. It is,therefore, to be expected that these
terms are of minor significance in comparison to Pz[ﬁ] . To prove this supposition,
again the Taylor expansion of the integrand F of P[u] with respect to its arguments
will be considered. When, for brevity, these arguments are denoted by

- (1) = -
yA = gyl + y;\(?\ 1, 2, ... 12),
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this expansion can be written

12
q OF _
Flu] = Fé_lu(l) + ul = (F) + ( ) +
] ay, ) 21 5y, Jan
12
S 1 (0% _—
2 \0y, 9y, ) 7045
{H,v) =1 ay,
2
1 [ 8% . i
- z -g(ayﬂayvayp) (1) YMYVYP s (Oé 67\‘§ 1) f
(“: Y, 9)21 + Bhyl

Just as in Sect. 23, the indices of the derivatives of F- indicate with respect to which
argument these derivatives are taken. The coefficients of the second order terms in

V), can once more be expanded in a Taylor series with respect to a

8% o’r \ , ,la (_&F
OY,.0¥y ayy (1) Oyudyy /), = (dz \Oyudy 9-37;\(1)

2 12
p:

so that the expansion of F can also be written in the form

12

Pl v w) = @y, @ Z((%"—> W Tt
g1 M ays,
12 82
1 F - = =
) e e
(1, v)=1 0
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in which

12 12
PRE Z (ay ayay) T

(4, v)=1 fay
12 63 12 o
2 (ay oy, ay) M, 75 i ¥ Z Ay, - (25.5)
=1 )\, }LyA (“’ V)=1

By a mutual comparison of the order of the functions u and their derivatives, the

contributions in (25.4)

12

1) oF =
gy, 2nd Z( ) @ 7

p=1 iy
can be identified as the integrands of

aP, [u(l)] + §.2P2 [u(l)] + g3P3 [u(l)] + aP u(l)] + . ... and

P A + 2P, L G o+ g2P21 w5 + g3P31 L

in (25.3) respectively. By comparison to (23.2),it appears that

12

2
1/ 8% \ - . _. .-
Z 2 (ay’u ayv)e WY =Tl

(1, v)=1

is the integrand of Pz[ﬁ] in (25.3). Consequently, the remainder R must be equal

to the integrand of the remaining part of (25.3)

ap, w®, @ +a%p,, wMa ¢ s E ¢ oaP, ), q +

+....+P4[u]+...
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The coefficients K.u,y can be made arbitrarily small by the choice of sufficiently
small values for A, g and h (the bounds of the absolute values of a, ﬁi and
_?1_11_) Hence it can be shown in exactly the same way as in Sect. 23, that for an
0X;
]
arbitrarily small positive constant 8 the remainder must satisfy
®’l = pc @,

in which G[u] stands for the integrand of Tz[ﬁ] . For the integrals in that case it
follows that

|§P12 [u(l), il + a“Pp, [u(l), ] +.. ..+ P, (u] * aP g [u(l), a o+
oo+ P v L.l |s g1

o [u].

Asg
P2 [u] 2 a)sz [u]

and with Wg > 0 another arbitrarily small positive constant y = B/cu2 can be
defined such that

2Py, D, @+ oy @+ e B+ oap, ), )
SEIRIRIREE I - (1 O ]5 yP, [d] . (25.6)

Inequality {25.6) gives the confirmation of and exact formulation of the conjecture
stated earlier, that the terms following P2 [u] in (25.3) are only of minor importance.

In (25.3) several simplifications can yet be introduced. Due to (22. 3)
y - 51 =
P ™ =P [a =o0
and as w; = 0 (see (22.5)) it follows that

P, M = o.
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After use of the side condition for the functions u it follows from (22.9)

Py [u(l}, u] = o T, [u(l), a] = o,

while in (25.1), the requirement already was imposed that

P, [u(l)] = 0.

With these simplifications and with use of (25.6) for Plu)], the following inequalities
hold

Pl = a'p, M) ..+ 2Pp ) a + B, @, @

T tA-M P, ], (25.7)
Plj = a'p, M) 4. ..+ a’p, ), a + 2%p @, a0l

... (@1 +Y) Pz[ﬁ] . (25. 8)

For the derivation from (25.7) and (25.8) of the necessary and sufficient conditions for
stability, the minimum will be determined of the expression

a®py M, @ + P M, A +. L+ e, [ (25.9)

Here, a isa constant and due consideration must be given to the side condition

M g =

Ty ™, ; (25.10)

whereas « is a positive constant which replaces 1 - v in (25.7)and 1 + ¥
in (25. 8).

Let u = (‘_p be the vector function for which the minimum is obtained. Then, with an

arbitrary kinematically possible vector function 7n which satisfies

T, ™, = o, (25.11)
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and an arbitrary constant € the inequality

2 1)y - 3 1y =
a"Py, fu ) Frem] + §P3l[u( ), Pren] +.. ..+

2 ® 3z 3

. = 1) - -
+aP2[<p+€n]ge_1P21-[u , P +§P31[|1 ,‘P].+----+aP2[§0ls

should be satisfied. After development of the left hand side

2 1
€ §P21[u( n] +a

3 1 - 2
Py ), 0 +.... vaPy, [3,0)| + @B [iz0 .

This inequality can only be satisfied for arbitrary values of ¢, if for every function
1, u= o satisfies
9 _

P, u® )+ 2%y, ), g +... e Gl = 0.  (25.12)

However, this condition is also sufficient as P, [mlzo0.

Due to the restriction (25.11) for the functions 7, (25.12) is not yet equivalent to a
system of differential equations and boundary conditions of the functions u. In order
to obtain this equivalence, the left hand side of (25.12) is calculated by means of a
replacement of the functions 7 by the kinematically possible functions ¢ not sub-
jected to the restriction (25.11}. For these latter functions it can again be stated that

11
2T, [u(l)]

T, ™, ]
{= tu(l) +n with T11 [u(l),nj =Q0and t = =7

Substitution in the left hand side of (25.12) yields after some development

%ZPZI ), g + §3P31 ), g] +... ap, . [i, ¢
=t I 92P21 {u(l), u(l)] + §.3P31 [u(l), u-(l)] ot 0Py [, u(l)] +
+ 8%, ), gl + 2%y, wh, 0] +.... +ep [G ] . (25.13)
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In agreement with (22.8) the following identities exist
L )y - (1) O M, = 1)
Py [, ) 3P [ut] , Pg [ut, ut] = 4P, [u"] ete.

Application of (22.9) for u =u(1), W= wl and £ =u yields with use of (25.10)

Yet, if use is made also of {25.12), it follows from (25.13) that

§2P21[u(1), r]+ a3P31[u(1), (] +.... + aP

A

-1 3g2P3[u(1)] + 4§3P4[u(1)] +...0 =0,

or after elimination of the value t and use of (25.1)

azP

e 3p. [u®

, L1 +§P31[u , Ll+.... +

4%3134[11(1)] . T [ (1) é} + ap
- . u'’,
2T, [ | 11

G 2= 0. (25.14)

From equation (25.14) a system of differential equations and boundary conditions can
be derived in the same manner as the equations of motion could be derived from Hamil-
ton's principle in Sect., 13. These equations, together with condition (25.10), possess
at most one solution. For, if ¢' and ¢" were two different solutions, (25.10) and

(25.14) would both be satisfied by ¢' as well as by ¢'". Subtraction then yields the
relations

|
o
-

Pil¢' £1= Py le" 1= Ple' —¢", £]=

n
=
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from which with (22.8) and = ¢' - ¢" it should follow that
P ¢~ ¢"]=0amd T, [u®, ¢r—gn] =g
2 11 ’ ’

which contradicts the assumption w, > 0 (see (24.4)). That the solution of equations

(25.14) and (25.10) indeed determine a minimum was already stated above.

Equations (25.14) and (25.10) are linear in the unknown functions i, so that its solu-
tion can be writien in the form

7= 1 @%@ + %0 4, 25.15)

in which 90(2), ¢(3) etc. are the solutions of the equations

p, (u, £] +.... + P[E, £ 1= 0;
T, M, 3= 0. (25.16)
(1)
4P, [u'’]
) 4 ) .
P [u_ ,gl_ T Eu- a§]+P [usgj_o;
31 o7, @] 1 11
T, (a®, 3] = 0. 25.17)

The functions 4’(2), ‘9(3), ete. are independent of a, so that there is always a possi-
bility to choose the constant A so small that the inequality |a] < A leads to the
inequalities |¢i| < g- and l%-}‘—?{_l.—l < h; with this it has been proved that the func-
tions ¢ also belong to the class Jof functions @ which are admitted for the analysis
of Plu].

The calculation of the minimum of (25.9) can still be simplified if use is made of
(25.14) for ¢ =@

a’Py (e, 31+ 2%y (w®), G1e... = - ap 15, 71=-20p,(3],
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so that the desired minimum is

1

_ 2 1
—aPz[w] =E @)

a Py, [u, o]+ ggPSI[um, @] +] .

By use of (25.15) this expression can be written as

— asz [®] = - Ci-’.P2 [&1— @2?(2) + §390(3) +... )] =

2*p 1o®) + 2’ 10, o@) 4 a® @ 10®, 0@ 4

+ p2[¢(3)]) T (25.18)

Substitution of the minimum (25.18) in the inequalities (25.7) and (25. 8) yields

4

Pluj = a* | P, (M) - 1 P2[¢(2)]) +

ca ) - p s

pyy15%), 0@ J *o..(25.19)

. . 4 1 1 2
Min P [u] (with 2 = const.) Sa P4[u( )} Y lefP( ) l +
5 ,_ 1 @) _{3) .
ta | Pglut) T+y Pigle e 11 +....(25.20)
Here 1 +7% and 1-Y has been reintroduced for the parameter « .
If, for brevity
1), _ @), o
P4 fu* P2[¢ ] A4’ (25.21)
then it follows: at the stability limit equilibrium is
stable, if A4 >0
unstable, if A4 <0 (25:22)
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If the first condition is satisfied, there is always a’ possibility to choose 7 so small

that at the same time with A 4

p,u®] - 2 p, (0%

4
is also positive. One the other hand, it A 4 ig negative, 7Y can be chosen so small
that

1

2
iy Pale®)]

P, @) -

is also negative. Only the limit case with A 4 equal to zero does this expression
fail to give a decision about stability. In general, the solution u = (‘0(2) of (25.16)
is also dependent on the form which has been chosen for the integrand of T2 ful.

That A 4 the factor which determines stability is not influenced by this, follows
from comparison of the solutions u and u' corresponding to the integrals of the

different forms Tz[u] and T'zlu] . Subtraction of the equations (25.16) governing

both solutions yields
P, [E-T,8]1=0, (25.23)

from which it can be concluded that

i-qa = e, | (25.24)

where c¢. is an arbitrary constant. If (25.23) also possessed a solution a-u' dif-

ferent from (25.24), then it would again be possible to state

i-a = tw® + T with Tll[u(l),.ﬁ] =0,
from which it follows that (see 24.14)

Pll[ﬁ, £]1=0, T u®, @ =0,
Then, for ¢ = U it would hold that

p,, (G, 1= 2P,[] = 0, Tll[u(l), I1=0,
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which contradicts the assumption that w 9 > 0. With (25.24) it finally follows that

A, — A =— P, + Pz[ﬁ—cu(l)] =

I

— P, ]+ Pl ~ oPy,ld, @+ czpz[um] =9,

1t is noticed also that for the caleulation of (9(2) and A 4 Douse is made of the as-
sumption that the integrand of T2 [u] is positive definite. Consequently the same
result will be obtained for A 4 if this assumption has not been made provided that the
integral of Tz[u] is still positive definite. This greater freedom in the choice of

T2 u] shall be of use for the application of the theory (see Sect. 23).

26. APPLICATION OF THE CRITERION (25.22)

For the application of the criterion (25.22) only the knowledge of the functions 90(2) is
required, so that only the system of differential equations and boundary conditions re-
sulting from (25.16) must be solved. The differential equations and boundary conditions

again can be derived from (25.16) in a manner analogous to that described in Sect. 13.

When the complete system of eigenfunctions u(h) is known, this solution can most

(2)

simply be carried out by expansion of @ as well as ¢ in series of these eigen-

functions. In this way, the derivation of the differential equations and boundary condi-

tions will not be needed
o

o& = z o u®, ¢ = Z g u® . 26.1)
h=1 h=1

The second relation (25.16) yiélds after use of (24.11)

T'11 _[u(l), z c, u(h)] = 2¢y T, [u(l)] =0ore =0,
h=1
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while the first equation (25.16) becomes

@y Py (u®, Z E 4 o Py 1 0P =0,
h=1 h=1 k=1

or with use of (24.10) and (24.12)
N SR )
ZthZI[u cu®™y o+ 2d, @, C = 0.
h=1 h=1

The latter equation can only be satisfied for arbitrary values of - dh if, for hz 2

Cp T~ -zw_th P21[u(1), u(h)] . (26.2)

The condition for h =1 is already satisfied because

P21 [u(l), u(l)] = 3P3 [u(l)} = 0 and w = 0.

For A4 it is found that (see (25.21))

A, =2, u®)- p Z o u®| =

= P4[u(1)]— z ch2 Pz[u(h)] - z ¢, ¢) Pll-[u(h), B 26.3)
h=1 h#=k

the last sum should be calculated for all combinations of h and k such that h # k.
With use of (24.10), (24.12) and (26.2) the result is

21

had 2
A, = p, ) - A z = (w1, u‘h)]| . (26. 4)
h=2

“h
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However, this consideration has more than a formal significance only if the possibility
of the series expansion and the admissibility of the operations applied on these series
has been established.

- In many cases, the system of eigenfunctions is not completely known and an exact solu-
tion also in a different manner, will appear to be impossible. An approximate solution
at least must be possible for such cases since (25.15) represents the solution of the
minimum problem (25.9). If (25.9), after substitution of (25.15), is expanded and re-
arranged according to increasing powers of a (this expansion starts with the fourth
power of a ), then the function ¢ @) .determined by (25.16) appears also to be the

solution of the minimum problem

Poy [u(l), uj + Pz[ﬁ] = minimum under the side condition
, 4] = 0. (26. 5)

In that case it is obvious that an approximate solution of problem (26.5) can be found
for instance, by means of Ritz's method [30]. It is inherent in this method that the ap-
‘proximation of the minimum of (26.5) thus found is greater than the exact minimum.
For the exact solution, it follows from (25.16) for § = fP(z) that

P, (v, 0@+ 2, 10®) = —p,[0®) (26.6)

Hence the approximate minimum of (26.5) is at the same time an approximation (too

large) for -Pz[rp(z)] . The expression

p, u™y + b, ), a1 + pyral, 26.7)

in which 4 is the approximate solution of (26.5), then also yields a too great,

approximate, value of A 4 Therefore, stability will always be overestimated by use
of (26.7) instead of (25.21). If, in a certain case, the expression (26.7) would turn
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out to be negative, i.e.,according to the approximation equilibrium would be unstable,
then equilibrium will certainly be unstable in reality. In reverse, a positive value of

(26.7) does not always imply that equilibrium is stable.
27. SPECIAL CASES

In the foregoing, stability at the stability limit was analysed under the assumption
that the solution Wy of the problem (24.4) is positive. Along with this, as necessary
conditions for stability were found to be that (see (25.1), (25.22) and (26.6))

_ 1)
A3 = P3[u ]

0 ;5 4, = P - 2 1,#) -

= p, ) + le[u(l) ,o®y+ pe®rz0 . @r

4l

which conditions are at the same time sufficient if in the second condition the upper
sign holds. It has yet to be investigated which additions to these conditions will be

needed if A4 = 0 or wz =0,

27.1 The Case A4 = 0

For the analysis of this special case the assumption w, > 0 will be maintained.

According to the considerations of Sect. 25

u = .—311(1) + u with Tll[u

Thus by use of (25.16), the functions u presently are written

i = a%0® + T with T, T =0 . @1.2)

Introduction of (27.2) in (25. 3) yields after some reduction
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5

pa] = 2° [P ™ + By ® 0@ 2 @ o) ] +

+ a8 {p M) + P ®, e®) s @ e @ 4 p @) ‘,+
to.. .+ 5_13 psl[uﬂ) ]+ Plll[u(l) ,© (2? , T \+
+.94 P4l[u(1) , u] + P211[u(1) 02 F] o+ le[qa(z) , ul l +

oo+ pofal + ap e® L F w2 e, T p 0?3

]
St g et
+

= ]_ = =
.+ P + §P13[u( VLR e P @7.3)
in which use has been made of the identities

p ) = pe®] = p ) =o, P2[u(1)] =0, P3[u(l)] =0,

A, = p ™ + le[u(l) , 9 + P2[¢(2)] =0,

as well as of the equation (25.16) which also holds for £ = u ..The integrals
belonging to {:he development of Pmn[u(l) ,u] for ¥ = ¥ + w are written as
m,n-q,q[u( ),ﬁ, W] analogous to the manner described in {22.8). The integrands
of these integrals are homogeneous functions of the order n -~ g in v and its
derivatives and of the order ¢ in w and its derivatives. Again, expression (27.3)
possesses a minimum for u = 0 if and only if it is possible to find a set of positive

guantities A, E and 1_—{ such that from the inequalities

lal < A, lﬁil<_|§|, z:ji < 7. 4)

=il
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it follows that
Plul 2 0

A set of necessary conditions may immediately be derived by the specilization

2 =0. As all integrals depending on u then become zero it follows that

A = P5[u(1)1 + by ®, 0@ 4 Plz[u(l) e =0, @1.5)

PB[u(l)] + P41[u(1) o3 4 Pzz[u(” ,o® 4+ P3[<P(2)] 20 . (27.6)

Since the positive definite integrand of T2[u] can again be assumed to be of the form
(23. 7}, it can be shown in exactly the same manner as in Sect, 25, that it is possible
to choose the quantities A, E and h so small that it follows from inequalities (27.4)
that the terms after P2 [l satisfy

M = + 2

"i‘Plzlu(l) , 5] + a? {P ca1 " Pz

99U , ﬁl}+.... + P3[ﬁ] +

+ Eplsiu(l) ,u] f.... P4[ﬁ] + ... |§']/P2[ﬁ} ’ 27.7)

Here v is an arbitrarily small positive constant. By use of (27.5) and (27.7) the
following inequalities follow for P[u]

Plu] = a° IPGIu(“] + 2, @ p w® o pe) |+
S 33 |P31[u(1) , -1;1] + Plll[u(l) s (9(2) , ﬁ] I +
+ ot [Py® 8+ py @ 0@ T by 6@, 51

...+ (@1 - y)Pz[ﬁ] , (27.8)
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Plaj = 2° | Pgla®) + 2 w®, 0@ ¢ p @ 6@y . ple@) |+

L+ §3|P31[u‘1) , 1]+ Plll[u(l) Le@ A |+
+at [Py e® 81+ By 0@, 0@ 5 v p, (0@ @ 4
...+ (1 +'Y)P2[1=1] . (27.9)

For the derivation fro.fn (27.8) and (27.9) of stability requirements sharper than the
already established conditions (27.5) and (27.6), the minimum of the following expres-
sion will,as was done in Sect. 25, be determined

2 |‘p31iu‘1) IR SN CUUNIONE T
+ a2t l P41[u(1) , a] + qu{u(l) A PZIIrP(Z) ,ul |+
+... O:le'ﬁ} (€ >0 , (27.10)
with due consideration of the side condition
Tll[u(l) L3l =0 27.11)

and with a considered a constant. Asinthe derivations in Sect. 25 it is shown that
the function © = 9, for which the minimum of (27.10) has been obtained, can be

written in the form

?=1@%® L Oy, (27.12)

in which t/f(3) . 111(4) etc. are the solutions of the equations
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p 2]+ 2 p® 0@ g

1110

e, [ + 22, M o)

T, fu , €] + P [U,E] =0 ;
. 2T2[u(1)] 11 11
T, ® 3 =0 ; (27.13)
P41[u(1) L]+ lelfu(]‘) L2 P21[qo(2) 8+
(1) 1) ,2) 1) ¢(2)
i SP[u™’] + 8Py [u™ @] + P [u™’, ? ]T @ .
2T2[u(.1)] 11
+ P lE, e =05 T, p®, T1=0, @7.14)
etc.
By use of the identity (26.6)
ap WYy + 22, M @) < 4‘JP4[ﬁ(l)] - pz[q:(z)}' = 4A, =0 .
Hence the set of equations (27. 13) can be simplified to
P ul e+ P ® 6@ e e s0 s T n® T =0
(27.15)

Also, the minimum of (27.10) is determined in the same manner as described in
Sect, 25, It is found that

- ap,[7)= - 1| Lo @)+ oTp W, 0@ .
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so that finally from (27.8) and (27.9) it follows that

Pla) 2 2° |Bg®) + 2 [u® o@7 4 Pyl 0 @] 4 p o) 4

- iYPZW(S)}} + §7‘ L (27.16)

Min P [u] (with a = const.) = a® ‘pG[u(l)] + P, [ 0@ |

+ P22[u(1) 2@ 4 Ps[rp(z)] - —i—LWP [211(3)]‘ " +al I
| 27.17)
If, for brevity
Plu™) + Py ™, 0@+ p ™ 6B 4 p @) p g8l - Ag
(27.18)

then it follows, again analogous to the derivations in Sect. 25, that equilibrium is stable
or unstable depending on whether A6 ig positive or negative. Only if AG = ( does the
form (27.18) fails to yield a final decision about stability. In that case the investigation

must be continued; this can be done by the introduction of
3= 2@ + § witn Tll{u(l) ,ul=0

Then, the analysis proceeds further analogous to the foregoing.
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27.2 The Case of w2 =

For the analysis of this special case it will, for the moment, be assumed that W, is
positive. If one writes u(z) = v(l) in behalf of a more symmetrical notation then for

an arbitrary kinematically adrhissible function u, it is possible to set

u = au(l) + bv (1) + U with T

a o8 =1 v® al =0, e

in a manner analogous to (24.1). The possibility of this separation again can be shown
by calculation of the constants a and b . Substitution of (27.19) in (22.1) with
Pl[u] = 0 yields

1)

Pla] = Pylau™ + by v ay + pya® 4 @ 4G s

1)

+ P4[§u( 1 Ik T (27.20)

In general, for an integral Sm[z} the following expansion holds for z = u+ v + w

S fu+v+w = Z S, gy (W Vs W] (27.21)
Q+B+Y=m

where the integrand of S [z] is an homogeneous and complete function of the order m

in the argument functions z and their derivatives.

S a, ﬁ;y[u’ v, wl is the integral of all terms which arise from the development of the
integrand of Sm [u + v +w] and they are homogeneous, of the order @, and Y

in the functions u, v, w and their derivatives respectively. For brevity the following.
notations are used

So, 8y [0 vy W] = Sgylv> Wl ; 8 [u, v, w] = 8_ [w]

0,0,m
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(03] B » ) 1) o ? )

hold together with the relations corresponding to (22.8)

o + B o + [3 + )y m!
SO!,,B,'Y [u, u, u] = 3 y Sa+B+.],[u] = Wsm[u] .

By use of (27.21), (27.20) can be written

Plal = 2%, @]+ a%op, @, vO] 4 ap?p @, () 4
3

+ gb Pls[u(l) . v(l)]+ b4P4[v(1)] + ... F g,szl[u(l) ,ul] +

aanl[u(l) , v Gl + vlp

+

v, @+ e @ @ 4

aszzu[u(l). . vt , u] + g.bzP

+

N L B R S LI

+ ..+ Pz[ﬁ] + gPlz[u(l) , u] + bPlz[v(l) , u] + §2P22[u(1) , u] +
+ a_lellz[u(l) . v , U] + b2P22[V(1) ETY I S P3[ﬁ] +
+aP ™, @) e pp v® G e gE] 27.22)
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In this expression (24.10) and (24.12) have already been utilized for the eigenfunctions
u(l) and v(l) as well as the relations below which from (22.9) and (27.19)

P [u(l) [V(l) ,ul =0

Lt a = wlTll[u(l) al =0, Pll[v(l) 1]

= w,Tyy

I

Expression (27.22) again possesses a minimum for u = 0 if and only if it is possible to

find a set of positive quantities A, B, g and h such that from the inequalities

laj< A, bl<B, [U<g, |57 |<t (27.23)

it follows that
Pfu] z 0

A set of necessary conditions may be derived immediately by the specialization U = 0
As all integrals depending on T become zero, for all values of a and b the

relation

3 1 2 1 1 2 1 1 3 1

a P3[u( )] + 2 bP21[u( ) . V( )] + @.b Plz[u( ) , V( )] + b P3[V( )] = 0 ,
should hold. It follows that

p M) = le{u(l) vy = Plz[u(l) M) = v =0 @rag

In addition the following inequality should be satisfied for all values of 2 and b

g4P4[u(1)] . E]'3101,31_[11(1) R R X PL B

+ ab°p ™, v e e vy 20 (27.25)
Since the integrand of "J."2 [u] again can be assumed to be of the form (23.7), it may be
shown in the same way as in Sect. 25, that it is possible to choose the quantities A ,
B, g and h so small that from inequalities (27.23), for the terms following Pz[ﬁ]
in {27.22) it follows that
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|aP12{ (]‘ , u] + bP [ (1) u] + 3,21322[11(1) ’ ﬁ] + ... + Ps[ﬁ] +

+ap P al + e El e s YR,[El .  (27.26)

in which v is an arbitrarily small positive constant. By use of (27.24) and (27.26)
for P[u], the following inequalities are established

Plu] =2 9.4]?4[11(1)] + §3bP31[u(1) s v(l)] + aZbZP [u(l) . v(l)] +

- 22
+ §b3P13[u(l) , v 4 b4P‘4[v(1)] + ... *a P21[u(1) Tl o+
* abPllllu(l) v uj + bngl[v(l-) , 4] + a P31[u(1) , T+

2

+ a%pp,  [u)

1)
2129

(1)

1)
12110

vl a] o+ _gbZP vl m) o+ b3P31[v(1) , U]+

+ ...+ @ - y)pz[ﬁ] , (27.27)
Pl = 2*p, @) + Pop, W@, v+ %% @, W] 4

+ gb31313[u(1) vy bt v e & T LU )

g1[¥

* E‘bplll[u(l) L RN ) §3P31[“(1) al +

2 —
e 2%pp @, VO 2

PR s I Y)Pz['d] . (27.28)
For the derivation of stability conditions sharper than conditions (27.24) and (27. 25)

in analogy with derivations in Sect. 25, the minimum of the expression
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EZPZ]_[u(l) H ﬁ] + abP].ll [u(l) ] V(l) ’ 1_1] + bzpzl[v(l) . ﬁ] + §3P31[u(1) , ﬁ] +
+ El2]3]?211[11(1) v § + ab P121[u(l) O Qo+
+ 0Py ™ a] L+ e, (e > 0) (27.29)

will be determined for constant values of a and b under the side-conditions

T, a =0, 1,6%,3=0. (27. 30)

Likewise analogous to derivations in Sect. 25,it is shown that the solution of this
problem can be represented by

7= é 512?(20) + _§b(p(11) + b <0(02) n 93‘1’(30} + azbq’(ZI) +

+ a2t 4 30 o], @17.31)

in which u = qo(pq) for arbitrary kinematically admissible functions { satisfies the

equations
1y _@)
(p + 1)P [u » VO]
pal®, v 1) p+1,r(11) T, M, e «
2T,[u]
1 L@
@ +1)P [ut™", v
- p,q+tl T V(l) g+ PG, t] =0
2T2[v(1)] nl ' ult ’
T, ™, 5 =0, T, v, @ =0 . (27.32)
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For p + q = 2, and after use of (27. 24) these equations are simplified to

It
o

p, wP, &)+ 2 E el =0 B N IR I A

Pm[u(l),v(l),;] +P [6,61 =0, Tlllu(l),ﬁ] =0, Tlllv(l),ﬁl =0 .

p v v e @) =0 . T =0, Tll[v(l),ﬁ] =0 .

The calculation of the minimum (27.29) is carried out in the same manner as is
described in Sect. 25. Introduction of the result into (27.27) and (27.28) yields -

Pl = El4 P4[u(1)]- ﬁpz[q,(zo)]l +
+ a’b | Py @, v® - T Py,l0®%, o) I +
" gzbZ‘Pzz[ua), vy - o BP0, 002 I—%TPz[cp(ll)]l "
+ab’ | P, vO) - 2o D), 00 l ¥
+ pt P4[v(1)] . T}—,}/PZ[Q"(OZ)]] o,
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(27.34)



MinP[u] (with a = const. and b = const.)

a P4[u(1)] - TIY 1

Fr Pl 4

Py ln®, W) - _Lop o0 by |

+
o
o

* Ezbz Pzz[“(l) ? "(1)] - '“1“‘%%7 P11[(9(20)’ o027 1 1+v Pz[qb(ll)] *

+ ab® p ), @y i iv Pll[fp(”), p02; |

Y b P4[v(1) ] - 1_%? Pz[ﬁf’(oz)] T (27.35)

Finally, after the following shorthand notation is introduced

¢,y = P My - 220

Q
|

= by w®, @) - p 0 A1)

’

31 31l

D) , (27. 36)

O
|

22 22 ’

it follows that equilibrium will be stable if the quartic form

4 3 2.2 3 4
Cao2 * Cgyab + Cpoa™ " + C qab” + Cy b (27.37)
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is positive definite; for in that case it will always be possible to choose ¥ so small
that the quartic form in the right hand side of (27.34) also is positive definite.
Conversely, if (27.37) can be negative, equilibrium will be unstable since in that case
Y can be made sufficiently small to make the quartic form in the right hand side of
(27. 35} to be negative. Only when (27.37) is semipositive definite this form cannot
give a decisive conclusicn about stability. This very special case which is of little
practical significance, will not be further discussed.

The treatment of the cases w 3 = 0 etc. does not offer new difficulties. 'If the first
w > 0 is given by Wy then for the displacement field u it can be stated

h—1

u = z a.u(j) + T with Tll[u(j),ﬁ] =0 (g =1,2.... h - 1) .
= ] (27.38)

After this the analysis proceeds in complete analogy with the foregoing, but with
considerably more labor. Again, necessary conditions for stability are that the form
of the third order obtained by substitution of

h—1
u = Z a}.um (27. 39)
=

in P 3 {u] is identically zero and that the form of the fourth order which is obtained by
substitution of (27.39) in P 4[u] shall not admit negative values.

28. CORRELATION WITH THE INVESTIGATIONS BY MAYER
The theory of stability at the stability-limit as developed in the foregoing can be

connected with the investigations of Mayer[31] about the minima of a function F of n

independent variables x )\[ A= 1,2,..., n) in the case that the second variation of
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this function is semidefinite. Without loss of generality the origin of the independent
coordinates x ,can be chosen at the point where the existence of a minimum is

analysed. From the Taylor expansion

[ oF - 1/ a2F
F(x78=F(0)+Z ) x, + z s\——) xx, +
w1 o w1 o
n
. z 1/ 83F . .
6 \9x,8x,0x | TR T -
(u,v,p)=1

I

n n n
F(0) + 2 A, z AR, + Z By p¥iRy * e =
k=1 (b, v)=1 (ks v,p)=1

F(O) + Fj(®) + Fy() + Fo0) + ... (28.1)

it can be concluded in the well known way that a minimum can only be present if the

first variation satisfies

F, (x) (28.2)

|
=]

and if the second variation satisfies

IN
=]

Fz(x) (28.3)
for all values of the variables x A Besides, if the lower sign in (28.3) holds only when
all X)\ are zero, i.e.,if the second variation is positive definite, then conditions

(28.2) and (28.3) are also sufficient for a minimum. In order to obtain an understand-
ing of the conditions governing the existence of a minimum in the case of a semi-

definite second variation, Mayer sets
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= tgf\l') n tzgh(z) + tsgh(?’) S (28. 4}

Ax
where the coefficients gl(j) G=1,2,...,) are arbitrary. H, after introduction of
(28.4) the function F is expanded in terms of increasing powers of t, it is a neces-
sary and sufficient condition for a minimum of this function that the first term of this
expansion is of even order and is positive (provided all values of the coefficient § h(j)
are not being simultaneously zero). Mayer has left no doubts about the necessity of
this condition. He has also in every respect demonstrated the likelihood of this condi-
tion being sufficient, although he did not succeed to prove this cdnjecture rigorously.
The application of this method yields criteria for the ordinary minimum problem analo-
gous to those of (25.1), (25.21), (27.24), and (27.37).

Without difficulty, Mayer's method can formally be applied to the variational problem
(21.1) of stability. For this purpose an arbitfrary kinematically possible vector func-

tion is written as
SR O R C R S (28.5)

and subsequently the left hand side of (22.1) is expanded in increasing powers of {.
For stability it is a necessary and sufficient condition that for all kinematically pos-

sible functions V(J) the expansion starts with a positive term of even order in t.

That this condition is actually sufficient ié less evident than it is in the case of the
ordinary problem of the minimum of a function of a finite number of variables. For,
as in contrast, a positive definite second variation of a variational problem is not
always a sufficient condition for the existence of a minimum [32]. For this reason no
use was made in the foregoing of the seemingly obvious extension of Mayer's theory
to variational problems. On the other hand, Mayer's results can be motivated in a

rigourous way by considerations analogous to the theory developed here.
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29. APPLICATION TO THE THEORY OF ELASTICITY

For application of the stability theory to the elastic equilibrium, the knowledge of the
Taylor expansion of the total potential energy (22.1) is required. As far as the elastic
potential energy is concerned, this can easily be given if the elastic potential accord-
ing to Section 12 consists of a positive homogeneous quadratic function of the strain

components. Expressed in the dispiacement v, this potential can be written
Aw) = A2 @) + A% + At W), (29.1)

where expression Aq(v) stands for a homogeneous polynomial of the order ¢ in the
derivatives of v. Expression A2 (v) corresponds to the elastic potential of the lin-
ear theory of elasticity. It is a positive semidefinite function of the derivatives of
the displacements that is zero only if the linear contributions of the displacement de-~
rivatives in the strain components 8vi/ axj + ij/ axi all vanish simultaneously. The
elastic potential in the equilibrium configuration for the displacements v = U follows

immediately from (29,1). In a configuration v = U + u
— A2 3 4
A{U+u) = AU+ + A" (U+u) + A" (U +u).

From this, by expansion with respect to the derivatives of U and u, itfollows

3

_ A2 3
A(U+u) = A0 + AO

Lo A2 4 A3 +

4
Ay Ay 1 1

+Ag+A§+A§+Ag+Aé+Ag. (29.2)
~ Here Ag is the sum of all terms that are homogeneous of the order p in the deriva-
tives of U and homogeneous of the order ¢ in the derivatives of u. Thus, this
form is obtained through expansion of Ap+q(U+u). The symbol AE in (29.2) is
apparently equivalent to the symbol AP ip (29.1). By interchange of U and u the
terms Ag and Ag are also interchanged so that Ag represents a semi-positive

definite function of the derivatives of u. This function will become zero only if all

. ot 8y . g . "
the relations _8553“ + 5%y = 0 are simultaneously satisfied. If in addition
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vg = [HAE dx, dx, dx, (29. 3)

then the Taylor expansion for the elastic potential energy reads

V{U+uy -V @ =V, [u] + Vv, [u] + Vg [u] +V4[u} (29.4)
with
_ ol 2 3 )
Vl[u]——V1+V1+V1,
_ 0 1 2
Vo fu] =V, + Vy, +V,
(29. 5)
_ 0 1
Vg [u] Vg * Vg,
0
Vy [ul = Vg

The stability analysis by use of the energy criterion. can be carried out in a simple way
only if there exists also a potential for the external loads, which in that case is repre-
sented by (the negative of) a work function W. 1If it is assumed that the increment of
this function corresponding to the transition of an equilibrium-configuration U to a

configuration U +u, can be expanded, then

W@U+w —W (@) = W [u +W,[u + Wy +...., (29. 6)

is obtained, in which series Wq[u] is the sum of the integrals whose integrands are
homogeneous functions of the order ¢q 1in the displacements u and their derivatives.
In the frequently occurring case of loads given by magnitude and direction with respect

to volume and surface elements of the undeformed state, the following holds

3
/Zl lfpriuidxldxzdx3+ ffpiuidf

- 1=

for q = 1,

W, lu] (29.7)

0 for q » 1.
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Finally, after use of (29.8),it follows that

V [ul - W [u for 1=g=s4,
P [u] = 1 1
d - W, [ul for g>4. (29. 8)
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Chapter 3

EQUILIBRIUM STATES FOR LOADS IN THE
NEIGHBORHOOD OF THE BUCKLING LOAD

31. THE BUCKLING LOAD

In the preceding chapter the stability of a supposedly known equilibrium state has been
investigated. However, in engineering,stability problems are usually posed in a
somewhat different form. It is a question here of the stability of an equilibrium con-
figuration dcc_urring under influence of a given load system. Hence,the state of equi-
librium corresponding to this system of loads must first be determined before the
stability theory can be applied. For this purpose, differential equations {(13.13) with

boundary conditions (13.14) or the variational equation (22.3) may be utilized.

In principle, aside from the difficulties connected with the solution of non-linear
differential equations, the problem of such a nature appears to lead to a peculiar diffi-
culty which is related to the determination of the loads. A necessary condition for a
possible state of equilibrium is that the loads constitute a self equilibrating system.
In the framework of the linear theory of elasticity,this requirement is satisfied if the
loads which act on the undeformed, supposedly fixed body constitute an equilibrium
system; the conditions for the loads which result from this can be written down
explicitly. However, as soon as finite deformations are taken into account the loads
must satisfy the requirement of equilibrium with respect to the deformed state of the
body; as long as this state is unknoWn, the conditions for the load system cannot be
formulated explicitly.

Fortunately, this funda.mentél difficulty has little significance in most important technical
prbblems. A structure is usually supported in such a way that in any state of small (but
finite) deformations in which the body is held fixed, an infinitesimal displacement of the
body is excluded. Consequently, the equilibrium conditions for the body as a whole can

always be satisfied. Besides, in the following it is assumed that the support reactions
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do no work; the total potential energy of the system is then the sum of the elastic energy

of the applied loads.

The following considerations will be restricted to cases in which the given loading
contains a still undetermined proportionality factor A ; in that case it can be represented
as a product of A and a unit load system. For different values of the supposedly posi-
tive load parameters A , existing equilibrium states are sc.ught.1 The question

of the stability of these states is also posed. The general solution of this probiem,
i.e., the determination of all possible equilibrium configurations for a given value of A,
is almost always impossible. However, in many important cases in engineering it is
possible to find one solution that continuously approaches the undeformed state as the
value of A approaches zero. This equilibrium state and corresponding displacement
U(A), the so called fundamental state, is assumed to be known in the following. More-
over, for the range of A under consideration this fundamental state is assumed to be
uniquely determined. In general the following can be observed about the stability of

the fundamental state. If the body is supposed to be fixed in the deformed state, any
infinitesimal uniform displacement or rotation can be excluded. This means that the
additional displacements from the fundamental state u;, cannot satisfy the six relations

ou, ou,
[38] a_xl + 5—;{—3 = 0 throughout the interior of the body. In that case, as was shown
j i

in Section 29, Vg[u] is positive definite. The remaining contributions in Pz[u]
approach zero together with A and U() (see Section 29). Accordingly it is assumed
that it 1s possible to find a positive value for )‘1 such that P2 [u] is positive definite

for A < }\1 . The solution w; of the minimum problem (22.5)
P, [u]
w = Min Tz [ ° (31.1)

llf it is necessary to take negative loads into consideration as well, this can most simply
be done by substitution of the unit load system by its opposite; A is then also positive.
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whose existence again is assumed, is then also positive, which means that the equilib-
rium is stable for A < A 1° This reasoning follows closely the uniqueness theorem of
Kirchhoff [39]. In some cases, for instance the bar under pure tension, the solution of
(31.1) is positive for all positive loads. In other cases Wy becomes negative after
the load parameter exceeds a critical value ?tl . Equilibrium in the fundamental state
becomes unstable after the load corresponding to ?\1 is exceeded, and thus the funda-
mental state has no practical significance for A > 7\1 . Of particular importance is
the determination of the limit value 7\1 , beyond which the fundamental state becomes
unstable. This is determined as the smallest value of A for which the solution Wy

of (31.1) is zero. 1 Equilibrium in the fundamental state corresponding to A s,
therefore,at the stability limit. In that case the homogeneous variational equation
(24.14) possesses a non zero solution. The load corresponding to 7\1 is called the

buckling load; the corresponding fundamental state U(?\l) is called the critical state.

The existence of equilibrium states infinitesimally near the fundamental state for
loads equal to the critical load gives rise to the expectation that there are also neigh-
bouring equilibrium states for loads slightly different from the critical load, which
can be derived by consideration of small but still finite displacements from the funda-
mental state. The stability of the critical state al the stability limit is of decisive
significance for the character of the neighbouring states. These adjacent equilibrium

states are the subject of the following considerations.
32. THE POTENTIAL ENERGY

It is assumed that in the neighbourhood of A = 7\1 the displacement U(} and its
derivatives may,according to Taylor's formula, be expanded into a series with increas-
ing powers of A - 7\1 . This implies that for parameter values of ‘A > Al the
existence is assumed of the fundamental state also in the neighbourhood of the buckling
load. The consequence of this assumption with respect to the nature of the problems

under consideration will be dealt with in Sect. 37.

llt is in principle not excluded that the fundamental state becomes stable again after
the load parameter has considerably exceeded Ag;in this case the solution of (31. 1)
should become zero also for a larger value of A . This case can occur when a coil
spring is subjected to axial compression (see 53]).
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In the following, the integrals introduced in (22.1) will be denoted by pr [u] for the
general fundamental state U(A) . They can now also be expanded in terms of A - hl

PN fu] = Pl + (= A) P! fu] + (- Ap? P [u] + ... 32.1)

In the following, the symbol P [u] exclusively refers to the critical state U(?\l) .

In agreement with (22. 3), pA [u] is equal to zero for all values of A .

If, for the time being it is assumed that the solution w, of the minimum problem
(24.4) is positive for the critical state, then the general solution of {24. 14) reads
(see also sect. 25, in particular (25:23) and (25.24))

u = aul® | (32.2)

The additional displacements of equilibrium states infinitesimally near to the funda-
mental state correspond to infinitesimal values of a. The displacements from the
fundamental state to neighboring states for loads slightly different from the critical
load will presumably differ somewhat from the form (32.2), so that it is expedient
to write them in the form (24. 1)

u = au, +uwith T , [ul,ﬁ] =0 ; (32.3)

1
consequently it is expected that the functions a will be small compared to au, .

After use of (32.3), the energy Increage,on transition from the fundamental state Ua)

to another state U()) + u, is written

1Since there can be no confusion with the indices i used for the distinction of the dis-
placement components, the indices of the eigenfunctions will in the following also be
written to the right and below the symbol.

74



P [u]

P’z‘[u]+P§[u} +PMul + ... =

P, [u] + (A~ A Py [ul + (A—AI)ZP;[u] o

+ Pyl + (A-A) B lul + ... +P ful +... =

e_Lsz [u,] + E'Pll [ul,ﬁ-] + P, [ul +
+ (A - )Ll) I@zP:z' [u1] + EtP]:]_[ul,E] + PZ' [E]I +

£ (n-ap? |a?

Tt " . .._._] + P" [__ +
Py lug) + 2Py, luj,ul+ Py “]|
+ 89P, [uy) + 27P, [u),@) + aP, [, 81 + Py [a]+
vt I
RCEE VRN e 1 Y IS - N £y | IR
4

3 —_ —
+aP,[u] +a'Py [ul,u]+ el 4 P4Eu]+ ..

By use of the relations which follow from wy = 0

P2_[u1] =0 and P, [ul,u] = 0

it follows in 2 somewhat different arrangement that
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PAlu] = §2 (A -2, P2'[u1] + gz (x - ;\1)2 P; [u1] ...+

3 3 '
taPi(wl at (A-A)Plul 4. +a%P lu) -+

+

—— 2 tt
a(r-A) Py [ul,u] ta(A-a) Py

2 — 2 , —
a P21[u1,u]+_§. (A - 7\1) leIul,u]+ el

+

§3P31[u1,51+ oo + P, [ul + (A.-.Jtl) P;[E1+

+

2 |1 B— —
+ (A- 7&1) P2 [ul +_.'31,P12 [ul,u] +

T — 2 —_
ta(r-2) P12[u1’u1+ oo T2 P22-_[u1,u] + ...+
—_ . T —_
+P3[u]+ (A-2) P3[u]+ +z_1P13[u1,u] + ...+
+ P lu)+ ... | 32.4)

From this expression of the energy the equilibrium equations are derived in conven-
tional manner by application of the principle of virtual displacements. This applica-
tion can most readily be carried out in two steps. First, the stationary values of
(32.4) are determined for arbitrary constant values of a. By this condition the
dependence of the functions u on the parameter a is determined. By substitution of
(32.4) the energy will then be known as a function of a, PA@). The values of a

for which stationary values of this function are obtained and the corresponding

functions U then yield the displacements for the equilibrium configuration.

The exact execution of this method encounters great difficulties due to the nonlinearity
of the equations for uw. In order to obtain at least an approximation, the terms in
{32.4) which follow Pz[ﬁ] are neglected; with this the equations for u are artifically

linearized. The following is intended as a motivation of this approximation,

76



The integrands of the terms in (32. 4) which follow Pz[E] are of the second order in

u and contain one or more factors A - 7t1 or a , or they are of higher order

.in u and its derivatives. If the considerations are restricted to small displacements
frpm a fundamental state which differs slightly from the critical state, so that A - ?\1 ,
~a and u are small, then it is to be expected that these terms are of minor impor-

tance in comparison to P2[E] . As a proof of this supposition the integrands of the

terms which follow PZ[E ] are combined into one homogeneous quadratic form of u

and its derivatives. The coefficients of this form are functions of A - Ays 2 u
and its derivatives, and they all approach zero as A - 7\1 , a4 , u and its deriva-

, 1

tives appfoach to zero. In analogy with the content of Section 25, it follows then that
for sufficiently small absoluie values of A - )\1 , a , u and its derivatives the
absolute value of the terms which follow P2 u] is smaller than an arbitrarily small
fraction of PZIE] . Consequently, the smaller |7\.- All , |a] and |E| are the better
is the approximation of the potential energy ohtained by omission of the terms following

P2[T_1] . The approximé.tion of the energy is

PP = PMlau® + Tl = a2 (a - ) Bylwl +a® (A= a2 Pyl +

3 3 : 4
oo v 2P lul et (A=A Bl d + Ll 2P, Lyl +

T — 2 ft —
e ta-ap Pylujulsa(-a)” Py luy,uls
+ + aZp fu E]+a2(A-A)P' [u,,u} + +
see TR S Yy a 1) 21 My
+a%p, lu ,ul + + P, [ul (32.5)
a’P,, lu, , [l .

It is important for what follows to notice that the principal neglected terms are given .
by

(A =2y Pz'[E], aP,, lu, ,ul, Pslﬁl . (32.6)
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33. CALCULATION OF THE FUNCTION u.

The application of the equilibrium condition to the energy approximation (32.5) is also
carried out in two steps. For the determination of the stationary values corresponding
to a constant value of a, the energy increment is calculated. This increment is due
to the transition of the function u to a kinematically admissible function u + 7 which
also satisfies (32.3)

T lu,nl=o0 . (33.1)

After expansion of the integrals depending on u + 7 , it is found that
Px[au; +a + 1l - PMau +1T]=a(?u—A)PT w,,n]+
iy | -1 = 1’ 711 71°

4 2" ] 2
a(x-2a)" Py A+ o+ 2P, [ul,'f}]+'

p [y
2 T
+ a (A-Al) P21[u1,n]'+ +g,3P31[u1,n}+ e, +

+ Py [E,jﬂ + Py Inl. (33.2)

The first variation, given by the terms of (33.2) which are linear in 5 , must always
be zero for a stationary value of (32.5). As P, [1] is positive under condition (32.1)

the sought stationary value is a minimum.

By analogy with Section 25,the condition obtained by equating the first variation to zero
is made equivalent to a system of differential equations with boundary equations. For
this purpose, an arbitrary kinematically possible function ¢ , not subjected to restric-

tion {33.1), is written as

T11 [ul, £l

: 2T2 [u

£ = tu, +7 with Tu{ul,n] =0 and t =

1!
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With due consideration to the identities

1

]
P11 [ul,ull = 2P2 [ull . Poy [ul,ull = 8P, [ull etc. ,

it is then possible to write

1t

1
@(A - Al) Pll [ula gl + @(A‘ - Al)z Pll [u]_’g] + ...+
2 r 2 ! 3
+a"Py, [ul, 1 +a°n - A Py [u1,§] + ... v @ Py [ul,gl +
- 1
+ ... +P11[u,€] =t g(l—ll) 2P, [ull +
2 2
tan - A 2P, [wl + ... +a"3Py [u) +
ta2(a-a)sPh ful + ... +2%4P, [w] + ... + P [du]l] +
z 1 31 Tt - 4 71 e 11 ']
' + 2 p" + +
+a(d = Ap) Py [ug,ml o+ ah - A7 Pyy [ugunl + e
+ a?P__ [u 1]]+a2(7t-l)P' fu,,n] + +
hiil s M - 1721 71 e

+ a3P31 [ul,’ﬂ] * .o+ Py fa,n] .

In this expression the terms which depend on 7 are identical to the terms linear in
1 of (33.2), and thus the sum of those is zero. With use of
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and after substitution of t,it follows that

» : 2P|2 [ui]
a(rA - a) 1P, [, 8] - 575 T [u &1L+
= 117111 2T, [u,] "11 71 } _
o | 2P, [u]
Fat - AT Py TR R T l“y“} feee T
3P, [u.]
2 3 1
+ E!, P21 [ul, ¢l - ZTZ [ull Tll [u1, g]] +
3D, [u,]
21
4P, [u.]
3 4 1
+a” Py [u1,§] -——-~——2T2 [ull Tiq [ul,é'] ...t

(33.3)

Similarly, analogous to Sect. 25, it can be shown that this equation, together with

the condition

T, [ul,ﬁ] =0 (33.4)

possesses at most one solution. Due to.the linearity of (33.3) and (33.4), this solution

can be written

u = '+ A=A 2 "+ + 2 +
u = El(?t - 7\1) <P1 f.( - l) ? a @,
+ az(A - A )(p' + + a3qo + (33.5)
a Pl T 2 ¢q P .
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"

1
where P15 P1s Py etc. are the solutions of

P, [u,z] + P [ul,é']

P, [4,¢) + Py [ul,§]

P [u,¢] + Py [ul,§]

P, [u,¢]l + P.. [ul,él

2'1‘2 [u1]

2P, [u1]_

2T, [ull

L]
2P2 {ul]

3]?3 [u1]

- 2T, [u1]

4P4 {ull

2T2 [ull

T 1[ul,El = 0;

T, [ul,u]

Ty [y €l =05

T11 [ul,ul

11[u ] = 0;

T 1 [ul,u]

T,y [y €1 = 0

Ty luy,ul

0,
* (33.6)

0,

\

>
(33.7)

0,

)

(33. 8)
N

From (33.5) follows the confirmation of the expectation expressed in Sect. 32 that for

small values of A - A and a the functions u are small compared to au, . From

comparison of the flrst equation (33.7) with (25.16), it also follows that if P [u ]
is zero,the functions ¢, are identical to the functions tP( ) introduced in Sect 25

2

The minimum of {(32.35) is calculated by application of (33.3) for £ =1 (see also
Sect. 25, in particular (25.18)). By use of (33.5) it is found that
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2

a' (A - Ay) P'2 ful + gz(h -2 3

2 . n ’
) P2[u1] *... 2Py {ull +

1

§3(A-A1)Pé [u1] +...+§4P4 [u1] +... —PZIE] =

+

L0 ) Py )+ 2% fry tuy) - B [o]] ¢

Il

+ ...+ g.SP:); [u ] +'§3(7\‘ ) _IP;. [u,] - P [‘Pll’qozH "

to.o+at e (u] - P, [¢'2]" + ... (33.9)

Here in accbrdance with (32.6) and (33.5), the following terms have already been
heglected

2 3.1 (17 .3 2t ]
a(A-2) Py [“’1]"11(7‘"‘1) P ["’1""2 g

4 ' 5.
a (A= A) Py lpyl , 27Pg [u,,9,]

Hence it would be meaningless to include any terms of the fifth or higher order in

-A—Al and a . I, for brevity

) 1 4 " T 1 .
Py [yl = 4,, Py [u] - P, ["’1] = Ay, Py luy] = Ag,
(33.10)

= A

1 1]
Py lul - Py ["1"”2] = Az, Py lu] - Py (9] 4

1]

then, as a first approximation for the minimum of the energy for a constant value
of a , it finally follows

PA = : ', 2 2 "2 3
P*a) (A—AI)AZE. +(7L-Al) Azg +A3§ +

1 3 4
+ (A=) Aga® + A A%, (33.11)
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1t follows from (33.10) that only the terms quadratic in A - Al and a of (33.5),
1
(a(x - 7\1)901 , and g.zqoz) , are significant so that the corresponding approximation

of the function u is given by

- 2
i=a-r)e Fa'e, .

(33.12)
It is seen from (33.10) that the constant A3 is identical to the quantity which in the
first place is decisive for stability (see (25.1)). If it is zero, then it follows from the
identity of the functions P and 90(2) , that A 4 {33.10) is identical to the quantity
introduced in (25.21y, which in that case governs stability of the critical state.

34, IMPROVEMENT OF THE APPROXIMATION

As already has been remarked in Sect. 32, expression (32.5) represents an approxi-
mation of the energy which becomes more accurate with values of decreasing A - ?Ll s
a and u. Consequently, (33.11) yields an approximation of the stationary value
of f’h(g) for small values of X - 7\1 , a and u, which is a better approxima-
tion the smaller A - ?\1 and a are; the required smallness of the function u is in
that case automatically ensured by (33.5) or (33.12). However, it is desirable to
know in what manner the approximation, when necessary, can be improved. For this
purpose, it is noted that (33.12) yields an approximation for the function u which
determines the stationary value of (32.4). This approximation is again more accurate
the smaller A - A and a aretaken. Now, if

T —
i = a(A-A)e +92<v + 3 with T

A 1 [ul,‘ril =0, (34.1)

then as a consequence, 1 is expected to be small in comparison to the first two

terms.

Introduction of (34.1) in (32.4) yields after expansion and after arrangement of the
terms according to increasing order in u and its derivatives
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1 on . 1
P ] = (A - A Azgz + (A - xl)z A + A393 + (A=) Aga® +

1"

2

11

3 1 | S T 1 |
[u] + Py [uy,4] + Py I“’ﬂ" *

+A::14 +E,2()\—x1) .|P

+ 2 A’ }L 4 P” 133 + 11 '[ '] + " |]I <
- . : +
a( v I g [u] + Py fuy.0[ + Py [“—01_
" 3 A h 2 P" n Pl _l + P T "
a(A-2y)) I g [yl * Pyy [“1"'°1] 12 [“1""1]

. P" N P' [ 1 ], + 3 3 P”T +
11 (4951 11 [P1°%2 a(a-2) l g [uyl

"ot

1" 1 T t T
* Py l“l’ 1] t Py [ul""l] + Py |¢1]+ Py 40

" 1 | 4 1 : 17
P [‘*"1”2” o taa-dy) IP4 fw;] + Pgy “1";"1] *

1 T ]

TPy lusepl + Pygy [“1"’°1’¢’2I * Py -“”2]' *
+4A 2Pr| +PT ‘|-+P |,+

a (A=) l a 4] 31 [“1’9’1] 22 [“1’9"1]

1" - T [ T .' "
T Poy lugs95] + Pryy “1""1””2] + P21["’1"”2] + Py f“’z]l -
5 - |

BIRETI ‘Ps [4] + Pgy (w051 % Ppy f“l"”zll *
+ 5 ' ; ' S ' +

2 (A - Ay) [P5 fu] + Py [“1"91]- Py [ug: %l

1 1 1
* Po1y [“1""1"”2] * Py (ug.050 + Py [‘-"1"’”2” e

6
Ta |P6 [u ] + Py [u),0,] + Pyy [u.0,] + Py f“’2]| T

2 1 = ' T _
ta(A - AT | Pyy [ug,81 Py ["’1’“” -

+ A 3 Pnr = + 1"t 1 ____..] . +
ar-A) 11 [ul,u] Plllqol,u ]

2 ! = L ' =
Ta(A- ?\1) P21 [ul,u] + P111 [ul,qol,u] + P11 [<p2,u]] +
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: : ' ’ u ! [ ' =] [ ' =]
+ -
a (A 1\1) P21 [ul,u] + P111 ul,(P.l,u + P21 FPl,u +

-}

P11[“’2’“” Tt ‘PBI [u,.ul + Pyyy [y z’u]l ¥

3 ' = -

Ta(Aa-ay) ,P31 [ug.0] + Pyyy [u).9).8] +

1

* Py [ug%u) + Py [0, 2’“”

+ ot P a] + P +P__ [e.,0ll + +
I g1 (98] + Pyyy [u).9.0] + Py | 2’“”
=1 t =

+ Pz[u] + (Afxl) P2 [ul] + ... +

-+

= [ v = -
aP12 [ul,u] + g(?\—hl) I'P12 [ul,u}. + P12 [fPl,u“ + ... F

+ 32 [Pzz [ul,ﬁ] + P, {902,'?1]] t... + Py [u] + ... (34.2)

‘Here use has been made of the propertics of the function ¢} and ¢, through
combination in expression (33.11) of all the terms which are independent of u
and which are of the third or fourth order in A -, and a. Further, due to
the first of equations (33.6) and (33.7) which hold for t,o'l and Py respectively,
the terms linear in u and its derivatives with cocfficients a () - A;) and 32

are omitted.

In the same manner as in Sect. 33, it canbe shown that the terms which follow P2 [{] for
small values of A- 7\1 » & and U and its derivatives are small in comparison to
leﬁ] and that they consequently can be neglected. Next, the stationary values of the
remaining approximation of the energy are determined for constant values of a

Since this analysis proceeds completely parallel to Sect. 33, it will suffice here to
indicate the results. Again, the required stationary value appears to be a minimum,
while the uniquely determined function u for which this minimum is obtained can be
written

3= a_x(x-al)z_zp'l'+§2(A--Al)¢'2+§3¢3+... (34.3)
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Terms of the fourth and higher order in A -2 1 and a have no significance in this
expression. They yield a contribution to the minimum whose lowest order terms are
of the seventh order, whlle substitution of (34.3) in the neglected terms of {34.2) leads
to terms of the same order in (A - Ap and a . The functions zp 1 s 5, and g
are, respectively,. the solutions of the equatlons '

P (08 + Py Ty, 21 + Py [ g, +

" ] ]
2P, lu] + P [qo ;U J
2 My 111%1°% ‘ _ =
= 2T, [u,] Ty Tug8) =05 Ty [ug,ul

il

0. (34.4)

Py 8+ Py w0 + Py fugi0ne] + Y 0,00

1 ¥ T
8Py [yl + 2Py, Jogeq] + 2y 1oyup

£} =
2T2 [u

|
[l

T.. [u

11 1°

1

T, fu,ul = 0. (34.5

Prp (8 1% Py, uy, 81+ Poyy [u),95. 80 +

4P, [u,] + 2P, [u,,o.) )
4" 1 21 1°72 o - _
2T, [u] Ty lugsdl = 0; Ty [u,u] =0. (34.6)

A comparison of (34.6) with (27.13) reveals that the identity of the function <P2 and
@ (2) for A, = 0 also results in the identity of the functions ¥ 3 to the functions ¥ 3)

3
which were introduced in Sect. 2%.
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After introduction of the notations

et

P2 [ul]

Tt

Py

[u.]

1

Py ]

mnt

1
P

P5 [u 1.]

P

4

5

[u.]

[u

[u

1)

1!

1

+

+

+

1" L} 1 (P' _ (A
Prp[w?y) # Pz[ 1] = Ay

"ntTr T " T "t " 1_1
Pia W% + Py [¢1l - Py [4’1] = Ay
1} r f' d T T . (P
Py a9 | * Py ul,q)l] + P lu; 9,1+
1 o | ' b 1
Pn (Pl"pz B A3 ’

o ot 1 fP' 1

+ +

Po1 10 %] + Py [“1’ 1] Py [q’l] *

"t

" 13} [ 4 . 1 l. -
Py [ug:91 + Py [(pl"PZ] - Py [z’bi’d’z] = Ag
T L§
Pgq [“1' 1 ] T Py lug.9) + Pppy [“1""1*“’2] +

1
A

T

1 1 T "
Pq1 [“1""1] * Py “1"01] TPy gl

1) T T "
: +
* P [“1"’1""2] * Py [{Pl’(pZ] + Py [%]

- Py [lprll”’bS]

T

1]
- Py [4’2]. = Ay
=A5’

1
Poi1 [“1’¢1’ ‘Pz] *

Py ["p:'a"ps] - AT5 ’

-+

Py (), %) + Py luy, 4]

+
+

1 1
Pa [“1’901] Pgy [uy, %)

4 ]
* P [‘01’ qDz]

Pog ), %] + Pol@] - Py [¥,] =

T
P luy, 9]

Py lug:950 +
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the minimum of the approximation of (34. 2) becomes

=A _ LI g na 3 nro
PU@) = (A-2A))Aa® + (A-1 )" Aja F(A-A )T Ayt

nn 2

+(a-aptara® + a4 (A-1 ) Aga® +

" fee 1
+ (A=A ? Az + (-2 P a? + A8t + (A=A Azt +

r
+(7\-)\1)2A4§4+A5§5 + (A=A ) Aga® +AaS . (34.8)

In this expression terms of an order higher than six are consistently left out.

It appears from (34.7) and (34. 8) that by inclusion of terms of the fifth order, it is

even possible to improve (33.11) without the knowledge of the functions 4;1‘ , ¢|2 and
2% Further, if A3 is equal to zero, the coefficients A5 and A6 are identical to
the quantities (27.5) and (27. 18} introduced in Sect. 271, which successively govern

stability in the critical state if A3 as'well as A, are zero.

4

It requires no proof that the described process of improvement can be contimied by

writing the functions U as
T =a(r-A)%y. +a% (A-A)y. +ady. +T with 1] =
u = %( = 1) l’bl E’ (A- l) 4’2 E’ ZPS u wil Tll [ul:u] =0.

This manner yields for small values of A - Al and a a power series
for the stationary value of (32.4). Of course in general nothing can be said about the

region of convergence of this series.
35. THE EQUILIBRIUM STATES

In this section the statlonary values of Pl(a) as functions of a4  will be determined

in the case that P (a) is given by the expressions (33.11) and (34.8) as a first and
second approximation respectively. The corresponding values of a  and the
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functions u (33.12) and u (34.3) yield in that case an approximation for the
displacements in the equilibrium states. The analysis of the stability involves
likewise no difficulties, since expressions (33.11) and (34.8) are both minimum.
Now, if the staticnary value of f’l@) as a function of a, is again a minimum,
then the approximation of the energy (32.4) or (34.2) also possesses a minimum
with respect to varied functions u or u and simultaneously varied values of a.
Equilibrium in the corresponding displacement configuration is then stable. In
reverse, the approximation of the energy does not possess a minimum if the

stationary value of f’;\(g) is not a minimum, and in that case equilibrium is unstable.

For the derivation of a first approximation expressions (33.11) and (34.8), representing
respectively the first and second approximation as proposed in Sect, 34, may be con-
siderably simplified. For this purpose it is noted that equilibrium in the fundamental

state is stable for A < )\1 , S50 that

A T
P2 [u] = P2 [u] + (Awkl) P2 [u] + .... 20
should hold.  Because P2 [u1] = 0 it follows that

(A-2)) P'2 fu] .+ ....20 .

This relation can be satisfied for A <A 1 only if the constant Aé (33.10) is non positive.
T
The limiting case in which A2 is equal to zero does not occur in applications thus far
1
considered, so that in the following it is assumed that A2 is negative. For small

absolute values of A -A_. and a  all terms containing at least one factor A - A 1

1
are small in absolute value compared to the absolute value of the first term

1
(A-2)) - A2¢'12 , and in a first approximation they may be neglected. Further,
among the terms which contain no factor of A -A 1» the term of the lowest order in 2

is the dominant term. Let this term be Ang,n (in which case the stability of the critical
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state is governed by the guantity An) . Then (33.11)and (34.8) lead to the expres-

sion

_— )
PMa) = (A-apA” +Aa™. nz3. 35.1)

A simple procedure for the construction of (35.1) can now be given. By use of

Chapter 2, stability of the critical state is analysed. The quantity An which governs
stability appears in (35.1) as a coefficient of gn . Calculation of A'z which coefficient
is given by (33.10),does not offer any difficulties.

The states of equilibrium are characterized by stationary values of (35.1), i.e.,by

Y
ap r 1
___da(_gl=2(;\—h1)Ag+nAn§n = 0. (35.2)

Stability is governed by the second derivative of (35.1)

P
2

_ ' n-2
” —Z(A—Al)Az+n(n—1)Ana .

(35.3)

Equation (35.2) is satisfied by the sélution a = 0 in which case the functions u

and u become also zero. This solution yields the already known fundamental state.
The second derivative (35.3) is positive for A< ll and negative for 2 >A1 , So that
equilibrium in the fundamental state is stable or unstabie depending on whether A is
smaller or greater than A 1> (in agreement with what already was known). The other

solutions of (35.2) which determine the neighbouring states, should satisfy

=

t
n-2 2
(A=2,) A_n . (35.4)

I o
i
!
Biro
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By substitution in (35.3), it follows for the second derivative of f’l(a) in these states
that

' (35.5)
) A,

-2@ - 2) (A-2y

Consequently, a neighboring equilibrium state is always stable for A >)’\1 , and
always unstable for }\<7\1 .
In a discussion of possible neighboring states of equilibrium, distinction must be made
between even and odd values of n and, in the latter case, between negative and posi-
tive values of An as well. For odd values of n,A11 can always be taken positive since,
according to (35.4) and (35.5) an equilibrium value a corresponding to positive An
corresponds to the same type of stability behavior as does -a in a system with

negative An' Consequently (35. 4) possesses a real solution for both positive and

negative values of A - A_. This is determined by

1

1
n-2

A =y

n-2 (35.86)

-

and it follows from (35.5) that the equilibrium is stable for A >7L1 and unstable for
A< )\1

Sl

For even values of n, (35.4) possesses real solutions only for negative or only for
positive values of A=) 1° depending on whether An is negative or positive respectively.

These solutions are determined by

1
n-2

L
n-
t 1 T
A . A
a = (_Z.KE (*y A2 and a = ( Af) EEP Y (35.7)

n

::Im
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It follows from (35.5) that the solutions first mentioned correspond to unstable, the

last mentioned to stable equilibrium.

According to the considerations of Chapter 2, equilibrium in the critical state is unstable
if the governing quantity A11 corresponds to an odd value of n or if it is negative and
corresponds to an even value of n . Equilibrium is stable if the governing constant

An corresponds to a positive n and is even. The results obtained can be summarized
as follows. If equilibrium in the critical state is unstable, and stability is governed

by a quantity with odd subscript (A3 ,A5 ete.), neighboring states of equilibrium

exist for loads greater than as well as for loads smaller than the bucklingload; the
equilibrium states for loads greater than the bucklingload are stable and those for

loads smaller than the bucklingload are unstable. If equilibrium in the critical state

is unstable and stability is governed by a quantity with even subscript (A 4,A 6 etc.),
neighboring states of equilibrium exist but only for loads smaller than the buckling load;
these states are unstable. If equilibrium in the critical state is stable, in which case
stability is always governed by a quantity with even subscript, neighboring states of
equilibrium exist but only for loads greater than the buckling load; these states are
stable.

The relation between the parameter a , which represents a measure for the dis-
placement from the fundamental state and the load parameter A as given by equations
(35.6) and (35.7), can be represented in a diagram. Fig. la gives the graph for a posi-
tive value of A3 (the graph for the negative value can be obtained from this by taking
its mirror image with respect to the A-axis). Fig. 1b and Fig. 1lc respectively give
the diagrams belonging to the negative and positive value of A 4 in the case in which

A, =0 . Finally, Fig. 1d gives the diagram for the case in which A3 =A 4= 0 and

3
A_. is positive. In these graphs the stable states of equilibrium are represented by

5
heavy lines, the unstable equilibrium states by dotted lines. The boundary between
the area in which equilibrium must be stable and the area in which it must be unstable
is a curve obtained by equating to zero the expression (35.3). It is given by a dash-dot

line.

At the critical load equilibrium states exist which deviate from the fundamental state

in an infinitesimal sense and which are determined by (32. 2) for infinitesimal values
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lI
-2
A3=O, A4>O
(c)

FIG. 1
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of a. If this solution is conceived as an approximation valid for smail but finite
values of a, it follows that its image in the diagram is given by the straight line

A= 7\1 . It follows from (35.4) that this approximation determines the tangent to the
curve A versus a of the neighboring states of equilibrium at the point A = 7\1 ,a =20
for n > 3. Inthese cases, already the first approximation leads to some insight
into the character of the neighboring states of equilibrium. However, for A3 # 0 the
method fails to describe the real behavior even approximately (see also Fig. la).

It is noted that for A3 = A4 = 0, the use of approximation (33.11) also leads to the
straight line A = 7\1 in the graph A versus a; for, in that case the derivative of
expression (33.11) with respect to a contains the factor. A - ?\l . Consequently,

for a better insight in the real behaviour, it is necessary to consider the improved
approximation (34. 8) or what amounts to the same, to continue the -analysis of the

critical state until a nonzero quantity An has been found.

The considerations in the foregoing are based on the simplified expression of ITA@.)
(35.1). In principle, an improvement of the approximation can easily be obtained by
use of the unabbreviated expressions (33. 11), (34.8) respectively. This is illustrated
by the application of the equilibrium condition to (33.11) for the case A, #0

aP (@)

da

= 5 ! 2, 2
= 2(A Al)A2§+2(A—?\1) A22_1+3A3§1_, +
v 2 3 _
+3(7«-?\1)A3§ +4A4§ =

In addition to the trivial fundamental state, the following solution exists
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. t
. BA 3O~ Ay )
2 5,
1
[A, + ' A']2 ' ZA
P i T s Ui O Catie Ui Tt Ui SR
64Ai' 2,
3A A
3 3
= - =211+ (A-A)=+
8A, VA,
A, ? ALA A'; |
A
3 32 24 2
RV R b B O e e MO
3 A, AL
A

The second root approaches —%X; as A approaches Al ; this is not a small quantity
in the neighbourhood of the buckling load and it need, therefore, not be considered.

Expansion of the first root in terms of A - A_ gives

-3

'
2

2
2= -3g (A2
3
AA. AL AZA
S22 2% 16%284) o o2, 35.5)
3,2 ~3A, 27 .3 SUNREEEE (35-
A, 3 Al

Terms of third and higher order can be omitted in this expansion because their contri-

butions to the expression (33.11) are at least of fifth order; such contributions are
already neglected in the improved approximation (34. 8).
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The stability of the equilibrium states determined by (35.8) are governed by the second
derivative of (33.11). After substitution of the value of a as given by (35.8), this

derivative becomes

2
2—A AA

d“P” _ ' noo16 2 Mg 2
2 -—2A2(A»A1)—<2A2-—9 " )(,\-)\1) .
a 3

It appears from (35.8) that approximation (35.6) determines the tangent to the curve
which for a neighbouring state of equilibrium represents the relationship between A
and a . Further, it appears from (35.9) that for not too great values of | A-a 1 |
the conclusions concerning stability as deduced from (35.5) remain valid. Therefore,
the improvement leaves the character of the first approximation unaltered. In cases
for which A3 is equal to zero,corresponding conclusions hold. Consequently, the first
approximation following from (35.1) will at least suffice for a qualitative analysis of
elastic behaviour in the neighborheod of the buckling load. Such a restriction can also
be justified on another basis. As mentioned in Sect. 34, the region of convergence is
unknown for the series expansion obhtained for ﬁh(g) through the successive approxima-
tion. Therefore, in general, the region of validity of the approximate sclution cammot
be extended at will by use of a greater number of terms. Also, this improvement has
significance only for a region of A values in the neighbourhood of the buckling load.
This region is different from case to case. As has been said above, in this neighbour-

hood the behaviour in the large is described by the first approximation.
36. SPECIAL CASES

The foregoing considerations were based on the assumption that Wy the solution of the
minimum problem (24.4) for the critical state, is positive. Here the changes will be
discussed which correspond to the case in which this condition is not satisfied; for the

time being w_ 1is assumed to be positive.

3
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The general solution of the variational equation (24.14) for neutral equilibrium is in
that case

u = au + bvl . {36.1)

Here, for the sake of a more symmetrical notation u® - v;is introduced. If (24.14)
would possess a solution differing from (36.1), then it would always be possible to write

it as

u = au +bv1+ﬁwith T

hagny | 11 [ulsE] = T]_l [Vlsal =0. {36.2)

Substitution in (24.14) leads to the following conditions for u
P11 [u, £] = 0, Tll [hl,u] = T11 [vl,u] =0

which for £= u contradict the assumption wg > 0 . On the basis of considerations

identical to those of Sect. 32, the displacements in the analysis of equilibrium states
in the neighbourhood of the critical state are written in the form (36.2). Substitution
w, = 0 and after

1 2
expansion and arrangement according to increasing order in u

in (32.1) gives, afier use of the relations following from w

A 2 t " .
P u] = & [(A-2) P} [u)) LR WL I R I
+ ab l(?\—}\l) P'11 v 1 + (?\—?\1)2 P'l'1 [u.v,) + | +
9 ' 2 n
+ b I"“"l)Pz vl + (A=A Py [v] +...] +
+a° [p + (A=A ) P. + +a% |p v]+|+
@ [Py lud * (AR Py fu] v o] 4 21 [Mo¥qd * o
S [ P PR R B N A R It
+§4 P4 [u1] +I +2_13blP31 [ul,vll T
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+ab2|P vl] +| +§b3lP13{u1,v1]+...|+
+b4|P4 V] + .. |+ *

2 =
+ l(l A )P11 [ul,u] +(A-?xl) P 1[ul,u] +] +

+b|(7\ )P LV 8D+ (- A) P [lﬁ]+...l+

+a

B N PR IR C ST SR SR U I

+§.b| Plll [u vy ,d} + (A-2A )P111 [ul vl,u] + I +
2 _. ' _

*h [ Pop VBl + (-2 )) Py [vy. U] + ... l *
+a3[P [u,,T@] + ]+a2blP [uvu]+ ]+
2 31 '"1° : 211 s
+ ab? |P v, 3] + [+b3[13 (v.,G] + '|+

121 [¥0¥9 31 'V1°
t
...+ P, [u] +(7L-7\l) Pz{ﬁ] + ...+
+a |P124[u1,'ﬁ] + ...|+b |P12 [vl,'ﬁ] + ... I +
+ ... +P3[ﬁ] + ... (36.3)

For the application of the equilibrium conditions, the stationary value of (36.3) will
first be determined for constant values of a and b in a manner analogous to that of
Sect. 32. After that the stationary values of the functions so obtained P (a,b) will
be established with respectto a and b. In this Process,omigsion of the terms
following P2 [a] in (36.3) are justified in the same manner as in Sect.32. The ap-

proximation of the energy thus obtained again appears to have one stationary value
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for constant values of a and b and this value is at the same time a minimum, The

functions u for which this minimum is obtained can be written in the form

o v v, 2 2
UTaAmRg) ey P R(A-A )Ry taTey +abe, v, + L

(36.4)

T 1 .
where ¢ 10’ @01 s 5020 ) 901 1 and ¢ o2 2re given respectively as the solutions of the
equations

L
2P, [u,]

ZT'E"] [1.1 §}+

Pl_l [u,£] + Pll [u1,€]

{u V.1

Pl 1 o - ——

_ —W 11 Uy &1 = o, T, [u ,) Ty, [v,.T@l =0,
, Py, vl
P, fu, §]+P11[V1,§] 2i‘__[?1T_T1[u1’§]+
[VI _ -
[v] p vy =0 Ty tupul = Ty vyl =0,
3p fu.]

- 3 1
Pyl 2+ Py Tuyne] - 2T, [u,] Typfug. 81+

[uv

|
Po1 1 _ o o
- 2T, [v1 Ty bvq-8 0; T, [u,a] =T [v.,ul =0,
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2P [u,,v.]

21 1’1
v,, &l T1[u1,§] +

[u,,v.,6] - —=——=u
1°V1 2T, [u,] 1

P 1 (q,8) + Plll

2P12 [ul,Vl]

[v,.&] =03 Ty, w8l =T, [v,a =0,

2T, [v,] T 11 'Y 11
: P, lu,v]
= 12 %10
Pip (W8 + Py vy, 40 - “W 11 9080 #
3P, fvl]
T 2T, [v)] Ty v 81 =05 Ty (w8 = T [v,,@] = 0.  (36.5)

Here the contribution to (36.4) which are of the third and higher order in {A - 7\1) R

a and b have already been omitted since together with the contributions in (33.5),
they are of no significance in the present approximation. The derivation of equations
(36.9) is completely analogous to that in Sect. 272 and in Sect. 33, so that its execution
can be omitied here. By comparison of the last three equations of (36.5) with (27.33)
20) (1) 02) 25 defined in Sect. 272

agree with the functions introduced here, provided the condition (27, 24) is satisfied.

it can be shown that the functions ¢ and ¢

Also, the calculation of the approximate stationary value of f"'\(g, b) is analogous

to the preceding analysis. If for brevity is introduced

T

1 1 1
P [ug.vy] - Pll["’m’ “’02] - P11[‘*"01'9°11] = Cia>

T T T
Py [v] - Py [961:%05) = Cgg >
Pyl = Py loggd = Cpp v Pyy lupvy] - Py 1090,000 = G310+ (36.6)
Pop [)svi] = Py 03] - Py 195459551 = Cyy s

Py [yl = Pyy 19159951 = Cpgs Py Tvgl - Py 19,1 = Gy,
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t t : 1 t 1

t
Pylul = Cyg s Pyyluy vyl =€y Pylvl = ¢02’
13} [ L} n 1" 1_ 1 1
Py [l - P, [“”10] = Cyy» Ppp lupvyl - P11[‘*”10"°01] = Cy1
" 1 1"
P, vl - Py ,“’01] = Cou
Py [ul = Cg40 Pyy luguvy) = Cyyy Pyy [uyavy] = Cpy, Pglvy) = Cog s
T T )
Py [w] - Pyy [9"10’9020] = Cg »

1 1 1
Poyp Wiy-vyl = Pyy [“’10"".1'1] - P11[9°01“"201 = Coy
this approximation becomes
DA 2
P™a,b) = (A- J\){Ca+C ab+C b)+

+ (A= a)? (508" + € ab + C )

3 2
+030@ + C ab+012§b +COb+
+(;\-A)(c a® + ¢, a% + C,ab? +c b3)+

1 212 122

4 3 4

" Cagdt + Cypa’d + Copan” + 0 yal + Oy b

Terms of the fifth and higher order in 2 - 7\1 , a and b are here insignificant,

even more so then in Sect. 33

From (36.6) it is seen that the terms of second order in a and b in (36.7), which
contain one factor A - ?\1 , and the terms of third order which do not contain a

factor A - A 10
the conditions (27.24)

1

101
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depend exclusively on the eigenfunctions u, and vy - Further, if

(36.7)



are satisfied,then it follows that the fourth order terms in g_ and b of (36.7) are
identical to the form (27.37) which governs stability in the critical state.

The general case

;.02=w =...=wh_1=0,wh>0

can be analysed in a similar manner, by use of

i
e

u = au, +ua with T w,u] = 0. j=1,2,...h-1. .
T 11[3 ] ] 1 (36.8)

—.
I
[

In this case, the approximation corresponding to {(36.7) can be written
5)\ B :_P_Ir N . 2' —T1 + —
| —
+ -
(A-2)) Py (aj) + Py (aj) . (36. 9}

—1!
In this expression, Pz and P3 are completely determined by the h-1 eigenfunctions

u,
J

h-1 h-1 h-1
_ 1 1 1
P2 (aj) = P2 Z a =3 ‘ aaaB P11 [ua,uﬁ] , (36. 10)
a=] a=]1 =1
h-1 h-1 h-1 h-1
P = =4
Py @) = By da%l = % 2adgy Ppyy [gsug.uql
a=] o=1p=1v=1,
(36.11)
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For calculation of the remaining terms in (36.9), the solution is required of a set
of equations analogous to (36.3), If (36.11) is identically zero, which condition for
3 > 0, then

P 4(aj) will again be identical to the expression which governs the stability at the

the present case corresponds to condition (27.24) for the case with w

stability limit. The form (36.10) can never assume a positive value because, in
analogy with Sect. 35, it would otherwise be possible to conclude that the fundamental

state can be unstable also for A < 7\1 .

As a first approximation, in (36.9) the second and fourth terms are neglected in com-
parison to the first and third. Besides, if (36.11) is not identicaily zero, the last
term will be neglected in comparison to the third. In both cases the result is

—A - —
P (aj) = ( A=A 1) P2 (aj) + Pn (aj) . D=3 orn-=+4 (36.12)
The stationary values of (36.12) are determined by the equations
A B, P
Sh. ' -0 apP
9P _ 2 n _ =
aal (A Al'a_ai +8—31 =0, i=1,2,...h-1, (36.13)

2= 3°P
%P 2
= - +

paga 221 8% T (Ahy) 3a0a 2%

i=1j=1 % ) i=1j=1 )
h-1h-1 aziﬁ"n
+
S AaAa (36. 14)
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Although the solutions of (36.13) cannot be given as easiiy as those of (35.2), they do
admit some general conclusions. In the first place,(36. 13) possesses the solution

a;, = 0 which yields the already known fundamental state. It follows from (36.14) that
the stability of this state is governed by the form

1

2

a,
J

(36. 15)

82P
a, o
i

h-1 h-1
(A=A Z Z )
i=1j=1

-1
AaiAaj = 2( A-A 1) P2 (Aaj) .

Therefore, the fundamental state is stable for A<A 1° unsgtable for ?\>}\1 , in

1
agreement with what was already known.

Furthermore, it appears from (36.13) that for n = 3 , the existence of a solution a
for the load parameter A implies the existence of a solution - a; for the load param-
eter 2 ?‘1 - A. Thus, for n = 3 no neighbouring states of equilibrium exist at ail or
neighbouring states exist for loads greater as well as for loads smaller than the criti-

cal load.

Multiplication of the ith equation (36.13) by ay and summation yields

. o5 B
(l-11>§f 2 3a. 4’22 *1oa, ~ A2 Py fap) +

+nP) @) = 0. (36.16)

1Here the case that (36.10) is semi-negative definite is disregarded; although it is in
principle not excluded, the stability decision for A < )\1 is then not sufficiently
substantiated by (36.15).
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When n = 4 and P (a) is positive definite, i.e., when equilibrium is stable in the
critical state, (36. 16) ca.n only be satisfied for A > A therefore, in this case.

neighbouring states of equilibrium exist only for loads greater than the buckling load.

If the solution of (36.13) is substituted for A a; then, after use of (36.16), (36.14)
becomes

h-1h-1 25 h1hil 25
(AA)EZBaBai ZZaaaa"=
i=1j=1 i=1j=1

= 2(»;\1)?'2(3,].) +n(n-1)§n(aj) - 2@ - 2) (M- Al)farz(aj).

This expression is negative for A<A 1- Consequently, all possible neighbouring

states of equilibrium for loads smaller than the buckling load are unstable.
37. NATURE OF THE PROBLEMS DISCUSSED.

It was pointed out in Sect. 32 that the assumption of a possible Taylor expansion for
the displacement U(A) and its derivatives with respect to A - ?\1 implies that the
fundamental state exists for loads greater than the buckling load. This fundamental
state approaches continuously the critical state as A approaches 7\1 . In addition
to the fundamental state in the neighbourhood of 7\1 other equilibrium states appear
to exist which approach the critical state as A approaches ?\1 (See Sect. 35). The
state of buckling represents a so called bifurcation point of equilibrium; the

significance of this term is illustrated for instance by the Fig. 1.

Now, the question arises whether under the assumption mentioned above all possi-
bilities are exhausted which occur in practice. This question must be answered in the
negative. There are structures with load systems for which no equilibrium states

exist which can be obtained by gradual increase of A in excess of a critical value A *
and which when A is monotonously decreased, pass continuously over into the original
fundamental state corresponding to A* (see [40]). If equilibrium states are considered

which vary continuously with A in the neighbourhood of the critical value, A *
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represents a maximum of the possiblé A values. Ina graph of a displacement
component v at a point in the body as a function of A, this is generally indicated by

a horizontal tangent to the A versus v curve. The equilibrium state corresponding
to the critical value A * represents a so called snapping point. In particular, Biezeno

has analysed several snap-through problems ([41]).

A snapping point has in common with a bifurcation point that equilibrium is neutral
([40]) and thus the snapping points can be determined by use of the conventional
theory of neutral equilibrium. If the solution of the minimum problem (22.5) is
positive for A < A* as A is gradually increased from zero to A¥, ie,, if
equilibrium is stable for A < P then it follows that the state of equilibrium
determined by A* is at the stability limit; A* coincides with the parameter value
A 1 for the buckling load. Likewise, the considerations given in Sect. 2 retain
their significance for the analysis of stability of the critical state. In summary
the stability theory given in Sect. 2 ig generally valid; the theory discussed in
Sect. 3 dealing with states of equilibrium for loads in the neighbourhood of the
buclking load is essentially restricted to buckling loads corresponding to

bifurcation points,
38. EXTENSION OF THE THEORY.

It has been remarked more than once in the foregoing that the developed theory is
valid only for loads in the neighbourhood of the buckling load. However, in engineer-
ing one cannot always be satisfied with this restriction. Consequently, for some
important plate pProblems several writers already have developed methods which yield
useful results considerably above the buckling load (see [46]). By introduction of
some simplifying assumptions, which all are satisfied for these plate problems, the
methods mentioned above can be combined in an extension of the theory developed in

the foregoing.
The first assumption concerns the external loads; the direction and magnitude of these

loads are assumed to be known with respect to a rigid frame of reference. The energy
of the loads is then linearly dependent on the displacements (see Sect. 29).
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Further, the displacements in the fundamental state are supposed to be so small that
quantities of the second and higher order in these displacement, U(A), and its deriva-
tives may be neglected in comparison to quantities which are linearly dependent on
U and its derivatives. A first consequence of this assumption is the linearization
of the equations of equilibrium. for the fundamental state so that the displacements of
this state are proportional to the loads

t

Upxy = AU . {38.1)
In the increment of the elastic energy (29.4) corresponding to transition from the
fundamental state (38.1) to a neighbouring state U(M\) + u, the terms whose integrands

are of an order higher than the first in the derivatives of um can be neglected.

The total energy increment on transition from U(A} to U(A) +u then is

PM u] = v, [ﬁ] - W, ful] + Vg [u] + V; [u] +

+ Vg [ + V; [u + Vg [u] . (38.2)

The sum of the terms linear in u must be equal to zero as the fundamental state is an
equilibrium state. Furthermcre

Vo u] =Pm[u], m= 2,3, 4

0
m

and after use of (38. 1)

Il
[au]
o

l 1
— A,
Vm [u) Pm [ul], m
Hence (38.2) becomes

PM [u] = P) {u] + AP, [u] + Pg‘[u] + Apé [l + P} [u] . (38.3)
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In this expression, as in Sect. 31.

is positive definite.

The fundamental state (38.1) is uniquely determined so that the buckling load will be

determined by the smallest value A, of the load parameter A for which the homo-

1
geneous variational equation (24.14) for neutral equilibrium

P el = Y [u,a +ap Mgl =0 (38.4)

possesses a non-zero solufion.

This equation in general has non-zero solutions for a sequence of increasing A values
A.l 3 12 ? ..
sponding to A 1 is identical to the eigenfunctions u, of the minimum problem (31. 1)

[39], the so called eigensolutions. It is evident that the solution corre-

corresponding to the buckling load A 1 However, the remaining eigensolutions of

(38.4) can be correlated with the eigenfunctions u of the minimum prob-

u,, -
2 73
lems (24.8) corresponding to the buckling load A 1° if

T, [ = P(z) [ . (38.5)

g |

This is always possible as Pg [u] is definite. The problems (24.8) in that case are

formulated

Py o AP, [u]

w. = Min
P) [u]
! (38. 6)
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The homogeneous variational aquation (22.9) for the eigenfunctions uj then becomes

(1 -w)P}, w2 +AP [, =0,

which, by the substitution of

w =1 -—= (38.7)

becomes identical to (38.4) and consequently has the same solutions. The sequences
Al . }Lz , };3 , ++. and Wy Wy s wys - are both monotonically increasing; this is
only possible if (38.7) is valid with identical subseripts on w and A

M
wp = 1 it (38.8)

Thus the eigenSolution of (38.4) corresponding to A, must be identical to the eigen-

h
funetion u, corresponding to Wy .1

1This does not imply that the set of eigensolutions of (38.4) corresponding to positive
values of A are identical to the set of eigenfunctions (22.9). On the contrary,
eigensolutions of (38.4) corresponding to possible negative values of A are also
represented in the eigenfunctions of (22.9). In the subsequent considerations, nega-
tive values of A have as before been disregarded since these cases can easily
be reduced to those which are being treated by replacement of the unit load system
by one with opposite sign.
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Use of (38.5) also gives the advantage that a vector function v satisfying the

condition
P’ [u.u] = 0 (38.9)
11 7y ’
on account of (38.4), also satisfies the relation
l 1
P, _[uj,u] = 0 (38.10)

and vice versa.

' ' .
The integral P2 [u] can also assume negative values. If it is definite negative and
of a more simple form than Pg [u] , it is even more advantageous to set

T, [u] = - P, [u] . (38. 11)

In that case, the identity of the eigensolution which corresponds to A h and the eigen-
functions u, of (22.9) can again be shown in analogy with the foregoing. Also, the
equivalence of the relations (38.9) and (38.10) remains unchanged.

For the analysis of the equilibrium states at loads in the neighbourhood of the buckling
load separation (32.3) has successfully been utilized. Again, if for the time being the
solution w 9 of the problem (38.6) is assumed to be positive, then to make also use
the usefulness of (32.3) is obvious for the analysis of equilibrium states at loads
further removed from the buekling load. Introduction of

o —- . 0 -
u = au, +u with Pli {ul,u] =9 (38.12)
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~in (38.3) yields after expansion and rearrangement

P rul = 2% | ) 2R ] + 2% B g+ ARy ] +

4.0 .- 2 0 - ! - I 3 L=
+a'P, [ull +a IPZI [ul,u] +AP,, [ul,u] +a Py, [ul,u] +

0 - ' | 0 = ' -
+ Pz.[u] +;\.P2 (ul +a P12 [ul,u} + APlz {ul,u]l +
2,0

= 0 — s 0 = 0 -
+a P.22 [ul,u] o+ P3 [u}] + J\PS [ul + §P13 [ul,u] + P4 ful .

(38.13)
In this expression use hag already been made of (38.10) which follows from (38.12).

With use of (38.12) it follows from (38.6) that
P’ @) +a.P. @ zw. P [u]
2 172 272 ’
or with use of (38. 8) that

P) [U] + AP, (a2 (1 -;—2>Pg @ . (38. 14)

Consequently, the left hanc side of (38.14) is always positive for A<?\2 .

Now, if it is assumed finaily that the displacements u from the fundamental state are
_— 1t

small, so that a and u are also small, then omission of terms which follow APZ [u}

can be justified in the samea manner as in Sect. 32. The integrands of these terms are

either of the second order and contain in that case one or more factors of a, or are
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of higher order in u and its derivatives so that their absolute values are small in
comparison to the terms in the left hand side of (38.14) the sum of which is always

positive for A < A 9 - The approximation of the energy in that case becomes

by _ 2.0 ' ] 3[40 ' ,
prMul = a® Y ) + AR [u] |+ a IP3 (u,] +AP, [u,] ]+
4.0 2,0 T — ], .30 . =
+ 2Py [u) + 2 PG, 1w W) * APy, [uy W+ "R [w) T 1
0,— ro— |
+ Polul+AP, [u] . (38.15)

Equilibrium configurations are again characterised by'stationary values of the energy.
Just as previously, the stationary values of (38.15) are first determined for arbitrary
constant values of a . ‘For this purpose the increme_nt of (38.15) is determined on

transition to a function u + 1 such that
P [u.,n]=0 (38.16)
11*71° : '

2

0 . 3,0
PMu +n] - PMul = 2® [Py [u, 01+ 2%, 1wy, 0]+ a®PY (u m +

* P(1)1 [u,n] +lP'11[E,n] + Pg,{'rr] +7\P; [n1. (38.17)

For a stationary value of (38.15) it is required.that the sum of the terms of (38.17)
which are linear in n should be zero. This stationary value is always a minimum for

A< A, as

2

PJ [1+AP, [n] 20.

The derivation of a variational equation with kinematically possible functions ¢ which
are not subjected to restriction (38. 16) is carriedout in exactly the same manner as

before. The result is
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2 (.0 1
91 (U

—_ t -— .
P;)l_[u,.l;] +}\P11 [u,f] + a” |P 1 [u1,§] + A &1 +

0 T
) 3:p3 [ul] + 37LP3 [u,]

1 0

Pll

[u,,&)i+
ZPg [ull 1 l

0
4P [u.]
41 PO

—_— [u
R () 11
2P2 [ull

3,0

e S )= 0. (35.18)

This equation should, together with the condition
pY [u,u1= 0 (38.19
11 Uy -19)

determine the functions u . Indeed, the solution is uniquely determined for
AF A-h , h=1,2,3.. .. For, in view of (38:18) the difference between two solutions
should satisfy the homogeneous equation (38. 4) which only has a zero solution for

A#A h The solution is uniquely determined also for A=A For the difference

1
between two solutions u' and u" condition (34.4) can be obtained from (38. 18) by
subtraction. It is true that this condition admits u' - u" = cu, , but this solution

is incompatible with the condition (38.19) which holds for u' and u".

The circumstance that for A = 7Lh the functions u are already uniquely determined
by equation (38.18) gives the impression that these functions are subjected to too
many requirements after addition of the condition (38.19). This is apparent indeed,
because by application of (38.18) with ¢ = u, and of (38.4), it follows that

0 = ro— - A \0 = _
P11[u,u1] +7tP11 [u,ul' = (1 _7\1)1)11 [u,u1] = 0

so that for A#A | condition (38.19) is implied by (38. 18).
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For A =Ah h = 2,3,... the homogeneous equation (38.4) corresponding to (38. 18)
has a solution which satisfies condition (38.19). In that case the nonhomogeneous
equation (38.18) does generally not have a solution. By restriction of the analysis to
A< 7\2, which was done through the approximation applied to (38 13), this singularity
would be insignificant, except that in general it manifests itself by a rapid increase of

the solution u of (38.18) as A approaches A_. In that case this solution does not

x
satisfy the requirement of smallness. How this difficulty with the restriction 3 < 3\2
previously introduced can be overcome, will be explainted later. For the time being,

the considerations will be restricted to values of A sufficiently far below ;‘2 .

Because of the linearity of (38. 18) and (38.19), their solution can be written in the
form

u = a% +atp". (38.20)

It is not possible here to express the dependency of (38.20) on A ina simpler way
because A appears also as a coefficient of the unknown functions u in (38.18). When
use is made of (38.18) for £ = u it follows for the minimum of (38. 15) that

'13A(§) = 92 Pg [u1] + ?\P'2 [ul] f+ §3|Pg {u1] + 7\P73 {ul] ]+

4_0 2 A A] { A Jt]
+aP4[u Iacp2+aq0 ?\Pzatrp2+a\,qp'3

In the above expression terms of the fifth and higher order in a can be omitted since also
the terms neglected in (38. 13) would yield terms of the fifth order after substitution of
(38.20). By use of the identity following from (38. 4)

' = -1 50
Pylwyl = A Py (u;]
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and by introduction of the notation

0 0 0 .0 o
P2 [u1] = A2 , P3 [ul] = A3 , P3 [ul] = A3 ,
\ (38.21)
plugl - Pole ] amyle ] A
Py lul leq’z APol¥ g = Ay
it follows for the minimum of (38. 15) that
B @) - | Ala? (a0 s aary a3 4 g 4 38. 22
a) 1] 892 3 32 +tagan. (38. 22)

In view of (38.21) the terms of (38. 22) up to and including the third order are already
completely determined by u - Consequently, for cases in which a sufficiently accurate
approximation has been obtained with the inclusion of these teris already, the

solution of (38.18) and (38.19) is not needed.

Posgible equilibrium configurations are determined by the values which yield stationary
values of (38.12) and the corresponding functions u . Since at constant values of a
expression (38. 22) is a minimum of (38.15), equilibrium is stable or unstable depending

on whether the stationary value corresponding to (38.22) is or is not a minimum.

It was previously mentioned that in general, the function u does not remain small

when A approaches A The elimination of this difficulty will now be treated. For

9 -
this purpose it is remarked that the homogenised equation (38.18) for the case A=A 2

possesses the solution cu Thus; an obvious step seems to be the replacement of

(38.12) by

g °

- e 0 =1 - pl = _
U = ajuy +agu, +u with Poy [ul, ul = P, [u,u) = 0. (38.23)

The case w2 =w, =0, which so far has been disregarded, will at the same time be

treated. In this case A 9 = A 12 80 that (38. 23) rather than (38, 12) should be used for
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values of A in the neighbourhood of ?xl (see also Sect. 36), Substitution in (38. 3)

yields after expansion and rearrangement

2

PA ful] = 2y

Pg [ul] +)\P'2 [ulll + ag ng [u2]+ AP; [uz]'l +

+

31,0 !

2, |P3 [ul] +7\P3 [ul]! +
+a2alP0 fu u]+?\P' [u u}|+
172{721""1°"2 21 "1° 72
+3.512|P0 [u u}+;\P1 fu u]|+
121712 "'"1”"2 12 *71° 2

3 0 !
+ ay |P3 [uy] + APy [u,] |+

4 0 3 0 2 2.0
+ a, P4 [ull + a1a2P31 [ul,u2] + alaZPz2 [ul,uzl +

3.0 4.0
+ ala2P13 [ul,uzl + a2P4 [u2] +

2,0 = ' -
+ ay Ile [ul,u] + Ale [ul,u] ]+
0 = ' -
+ ala2| Plll [ul, Uy, u] +7tP111 [ul, u2,u]]+

21,0 — ! - l 3.0 -
+ 2, IP21 [uz,u] + APZI [uz,u] + angl [ul, u} +

2 0 ~ 2.0 -

*2,3,P0., (U g, ] + a,a5P ) [, u,4]

+ 25 [u,,m + PY (@] + AP, (@] + (38. 24)
2P31 [Ug 2 2 :

Here use has been already made of the properties of the functions u;, U, and U

1

0 ~ 0 - -
Py lupupl= Pyylug,up) = Ppyfug,ul = Pyyfug,u] =

Il

0 -~ _ =
P11 [uz,u] = P11 [uz,u] = 0,
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By analogy to the foregoing in the case that A < ?‘3’ it is also possible to justify the
omission of the terms in (38, 24) which follow A P! [ﬁ] Also the determination of the
stationary value, which appears again to be unique for A< A g » Opens no new angles.
The functions u corresponding to the minimum are again sufficiently small only

when ) stays sufficiently below A Again, for the minimum itself the functions

3 -
do not contribute terms of lower order than the fourth in ay and a, . Hence, in
cases for which terms of the fourth order may be neglected,it is sufficient to know the
eigenfunctions 0, and U .

It need not be said that the difficulty which arises as A approaches A, can be over-

come in the same manner by separation of the component of the third jigenfunction

in the displacement u from the fundamental state. Thus in principle, this method can
be exiended to arbitrarily large values of A provided that the assumption concerning the
smallness of the displacements u remaings satisfied. As A is increased very far in
excess of A;» @ large number of eigenvalues ?Lh will be passed. In that case, the
analysis becomes very complicated and will usually appear to be impractical unless

the approximation of the energy is sufficiently accurate even if the series expansion is

broken off after the third order terms.

—
Once the approximate expansion of the energy P (a ) is available, the determination
of its stationary values does not contribute any new pomts of view beyond those pre-
sented inSect. 35 and 36. The stability analysis also proceeds entirely in agreement

with the conventional scheme.,

Finally, it is noted that the first assumption introduced in this section regarding the
nature of the load system is unnecessarily sharply formulated. It is sufficient to
assume instead that the displacements U(X) remain so small that their influence on
the direction and magnitude of the load which is acting upon a body element may be
neglected. The increase of the load energy on transition from the fundamental state
UQ\) to a neighboring state UQ) + u is then independent of UQ)

-Wlu] = -Wl [u] - WZ[u] - s

-J\W'l[u] -Aw;{ul - ... (38. 25)
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Accordingly, the terms —AWI'n [ul , m z 2 should be added to expression (38. 3).

The analysis proceeds then in the same manner as already has been described.
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Chapter 4
THE INFLUENCE OF SMALL DEVIATIONS

The geometric form of a structure, the elastic properties of its material,and the
forces acting on it are never exactly known. Such a structure is made accessible to
analysis by design of a model which represents the structure as well as possible and
to this model the theory of elasticity is applied.

When the difference between the real structure and the idealized model are small and
when the displacements are so small that the classical theory of elasticity may be
applied, then the behaviour of the model yields a good approximation of the elastic be-
haviour of the real structure; this approximation improves as the differences between

real structure and model become smaller.

On the other hand, in the case that the displacements are not small enough that the
linear theory of elasticity can be applied, the model does not always yield a satisfactory
approximation of the elastic behaviour of the structure. It is true that the approxima-
tion improves when differences between structure and model decrease, but the small
differences which appear in reality may have a significant influence. This is clearly
illustrated by the example of the axially compressed bar. The model used here is the
true prismatic and homogeneous bar loaded by central axial compression. When the
load is not too far away from the buckling load of the model, a small deviation of the
axis at the real bar from the straight line or a small eccentricity of the loading will
cause considerable bending of the real bar, while the axis of the model bar will remain

straight under the given load.

The stability theory belongs essentially to the field of the non-linear theory of elasticity
and, therefore, it is necessary to take into consideration the influence of small deviations
between structure and model. The smallness of the deviations makes it possible to omit

all terms except those which are linear in these.
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41. THE DEFORMATIONS

In the undeformed state a point P° of the structure is given by its coordinates xg with
respect to a rigid orthogonal frame of reference. 1 When this point is subjected to a
displacement with components W in the direction of the axes, the deformation in the

immediate neighbourhood of P° is described by the six components of deformations
(See (11.1)).

du, Ou, 3. 8u Ou

o _ ., 0 _ i i i1
yij ) Tji ) x? ' 9x° ' ox. B8x° - -1
i i h=1 h h

Points of the structure are mapped uniquely and reversibly into points of the corre-

sponding model if the coordinates of a point P° of the real structure are written.

X, = X, + u?. (41.2)

Here, x, are the coordinates of the corresponding point P of the model. The geo-
metrical differences between structure and model are small when the functions u? are
small. In that case the requirement of reversibility of the mapping is always satisfied
because the functional determinant obeys

/0 0 _0 o
6Xl.’Xz’XS)_ s +auh __1forh=j) (41.3)

6(X1,X2,X3) - ht ek, | 70 (ahj " Ofor h # j
and is therefore always nonzero.

The description of the deformed state of the structure is given with x;) as independent

variables. It is also possible however, to introduce, by use of transformation {41. 2),

The superscript 0, used here and in the following section to indicate the real structure,
should not be confused with the superscript used in Sect, 38.
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X the coordinates used for the analysis of the model as independent variables. It is

obvious then that the comparison of elastic behaviour of structure and model will be

Ou,
considerably simplified. In view of (41.3) , —_—L- can be solved from relations
%
3 - o 3 0
i“_l=zﬁ_dxh:z 5 +J“h Ou 1=1,2,3)
Ox 3x° 8x hi gy 80 \J=1,2,3
N e T T = | i/ %
For j = 1 it follows that
o 0 o 0
aui auz auS - aul 6u2 8u3
axl X, axl d%y axl ox
Ou Ou du ou’ a’ Bul ous
Ja_i 1402 _3 A 30,
ox; | 9% 0%y 0% 0%, 0%, 0%y
o o o o
aui auz Ls 6u3 aul 6u2 L. 6u3
8%, X, ox,, Jx,, X, Ox.,
0%3 0x3 0%y 3 3 3

or with terms of second and higher order disregarded in the derivatives of uﬁ

3
i R B
ax‘{

au‘; aui
Ox,  po 9% 0%

For j = 2 and j = 3 an analogous resuit follows, so that in general

i %% 9 %M ,
e i Z . (41.4)
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Substitution of (41.4) in (41.1) yields, again after omission of terms of second and
higher order in the derivatives of uﬁ

d 3 Bu & 3 /6u® Bu.  6u° ou,
v..0 _ i Y + z u u _ Z(uhaul + uh_uJ> +

3 3 duh au au aui auj
- Z 26 axh axk 532; ox ] T Yyt AY; 4s)

h=1 k=1 h

where the 'yij are the strain components (11.1) at a point P in the model which
corresponds to a point P° in the structure, provided that the displacements of the
points in the structure and in model are eqyal; the A’yij are the differences in the

strain components caused by the differences in geometry between structure and model,

42, THE POTENTIAL ENERGY

The elastic potential of the model is a homogeneous quadratic function of the strain
quantities (11.1)

. 2
A ('yij) = Zey vij (42.1)
where summation should be carried out over the six combinations of i and j. tis

assumed that the elastic potential of the real structure is also given by a homogeneous

quadratic function of the strain components which, now however, are determined by
{41. 5)

A° (v.jo) =2¢%y.°% | (42.2)

122



The coefficients c?j = ci]. + Acij differ slightly from the coefficients of (42.1).

Expansion of (42,2} yields,if only linear quantities of the differences between structure
and model are taken into account,

o] 's) 2 2
v.)= c.. V.. C.. V.. AY.. + ZAe. V.2 = A(v. . (42.
A (i] Bro Wt 2Bey vy A%, ZAc, %5 A, + BA. (42.3)

The total elastic energy of the structure is given by the integral

/ f f A% (1) adadeg

where integration is carried out over the volume of the structure. By use of (41.2)

this integral is transformed into an integral which extends over the volume of the model.

[]on () & [[[ @ aeci ifif;) o I3

Finally, by expansion and by omission of second and higher order terms

in the differences between structure and model, for the elastic energy it

f f f A7) axp dxp axg
=[f[A(Yij)dx1dx2dx3 +[ffAAdx1dx2dx3+
6u§ 611; _
A () ax1 ox. " By, dx, dx, dx; (42. 4)
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It is assumed that the load pXidxldxzdx3 which is acting on a volume element at an
interior point X of the model corresponds to a load {pXi + A(pXi)} dxldxzdx3 acting
at an interior point x;) + Ax. of the structure. Let X + Axi be the point in the
model corresponding to x;) + Ax(i) . The quantities Axi can be understood to be
eccentricities of the loads which are acting on the structure, in reference to the geom-
etry of the model. Likewise, it is assumed that the load pidf acting on a surface
element in the point X of the model corresponds to loads (pi + Api)df acting on the
surface of the structure. If the magnitude and direction of the loads are given with
respect to the rigid coordinate system, the potential energy of the loads for the struec-
ture is (see (29.7))

fj ZpXudxldxzdx »‘[ Zpudf+
i=1
3 3
- f f iZ=le(pxi) u,dx, dx,dx, - iz=:1Api wdf +

3 611 3 3 é')‘ui
2 PX, ——Ax]dx dx, dxg - Zpi 3, @ijdf. (42.5)
j j

i=1 i=1'j=1

The total energy is given by the sum of expression (42.4) and (42.5). All possible
deviations of the structure with respect to the model are here taken into account. In
the following, however, the differences of elasticity constants and magnitude of the
loads will be disregarded so that only the influence of the geometrical deviation and of
the eccentricity of the loads will be taken into consideration. The total energy in that

case is
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3 3
2 . -
ff 2 gy Yy Oy By g f f f i)_:_lp.xi by dxy dxy dxg j f 2Py vy o+

([ 3 du 0
2 Yho|
* LJ lzzcijyij A% +Zcij %j hz_: x| IR dxg
=1 9%
[[£0 8 2 (a5
- X, = Ax dx, dx, dx, - p. =— Ax. df . (42.6)
J1E i3 BX}. i 1772778 =i jzlaxj- j

The first three terms represent the energy of the model, the fourth term the energy
increase as a result of the geometrical deviations, and the last terms the energy
increase caused by the eccentricities of the loads. It is noted also that the integrand
of the fourth term as well as that of the first term is a polynomial in the derivatives
of W with terms of the seccnd, third and fourth order. The integrands of the last
term, as well as those of the second and third term, depend linearly on the displace-
ments . For the following it is advantageous to write the geometric deviations

and the eccentricities in the form
0 _ 0 B
= eV, ) Axi = EAyi . (42.7)

The last three integrals then have a factor ¢ in common. The quantities v? and
Ayi characterise the nature of the differences between structure and model, The
factor ¢ determines the magnitude of these differences and is accordingly named the

deviation parameter.
43. SIMPLIFICATION OF THE ENERGY

As in Chapter 3 the loading is assumed to be given as a product of a unit load system
and a load parameter X. If the model possesses an equilibrium configuration for a
certain value of A, then, for small differences between structure and model, it can
be expected that the structure possesses an equilibrium-configuration for the same

value of A with displacements which differ slightly from the equilibrium displacements
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of the model. In the limiting case that the deviation parameter ¢ converges to zero,

the equilibrium states of the structure should of course approach those of the model.

Thus, the structure shall in general possess an equilibrium state whose displacements
differ slightly from the displacements U()\) of the fundamental state of the model.
However, also, the neighboring states of equilibrium of the model, which exist for
loads in the neighborhood of the buckling load, will correspond to equilibrium states of
the real structure whose displacements will differ snghtly from the displacements of
the model, and consequently, will differ slightly from the displacements U(A) of the
fundamental state of the model. It is,therefore,appropriate for the analysis of all these
equilibrium states to write for the total displacements of the structure (at present

1
indicated by v )
v = U(A) + u. (43.1)

After introduction of (43.1) in (42.6), the integrands are expanded. Through a series
expansion in agreement with (22.1) the sum of the first three integrals, which together
represent the energy of the model corresponding to the displacements (43.1), are

found to be
P(UMN +w = PUMA) + PM[u] + PX[u] + P2 [u] + P2 [u] (43.2)
1 2 3 418l :

Here the dependency on the load parameter is expressed by use of the index A. In (42,6)
there are no integrals with integrands of an order higher than four in the displacements

and their derivatives. Therefore

P;l[u] =0 for m >4 ; Pz[u] = P, [u]

lln the following, the subscripts i etc., which indicate the components of the dis-

placements, are again discarded.
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should hold (see also Sect. 29). Besides, the fundamental state of the model is an
equilibrium state and thus (22. 3) should be satisfied

The r'ema.ining integrals of (42.86) are treated in an analogous manner. The result is

of the form
€QU(A) + u) = eQ UA) +

cedd) v Q) ¢ Q) + @) (43.3)

which, unlike {43. 2), in general should contain the linear term in u , Qi‘[p]. This
term results partially from the fourth integral and partially from the last two integrals
of (42.6). The integrand of the first part is a linear polynomial of the derivatives of
the displacement u , whose coefficients all contain at least one of the derivatives of

U (A) as a factor; the integrand of the second part contains the factor A .

For small displacements u the term of the lowest order in (43. 3) will be most signifi-
cant so that for a first approximation to the influence of the differences between struc—
ture and model it is sufficient to take only this term into account. The energy of the

structure then is

PAju] + €QMu] = PXu] + PAfu] + P, u] + eQi‘[u], (43.4)

where an unimportant contribution independent of u, and representing the energy corre-

sponding to the displacements U(A), has been disregarded.
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It is of course of particular importance to determine how the structure behaves at loads
in the neighborhood of the buckling load of the model. For this purpose, just as in
Sect. 32, the integrals occurring in (43.4) will be expanded in terms of A - Al

PAful +€QA[u] = Py [u] + (A- A Pyl + (A - Ap? Py [u +
taa. + P3[u]+(A—A1)P3'[u] oo+ Pyl o+
+edQ [+ (A - A)) Ql"[u] + o b (43. 5)

As in Chapter 3, the assumption of the existence of this expansion implies that only
stability problems can be treated, for which the critical state of the model constitutes

a bifurcation peint of equilibrium.

For the analysis of equilibrium configurations in the neighbourhood of the buckling load
in the case that the solution W for the critical state of problem (24. 4) is positive,

it was stated that!

w=au, + 0 with T

au, ll[ul,u]=0.

It is to be expected that also for the analysis of the structure this decomposition will
be useful. Introduction in (43.5) after expansion and rearrangement (see also (32.4))

gives

1As confusion about the indices of the coordinate directions can be excluded, the
indices for the eigenfunctions are again placed right below the symbol.
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PA u] + GQR[u] = ae in [ull + (A - )\1) Ql’[ul] +oLa0p t
+ o i (A=A PJlu] + (A - A PJu] + ... ‘ +
+ §3 P3 [ul] + (A - )\1) PS’[ul] F oo % + §4P4[u1] +
+€§Q1[u]+?\7t)Q{ul+-. +
+§.§(A—A1)PH’[ul,ﬁ]+()\ )\)P”[u , U] + ...} +
+ '112% PZI[ul , 4] + ()t-)\l) P21’[u1 , Ul o+ ...+
+ 513 P31[u1 , 1] o+ PZ[E] + (A - Al) Pz’{ﬁ] + ...+
+§P12[u1,ﬁ]+....+P3['ﬁ]+....+ P4[ﬁ] (43.6)

In agreement with Sect. 32 the omission of the terms which follow sz[ﬁ] is justified.
It follows that

PAly] + €@ ) = ac }Ql ) + (= A Qle) + .. | b
2 ’ 2 ”
+ ;(,\ )\)P [u] +()x—)\l) Pz[u1]+.... +
+ 3}P[u_ - (A - AY) P u] + %+a4P ful +
3 [ug) 1) Fg i e a Fqly
+€§Q1‘+(A A Q[ + ‘
. %(A A Py w0 PR ey e |
R LSO P RE S .
+ §3 P, [u, , 1] + P, @ . (43.7)
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Furthermore, it is noted also that the simplifying assumption with regard to the nature
of the load system, as was introduced in Sect. 42, is not essential. For more general
load systems the increment in the energy on transition from the displacement configu-
ration U(A) to U(A) + u can always be expanded in terms of A - 7\1 . For that case
the terms to be added to (43. 2 and 3) are of the same form as those already considered,

so that the previous considerations do not undergo essential modifications.

44. CALCULATIONS OF THE FUNCTIONS u

The equilibrium configurations of the structure are determined from the ‘stationary
values of the energy (43.7). This procedure is again applied in two steps. First,the
stationary values of {43.7) are determined for an arbitrary constant value of a . Next,

the stationary values of the function Fl(g.) thus obtained are determined.

The first step is carried out through calculation of the increment of (43.7) as the func-

tion u is replaced by the functions u + % under the restriction
Tyylyy sml =0 . (44.1
The result is

P la+n) + @ [utn) - P[] - e ) =

=e | Il (A=) @+ o+
P {0 - a) Pyplugaml ¢ - A R ey L] v e
2 .
+ a {P21 [u1 1+ (A -—Al)PZI'[ul,n] + l+
+ 2’ Pylu ,nl + B G ,n] + P, Ly, (44.2)
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The condition for a stationary value of (43.7) requires that the terms in (44. 2)whicharelin-
ear in 1 should be zero. The stationary value so determined must be a minimum because
P2 [n] is always positive due to condition (44.1). In analogy to developments in Sect. 33,
the condition obtained by equating to zero all terms of (44.2) linear in 71 is made
equivalent to a set of differential equations and boundary conditions. This is done
through introduction of an arbitrary kinematically possible function ¢ which is not
restricted by (44.1). The execution of this derivation does not offer any new difficul-

ties and the result may immediately be written down

Q. [u,
plugd
Qllrt] ET_TET [ul,E]
: Q’[u]
+€(A-A1)| Q[ - T, Tu[ul,z]|+ e ¥
2P2 [u]
*a(aoay) ‘P11[“1’§} [u] T 1’€}]
” 2P [u}
+ a(l- K)Z‘P [1,?,] Tm’ 11 1,€]| A
3P, [u,]
2 3 1
* 1P21 (8- T, I, ] Typ by ]|+
3P. [u,]
2 , 3 '
+a (A—Al)IPﬂ[ul,f,]— WTll[ul,§]|+.... +
4P  [u, ]
+ S‘P [, .8 - gt T E]l+p [, ¢l = (44.3)

27 ?
2 [ul] 11 1

The functions u are uniquely determined by (44.3) together with the requirement

T, [y ,u] = 0. (44. 4)
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On account of the linearity of (44.3) and (44. 4) this solution can be written in the form

- 2 n
U =€@, Fe (A=A eyt eee T A(A- A ) T AR AN e F

0 1)‘P1

2 2, \ 3
+....+a_L<P2+si,(A ll)¢2+....+g.¢3, (44. 5)

LA 1

1 etc. ¢ 5 ’(‘02
{33.8) respectively. The solutions ¢ o0’ go:), etc.,are the solutions of the equations

in which ¢ '1 , P etc. and ¢4 are the solutions of (33.6), (33.7) and

Q. Iu,l .
- 171 . _ ) -
Pu[u,z} + QI[EI - 2T2[u1 Tll[ul,éj— 0 : Tll[ul,u] =0

[u ' 9 Ly lu, ,z] o, ,al
Pll[u’§]+ Ql [¢£1- W T11 u, ¢l = 0 ; T11 u, ,ul = 0 etc.

(44.6)

By application of (44.3) for { = u, the minimum of (43.7) is found to be

f
a_le{Qliuli + (A -2y) Ql[“1] RETTE
2 ' X 2 . n
+at{(a-a) Pyly 1+ (A=A Polu T+ .o} e
2P fw 1t (A-apPu] + ... )+ atp,u] - P lul.
L R | y R L L 254 2
By introduction of (44.5) and by use of the constants (33.10),this expression becomes
@) = —Al)Az'a_lz + (A—Al)zA; 3_12 T+ Ay a® +

r 3 4
t(A-a)AyaT o AR L +€@Q1[u1] +

tea(r-ny) {Ql’[ul] - Plll")o""]:”* e - egan[fPO, Pol = een t
—e2p lg 1-c2(A -2 P, (¢, @] - (44.7)
2% 1) P11 9 — e :
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Here, as in (33.11), the terms of higher order than the fourthin A - A, and 2 are

disregarded. The terms independent of a have no influence on the derilvatives of

F 7\(a) and can, therefore,be disregarded. The most important influence of the differ-
ence_ between behavior of structure and model is represented in (44.7) by the first
term with factor ¢ . Unless Ql [ul] is zero for all possible kinds of geometrical
deviations and ecceniricities, which case will not be considered in the following, it is
sufficient as a first approximation of this influence to take into account only the first

term.

In analogy to Sect. 34 approximation (44.7) may be improved. This improvement is
again necessary when AS as well as A 4 Are zero. No improved approximation of
the influence of the differences hetween structure and model will be derived here. The

energy of the structure is then given by (34.8) augmented by the correction term

€aQ [ul] =¢eB a. (44.8)

In (44.7) and in the second approximation ((34.8) augmented by (44.8)), the first term

is of dominant importance in comparison to all terms containing a factor A - 3 1

Further, the dominant term among those which do not contain a factor A -3 1 or ¢ ,
is given by the one which is of the lowest order in a. Let this term be An :_1n s
then F A(a) can be simplified to
A = _ ' 2 n
F {g,) EBl_zi, + (A 7\1) Azg. + Ang . (44.9)

(See also Sect. 35.)
45. THE EQUILIBRIUM CONFIGURATIONS

The equilibrium configurations are characterized by stationary values of the energy,

thus, on account of approximation (44.9) by

A
dr (@) n-1
7\' = o = - ' =
fAa) = Y €B, + 2(A Al) Azg. + nAna_l 0. (45.1)
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Because F A(a) is the minimum of (43.7) for a constant value of a, the stability
requirement determined by (45.1) will be satisfied if and only if the corresponding
stationary value of F A(g) is also 2 minimum. The decisive quantity about stability

is,therefore,the second derivative of (44.9).

d®Fr@)  dfr )
2 ~  da
da =

n-2

= 2(A-2A) A+ nn - DAa (45.2)

It appears from (45.2) that in a A versus a diagram for the structure, the stable
combinations of A and a are separated from the unstable combinations by the same
line of partition holding for the model (see Sect. 35). Consequently, an equilibrium
configuration of the structure which for € - 0 approaches an equilibrium configura-
tion of the model is stable or unstable depending on the stahility of the model configura-
tion. Equilibrium of the structure is at the stability limit if the image point in the

A versus a diagram appears on the partition line. The third derivative of (44.9) is
nonzero, e€Xcept inthe case that 2 = 0. Consequently, equilibrium at the stability
limit is unstable, except perhaps inthe case 2 = 0, A = A and the above men-

1 ’
tioned partition line must belong to the unstable region.

According to Sect. 35, AI‘Z is always negative. B1 may always be taken positive as
differences of opposite sign between structure and model are already represented by
negative values of ¢ . However, distinction must be made between odd and even
values of n, and in the latter case also between positive and negative values of AIl .
For odd values of n an equilibrium value of a corresponding to € and An is
equivalent to an equilibrium value of -a corresponding to -¢ and —An . In view of
(45. 2) the stability is also the same for the equivalent states so that it is sufficient in
this case to restrict the considerations to positive values of An . For even values of
n, itis sufficient to take into account only positive values of € , since an equilibrium
value of a corresponding to € and an equilibrium value of - a corresponding to -¢€
exhibit the same type of stability. The treatment of (45.1) and (45.2) may consequently
be restricted to the following four cases
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a. n odd , A11 > 0,€e> 0;
b. n odd . An > 0,e < 0
¢. n even , An < 0,e > 0;
d. n even |, An >0, > 0.

For the cases 2. to c. the equilibrium of the model is unstable in the critical state;

while in case d. it is stable.
451 Case a.

From (45.1) it follows that f K(a) is positive for values of a corresponding to the

fundamental and the neighboring states of the model

_1
2(r-2rp) A ] 72
§=Oandg=——r {45.3)
n
From (45.2) it follows that
_1_
>0 for a > . A n-2
1) S ks L 5.4
da = n{n - 1) An
< 0 for a <

Consequently equation (45.1) can have at most two roots and those lie between values
of a determined by (45.3). For the values of a determined by (45.4), fx (2}
reaches its minimum. The roots of (45.1) are real if the minimum of f7l a),

corresponding to a value of a determined by (45.4), is negative or equal 1o zero.
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1

nn- 1) Ap I

i FA = — - '
Min £/4(a) EBl 2(A ll)Az

n-1
2(A-2, At D2
nlnm - 1) 0
n-1 1 _ -1 _ 1
_ ] _ | n-2 n-2 _ n-2 _ n-2 .
=B, - 2(2 ;\I)Azl n @ - 1) M - 2)A < 9.
This condition is satisfied if and only if
n-2
- - 2 -
|2()\_A. )Allnl (n ) > (QB)nzor
1772 n-1 1
n{n - 1) An
1 _n2 == n2
}A-')\]’ 2"l - -2 P A (B " (45.5)
H - !
2

The inequalities (45.5) determine two values A * and A ** such that equation (45.1)

has two real solutions for A < A * <A 1 and A>A *¥>A, . TFor A =A% and A =jx**
it has a real double root and for A* < A <A** it has nho real roots. Inthe A versus
a graph the equilibrium states which exist for A £ A * and A 2 A ** form two separate
branches which for A =A* and A =A ** have a maximum and a2 minimum respectively.
These branches both consist of one part that approaches the fundamental state of the
model and a part that approaches the neighboring states of the model when € — 0 (see

also Fig. 3a, page 93).
From (45.2) and from use of (45.4), it follows that equilibrium is stable in the state

corresponding to the greatest value of a and unstable in the other state. Equilibrium
is at the stability limit for A =A* and A = A %%,
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Of particular interest is the equilibrium configuration which, for loads below the
buckling load, approaches the fundamental state of the model when € — 0. This state,
the so-called natural state, will be obtained from the undeformed state by gradual in-
crease of the load parameter A . As for A<A* both equilibrium values of a are
negative. It follows that the gr‘e:atest of these equilibrium values corresponds to the
natural state which is stable for A <A*, For A =A* the stability limit is reached
and -A* determines the bucklirg load of the structure. This buckling load is lower
than that of the model. It follows from (45.5) that

1
B - —
1 € n_l L] (45.6)
A

2

so that in a graph of the buckling load of the structure as a function of the deviation

parameter ¢ , the tangent in the point € = 0, A* = A

(Fig. 2).
Xy

1 coincides with the A * axis

Al

FIG., 2

Consequently, for a small but finite value of €, i.e.,for small differences between
structure and model, the buckling load of the structure may lie considerably below
that of the model. This decrease is mainly governed by the exponent of ¢ in (45.6);

it is more pronounced the smaller n is.
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452. Case b, (n odd, An > 0,¢e < 0)

From (45.1) it follows that f;\(‘{:_l) is negative for values of a corresponding to the
fundamental state and the neighboring state of the model (45.3). In this case (45.4)
also holds. There are consequently always two equilibrium values of a which are
separated by the equilibrium values of the model (45.3). The state corresponding to
the largest value of a is always stable, the other unstable. Also in this case, the

) versus a diagram consists of two separate branches, of which one is now com-
pletely stable, the other completely unstable. Both branches consist again of one part
that approaches the fundamental state and one part that approaches the neighboring
gtate of the model when € — 0 (see also Fig. 3b, page 145).

The natural equilibrium state, which for A< A] approaches the fundamental state of
of the model as ¢ approaches zero, corresponds to the largest value of a

and lies consequently on the stable branch. Therefore, as the Joad parameter A is
gradually increased the buckling load of the model will be passed without occurrence

of buckling.
453. Case c.(n even, An <0, <0

For A_>11, (45.2) is always negative. As fl@) is positive for a = 0, equation

(45.1) has one real root; the corresponding equilibrium state is unstable.

For A<A, it follows from (45.1) that fx(g,) is positive for

1

_ 2 {(AaA-Ar)A]
a = 0 and for g.nz = - nAl 2 (45.7)
n

which correspond to the fundamental and neighboring states of the model. It follows
from (45. 2) that

af’ @)
da

2 (A-A) A
" n{n - 1} A,

2

{45. 8)

Allv

0 for a_tn“

VilA
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Consequently, equation (45.1) always has one positive root for which the corresponding
state of equilibrium is unstable. This root is greater than the positive value of a for

the neighboring equilibrium state of the model as determined by (45.7).
Moreover, equation (45.1) can also have two negative roots which lie between

1
n-2

2(A-x.) A)]
9=_l_ 1" 2

nA
n

and 2 = 0, {45.9)

A necessary and sufficient condition for the existence of these roots is that the mini-
mum of fh(g,), which lies between the values given in (45.9) and which is obtained for
values of a determined by (45. 8} is negative or zero

1
A 2( A=) A n-2
i = - - 1
Min £ (il) eBl 2 (A ?Ll) A2 ) An +
n-1
2 (A-A_)Ar| M2
nA ) L) _
n|-n{@n - 1)A
n
a1l 1 _n-1 1
- - o | n-2 n-2, n-2 _ n-2 _
¢B, '2(1 AI)AZI n - 1) n-2)(-a) s
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This condition is satisfied if and only if

n-2
- - ~2
2(x-2,) Ay | "7t o If)l z (B))"
nn - 1) (-An)'
or
1
1 n-2 g
1 o1 (- At ey
A=Ay s-3n @- 10 -2) T(GBI) (45.10)

The inequalities (45.10) determine a value A * such that equation (45.1}) has one posi-
tive root for A > ?t* , one positive and two negative roots for A < A ¥ . For A= At
the two negative roots coincide. Inthe A versus a graph the positive and negative
equilibrium values of a form two separate branches. The branch for negative a values
has a maximum of A for A = ?\* . Both branches consist again of one part which
approaches the fundamental state and one part which approaches the neighboring state

of the model as ¢ — 0 . (See also Fig. 3c, page 145).

From (45, 2) it follows, after use of (45.8), that the smallest negative root determines

an unstable state of equilibrium, and the largest negative root a stable state of equilibrium.
For A =A* equilibrium is at the stability limit. The natural equilibrium state ig in this
case determined by the largest negative value of a. This configuration is stable A <A*;
for A = A* the stability limit is reached and thus the buckling load of the structure is
determined by A*. This buckling load is again lower than that of the model. In analogy

to (45.6) it follows from (45.10) that

-n{n - 2)A

By

da*

da* _% 1 . n- (45.11)

de
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For (45.11) the same conclusions can be drawn as was done in the discussion of (45. 6);

in particular fig. 2 holds also in this case.
454, Case d.(n even, An >0, € >0

A
For A < A 1° (45.2) is always positive. Since f (2) is always positive for a = 0,
equation (45.1) possesses one real negative root; the corresponding state of equilibrium

is always stable.

A
It follows from (45.1) that for A > X 1° f (a) is always positive. It follows from (45. 2}
that, for values of a (45.7) which correspond to the fundamental and neighboring equi-

librium state of the model,

A 2 ((A-A ) A
df (a) ' n-2 , 1 2
) 2 0 for a Y T An (45.12)

Consequently, equation (45.1) always has a negative root which corresponds to a stable

equilibrium configuration.
Besides, equation (45.1) can also have two positive roots falling between

1
_ qh-2
_2( A-A 1)A2

nA
n

(45.13)

9=0 and §=‘

The minimum of f7\(a.) which lies between the values of a indicated in (45.13) corre-

sponds to positive values of a as determined by (45.12}.
It is necessary and sufficient for the existence of the two positive roots that this mini-

mum of fA@) is negative or equal to zero. In analogy with the foregoing case this re-

quirement leads to the condition
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-1
n-1

lj|
[ Ll
=t
g
[y

h-2
n-1

n (n-1) (n-2) (€B,) . (45. 14)

n
A
AZ

(=
D =

Inequality {45.14) determines a value A ** such that equation (45.1) has only one nega~
tive root for A <A ** | one negative and two positive roots for A> A ** |  For

A= A** the positive roots coincide. Inthe A versus a graph the positive and nega-
tive equilibrium values of a form two separate branches. The positive branch
has a minimum for A =X ** . Also in this case both branches consist of one part
which approaches the fundamental state and one part which approaches the neighboring
state of the model when € — 0 (see also Fig. 3d, page 145).

It follows from (45.2) that the largest positive root determines a stable state of equi-
librium, the smallest positive root determines an unstable state of equilibrium; for

A = A ¥ equilibrium is at the stability limit.

The natural equilibrium configuration in this case is determined by the negative root
of (45.1) and lies therefore on the stable branch. Consequently, by gradual increase
of the load parameter A the buckling load of the model will be passed without the ocecur~

rence of buckling.
455. Conclusions
The results obtained in the foregoing may briefly be summarized as follows.

For the model the A versus a graph has two branches which intersect at A = 1°
the fundamental state and the neighboring states. Small deviations of the structure
from the model. cause these branches to decompose in two completely separated
branches. Both branches consist of one part which yields the fundamental state of the
model and one part which yields a neighboring state of the model when the deviations
approach zero. One of these branches represents the so-called natural equilibrium
state of the structure which, on gradual increase of the load, is obtained from the
undeformed state. The following considerations are restricted to this most important
natural branch.
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If equilibrium is unstable at the critical point, and the stability is governed by

a quantity with odd subscript (A3, A5, ete.), then, for positive values of the
deviation parameter € , the buckling load of the sfructure is considerably smaller
than the buckling load of the model. This decrease of the buckling load is larger for
smaller values of n . On the other hand, for negative values of ¢ , a gradual in-

crease of the load on the real structure does not result in buckling when the critical

load of the model is passed.

When equilibrium of the model is unstable in the critical state and the stability is gov-
erned by a quantity with even subscript (A4, AB’ etc. ), for positive as well as negative
values of ¢ , buckling load of the structure is considerably below the buckling load of

the model. This decrease is again more significant for smaller values of n .

When equilibrium of the model is stable in the critical state, increase of the load on the

real structure does not result in buckling as the buckling load of the model is passed.

Not only the magnitude of the buckling load is considerably influenced by deviation of

the structure from the model, but also the character of the buckling phenomenon in struc-
ture and model is completely different. While the buckling lcad of the model corre-
sponds to a bifurcation point of equilibrium, the buckling load of the structure as a
maximum corresponds to a snapping point. As themodel can be considered a special
case of the real structure (the case that € = 0), it seems that the buckling problem
corresponding to a bifurcation point should be considered as a special case of the more

general problem of a snap buckling. 1

A possible decrease in the buckling load caused by the presence of small deviations in
the case of an unstable critical state of the model is of great importance in engineering.
The greatest allowable load is determined by the buckling load of the structure for the

most unfavorable deviations between structure and model. The calculation of this

lThis conjecture can generally be maintained if and only if in the case d (Sect. 454),
the minimum A¥¥ of M\ corresponding to the second but not natural branch of the
A versus a diagram is also called a snapping point.
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admissable allowable load is,therefore,only possible on the basis of an analysis which
includes the existing differences between structure and model. Of course, the buclding
load of the structure can also be determined experimentally. However, because of the
strong dependency of the bucKling load on the magnitude of the deviations (see Fig. 2),
the results of these tests will show a rather great scatter,. so that a fairly large num-
ber of tests will be neceded for a reliable determination of the buckling load which cor-

responds to the most unfavourable case.
456. Examples

Some typical examples of A versus a graphs are represented in Figs. 3a to 3d, for
the cases

respectively. In these figures, the curves indicating the model behavior are also
shown. The stable branches are, just as in Fig. 1, indicated by heavy lines;

the unstable branches by dotted lines. The boundary between the stable and unstable
combinations of A and a are indicated by a dash-dotted line.

Of the curves, only the part in the neighborhood of A = )\1 is drawn. This is motivated
by the fact that the results of this section are valid only in a more or less restricted

neighborhood of the buckling load of the model.

46. SPECIAL CASES.

The preceding considerations are based on the assumption that for the critical state of

the model the solution W, of the minimum problem (24. 4) is positive. The influence

lAlong with this it is yet once more stressed that all considerations are based on the
assumption that the elasticity limit is not exceeded anywhere in the material.
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of the deviations between structure and model on the minimum of the energy for a
constant value of a is then expressed by the addition of the term EBlg. to the form
(35.2).

The case

W, = w =....=wh_1=0,wh>0

can correspondingly be treated when the displacement u is written as (see (36.8))

h-1
u=z aju, + @ with T [uj,ﬁ]=0,:i=1,2....h-1. (36.8)

After introduction of this expression in (43.5), the minimum of the energy is again
determined for constant values of a.j . This treatment, which is a synthesis of the
considerations of Sect. 36 and Sect. 44, does not offer new difficulties, so that the

expression for this minimum is immediately written
A’ = Q - P P + = =
F (aj) <EQ1 (aj) + (A AI) P2 (aj) + Pn (aj) ; D 3orn 4. (46.1)
The difference between structure and model is here expressed by the term

h-1
Q@) = © a9 .
=1

The equilibrium states are characterized by stationary values of (46.1), i.e., by the

A 8Q 831 0P
OF" _ 1 2 n _
ga, " Fa, T M FEmt Em T O (46.2)

1 1
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The stability of the equilibrium configuration determined by (46.2) is governed by the

form
h-1 h-1 - - —
da, da, Aa Aa]. = (A-2y) 9a. ga, AaiAa‘j +
i=1 j=1 i =1 j=1 177]
h-1 h-1 8.2 ﬁn )
i=1 j=1 L

In this case, the general analysis of the states of equilibrium leads to great difficulties

and will be omitted here. One special case will be discussed in Chapter 7.
47, EXTENSION OF THE THEORY

The theory developed in the foregoing, as well as the general theory of Chapter 3,is
restricted to a small neighborhood of the buckling load which differs from case to case.
This is,for instance,expressed by equation {45. 1) which for A = 0 does not have the
solution a = 0 corresponding to the fundamental state. Consequently, it is here of
importance also to extend the theory to loads further removed from the buckling load.

Ag well as in Sect. 38, the possibility for this exists if the displacements U(A) of the
fundamental state of the model are so small that quantities of the second and higher order
in U(A) and its derivatives may be neglected in comparison to quantities which are linear
in U(A) and its derivatives. Likewise, the displacements u from the fundamental

state U(A) should remain small, and it is assumed that magnitude and direction of

the loads are given with respect to a fixed coordinate system. By use of (38.3), (43.4)

can now be written

PMu} + € QM [u) = Pg [u] + AP, [u] + Pg [u] + AP [u] + Pg [u] + ¢ Q{‘[u].

(47.1)
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In Sect. 43 it was remarked that Q{‘ [u] consists of one part containing A and one part
whose integrand is a linear polynomial of the derivatives of u with coefficients which
contain as a factor one or more derivatives of U(A) . In this latter part, only the co-
efficients which are linear in the derivatives of U(A) must now be taken into account.
After this, by use of (38. 1),it follows that '

A = '
Ql fu] = AQI [ul. (47. 2)

Under the assumption that the solution w 5 of the first problem (38.6) is positive,

again is introduced

u = aul + 1 w1th P11 [ul, u] = 0. (47.3)

Introduction of (47.1) gives, after expansion and rearrangement,
A A _ _ 2 2]
(] +e [l = exaQyru] + a® | P quy] + APy [u]
+ 33’ P% [w] + AP [u] j+ 2% p° [ +em'{a] +
- 31 371 - 41 1
+ a IPZI[u ;U] + AP, [u, , il ,+ a’ P°

u] +
31 [0

P°2 [al + Ap,'(a] . (47. 4)

The.omission of the terms which follow ?LP'Z [Q] (see (38.12)) may be motivated here for
A< A, inthe same way as in Sect. 38.

States of equilibrium are characterized by stationary values of the energy. For a

constant value of a4, (47.4) appears to have a minimum for A <A 9 This minimum
is obtained for the functions
i=a%? 1+ a%2 saap (47. 5
-T2 - '3 0’ ’



where the first two terms form together the solution (38.20) of (38.18) and (38.19).

The last term is determined as the solution of

Q,'[u.l

1
LTl + AP s [@,€] +er | Q' [8]- ———— PO [g ,¢]
1 11 11
2P% [ul]
P1°1 [u,,d] = 0. (47. 6)

The derivation of these results, which is in complete agreement with Sect. 38, are
omitted here. The calculation of the minimum proceeds in the same manner as

in the foregoing. Through introduction of the notation

Ql' (u} = B/ (47.7)

and by use of (38.21),it follows that

FMa) =eABa + (1 - A Aga® & (Ag + AAj) 2% + atat.  (r.g)
= 1- 7\1 3 4
In this expression, just as in(38.22),terms of the fifth and higher order in a are

neglected. Furthermore, among the terms which contain a factor € only the term of

the lowest order in a , the linear term, is taken into account.

The difficulties which successively arise when A approaches A 9 7\3, etc. , are dealt
with in the same manner as in Sect. 38, so that it is not necessary to look into this
matter more closely. Aiso, the determination of the stationary values of (47. 8) and
the stability analysis of the corresponding equilibrium states meet no difficulties, so
that it is sufficient here to refer to Chapters 6 and 7 in which some applications will be

discussed.
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Chapter 5
SHELL STRUCTURES UNDER FINITE DISPLACEMENTS

51. SIMPLIFYING ASSUMPTIONS

The technical shell theory for infinitesimal displacement is usually based on the follow-

ing three approximations concerning the state of deformation and stress [35):

1. points which initially lie on the same normal to the undeformed middle
surface, remain after deformation on the corresponding normal to the
deformed middlie surface;

2. change in distance between two such points may be neglected; 1

3. normal stresses on planes parallel to the middle surface may be neglected.

Although the assumptions of this theory are mutually contradictory for an isotropic
material, the results which are obtained for thin shells are in satisfactory agreement
with experience. Also,the more rigorous investigation of Love [36], in which the
results obtained from the assumptions mentioned above are considered to be a first
approximation, confirms that at least for thin shells these contradictions are of no

practical significance.

In view of this experience gained in the analysis of infinitesimal deformations, it
seems justified to base the shell theory for finite deformations on the same assump-
tions. This theory could be obtained by means of a slight extension of Love's analysis.
Nevertheless, when,in the following, preference is given to a different derivation ,it has
mainly been done to avoid the assymmetry which was introduced by Love in the defini-
tion of the changes of curvature of the middle surface and which detracts from the

lucidity of his results.

1It is true that Fliigge [35] does not mention this second assumption; however, he
makes use of it in calculating the deformations.
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52. DIFFERENTIAL GEOMETRY OF SURFACE

A surface is described by the coordinates X with respect to a rigidly fixed rectangu-

lar coordinate system. The coordinates are functions of two parameters o and B
x = X (0, f). (52.1)
For a line element on the surface [37]

d? = Edo® + 2Fdedf + GdB, (52.2)

where E, F and G are the so-called quantities of the first order. 1 2

9 % ’ 9%, 0% > 9%, ’
E=A=2'5€—I-.,F= -B—Qﬁ’G:Bzz-EE—_ (52.3)

The direction cosines of the normal of the surface with respect to the rigid coordinate

system are given-by

ij axh axh ij

90 98~ 9o o8

n. =
1 VEG - F2

(52. 4)

in which i, j and h are the cyclic sequence of the coordinate axes. The positive
direction of the normal is determined by (52.4). The coordinate system formed by
the tangents to the parameter curves § = const. and & = const. in the direction
of increasing values o« and S together with the positive normal is, in this sequence,

orientated in the same sense as the X; system.

1For these quantities the usual notation has been retained since confusion with the
elasticity constants E and G is excluded.

2Unleass it is explicitly stated differently, summation should always be carried out over
i=1to3.
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The curvature of the surface is completely described by (52.3) and by the so-called

quantities of the second order

.0 X, on, 8x,
T s S g §
i 80?2 do 9
2 on, 0x on. 0x
. _z 2 Y _ i %% i %N
T4 dadp da 9B 9 da '’
E}zxi \ ani axi
N =Zn. = ) e (52.5)
i 542 95 o
The radii of curvature through the tangents to the parameter curves 8 = const.
and & = const. are determined by
1 L 1 N
==, = = =, (52. 6)
R1 E Rz G

where R1 and R2 become positive or negative depending on whether the center of

curvature lies on the positive or negative part of the normal.

The formulas are considerably simplified if the parameter curves coincide with the
lines of curvature sothat F = M = (. It is assumed that this is the case for the
undeformed middle surface..

The following calculation of the strain components is most clearly demonstrated after
a set of unit vectors is introduced in the directions of the tangents to the lines of

curvature 3 = const. and o = const. and the positive normal to the surface. For

the components of the two vectors first mentioned, it holds that

1 i 1 i
i~ A Bax * PLTB (52.7)
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while the components of the normal vector are given by the direction cosines n,

The orthogonality of these vectors is expressed by the relations

z a b, = 0 z b = 0 Z na = 0. (52.8)

'The fact that the length of these vectors is equal to unity is expressed by the relation

Za.2=1 ,zb2.=1 Z n? = 1. (52.9)
1 1 1

Each vector (consequently also the derivatives of the unit vectors) may be expressed

as a linear relation in the three unit vectors so that for the components

ap ap
Ba \°T _a"g_’ P = a,b,n

such a derivation can be represented by

Aa, + p'b. + v'n,, — = A"a + "o. + p''n, .
i “1 nl, i ”bl an

For the constants A", A", ', u" and v', " with use of (52.8) and (52.9), it is
found that

P, ~  9P; ap,
v 1 T 1 LI 1
A —Zai ga » H _Zbi e * Y Zni da ?

)..”_Z E).l " bi " z Ei
“LMeg 0 M AP % a8

(52.10)

Thus, for a further reduction it is necessary to know the scalar products (52.10) in
the cases that p, = a5 bi > 1. In this way it follows from (52.9) that

aai da,
Zaié—aﬂo ’Zala_,ﬁ’— 0 ete.
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Furthermore,

Oa

Shor ek ‘aa’a'&(ﬁszi-)=

S

_ 2 L
- AB2 aa 6& 6,8 AB 6oz da0B °

from which after use of F = 0 it follows that

2
Sh hza"& L 25(%h) 1o
160! i Oa 2 o oou B o8 °

In the same manner,

Ob, Oa, OB
el = b—1'=—-L—""'
2165 iop A Oea’
In addition
Sogte-Saom. 152 M 1 _a
i Ou idw AL Ba Oa ~ A Rl’
Snat=-Shodo 15 N_3,
i O i 98 BL o8 68 B R,
Finally, as M = 0
Snode Saou_ 1S M
i 88 .1 6B AL/ da O ’

bt SO . AN N
Z“iaa‘ Zbiaa- B 235 8o -0
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For the derivatives of the unit vectors, then, it follows

% _ _10a , A %y 1 0B :

da B 88 i Rlni’a;a" A B

b, b, .
i_10A . 1 _ _10B B

Ba T BOBY 8 T T A&t TR (2D

%__A . O _B,

Oa Rlai ,6'8 - Rzi- J

Naturally, it is also possible to derive these relations from the well known general

formulas of Gauss and Weingarten [37] by means of the specialization F = M = 0.
53. THE DEFORMATIONS

In the undeformed state, an arbitrary point P of the shell is defined by its projec-
tion Q on the middle surface with coordinates X and the distance z from the

middle surface. The coordinates Y; of P are then given by

. = X. +.2Zn, ;
Yi i i’

where % and n, are functions of the parameters o and §. The square of the

length of a line element dZ determined by the endpoints P (o, g, 2z) and
f’(a+da, B+ dB,z + dz) is given by
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Ox. On,
+ Zéﬁ—lni + zzé'élni 2d8dz . (53.1)

By use of the results of Sect. 52, (53.1) is simplified to

2 2
a2 = A2(1 - ﬁ-z-) do? + B2< , ﬁz—) ag? + dz2 . (53.2)
1 2

During deformation,the material point Q of the middle surface undergoes displace-

ments W in directions of the axis, so that the coordinates of this point in the deformed

state are-

If the direction cosines of the normal to the deformed middle surface are denoted by
_n;, then, by use of the first two assumptions, the coordinates of the material point P

in the deformed state are

Ve x' + zn'
i i i
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In the deformed state, the line element determined by the material points P(a,5,2z) and
P(oz + do, 8 + dB, z + dz) (whose length in the undeformed state is given by (53.1),
(53 2) respectively) is then determined by

2 2
ox! ax' an' on'

2 2 2
ar” = {Z<‘ao+> 2 et Z(aé) }d‘l '
ox! ax' 6n' on! 2

i 1 2 i 2
{E(aﬁ) "Lt E<66> }dﬁ '

2 ax' 6x' Bxi On! ox!' ani'
dz + zZ Z 1 +Z L +

+

* Xow 5 da B B da
on! an'
+ Zzzaa & }2dad5 . (53.3)

In this expression use has already been made of the relations

Zn|2 =1 an ?n_!m n! ?ﬁzzn a‘ _,Z
i i o8 iaac 16ﬁ

which are valid also in the deformed state.
The direction cosines ‘Qa , 2 g * 2 2 of the line element in the undeformed state are

defined with respect to the parameter curves 8 = const. and & = const. and the

normal. They are given by
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and it follows from (53.3) that

(6){{)2 ax' 611; 9 (611')
Llgp) * 2l g5 t 2 ‘;:66 1
B? (1 .= k

RZ

6x' axi ( ax' an' 6x' an') dn! on!
+12 23013?4’ aa aB Eaﬁ A o 08

O

By comparison with (11.2) it follows that the strain components are given by

ax'i ox! 6n‘
Z(_a’&')+22):aa"’“"z ( )
- - -
A% - &

1

( 1) 2 a“i)z
Y\ap) * 22X mtEHAEm

1 +%¥ =
B 1 - R

2

2
ox' ox ( ax! 5‘11' ox! on' ) 6n' 611'
Yoo = Eaa‘a‘ﬁ”“zzaa A Za,e Bo Zaa %
e 7, Z
AB (1 - &V[1 - &-
(*-%)( &)
Yoz Tz T 70 (53. 4)
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For thin shells, z is always very small and it is natural to expand expressions (53.4)

in a series with increasing powers of z . When terms of the third and higher
order are omitted, the following expansion is obtained

2z 2

- + 25 +
oo Yaao 2Zpoza R. Yoo Z 0 ?

<2
li

1 2 (53.5)
in which the quantities
, 2
T
’yaao =_22(601) -1,
A
2
1 axi)
Y, = == -1,
8o BZZ( o
ox, 8%
_ 1 i i
Yago = AB ) %o (53.6)

represent the strain components of the middle surface.
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The quantities

6x.' an! 1
P == 5 gy B R,
L T
p = - —l—E_.aﬁ ?E.i.'...._ ..l
88 2“8 B R, '
1 ax; an; ax; an;
200p =~ AB\LPa OF ' = BB B, (53.7)

are closely connected to the changes of curvature of the middle surface. Therefore, in
what follows, they will be termed changes of curvature. In addition, for brevity the fol-

lowing notations are introduced

A 1 R1
1. 2 ' t 1.2
2 elE) asR ez @
BB B2 o8 Rz 08 op Rg op

1 3n£ On; 1 1 Ox; On Ox; Ony
o ~ 28\ = T (R, m )\ Zm ® T )
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54. THE ELASTIC POTENTIAL

The determination of the deformations above was based on the first two assumptions
introduced in Sect. 51. The third éssu_mption will now be used for the formulation of
the relation between stresses and deformation or, equivalently, for the construction
of the elastic potential. A prismatic volume element is considered, which is deter-
mined by the parameter values «, a+da, B, B+d8 and the ordinates z and
and z +dz and with two surfaces in the deformed state parallel to the middle surface.
For equilibrium of this element, the requirement must be satisfied that during a
virtual change of the deformation, the increase of the deformation energy should be
equal to the work done by the tractions acting on the element. This requirement
should also be satisfied for virtual deformations that consist exclusively of changes
of length of the line elements perpendicular to the middle surface. During such
deformation, which is completely described by a variation of the deformation compo-

nent 'yzz , the tractions do no work. Therefore,

=0 (54.1)
aYZZ

must hold, where A is the elastic potential. 1 Application of this condition to (12.3)
yields

Yor = " -1 Cha T 8) - (54. 2)

The third assumption is, therefore,in general incompatible with the first two assumptions
(see (53.4)). This contradiction will be further discussed in Sect. 55.

1 The symbol A representing the elastic potential has here a different meaning from
that in the preceding and in the following sections.

161



By use of the first two assumptions it was found in Sect. 53 that yaz and YBZ are zero.
In view of this result and of the relation {54.2) which is required by the third assump-

tion, the elastic potential (12.5) becomes

_ Gm W2 m -1 _ 2
A= am - 1) | You T g ) 27 m (g g = Tap ) (54.3)

55. CONSEQUENCES OF THE ASSUMPTIONS INTRODUCED

From expressions (53.5) for the strain components, it is immediately clear that for
thin shells the third term is always very small in comparison to the first ones. It is
also to be expected that the fourth term which contains 22 as a factor is small as com-
pared to the second one. Therefore, these terms are often omitted. However, Flt'igge
[35) remarks that they cannot be deleted without interference with the logical structure
of the theory. This appears justified for the calculation of strain components by use of
the first two assumptions. However, for the formulation of the law of elasticity, use

is also made of the third assumption which is in general in contradiction with the first

two assumptions. This contradiction reduces the importance of Flﬁgge’s argument.

To form a better founded opinion on this matter, one must study the significance of
the second and third assumptions which lead to the contradiction. The third assump-
tion states that axial stresses on planes parallel to the middle surface are smail as
compared to axial stresses on planes perpendicular to the middle surface; it has

therefore a clear mechanical significance.

On the other hand, the second assumption is based on the consideration that the relative
displacements in the direction of the normal to the middle surface are of the order of
magnitude of the product of the strain measure in that direction and the shell thickness.
Hence, in a mechanical sense there is no objection to the admission of displacements
of this order of magnitude; they are omitted only for simplification and because no
important influence can be expected from them. Nevertheless, in order to get some
insight in the order of magnitude of this influence, corrections are calculated which

should be imposed on the deformation components (53.4) if the second assumption were

162



not considered. Expressions (53.4) are herewith accepted as a first approximation.
The order of magnitude of these corrections can then be compared with the order of
magnitude of the third and fourth term of (53.5). If it should appear that these orders

of magnitude are the same, it would be consistent to neglect the third and fourth term
of (53.5).

If ¢ is used to denote the change in distance to the middle surface, then the difference

in value beiween the coordinates of the endpoints of a line-element in the deformed
: _ !
state is, as y'; = x'; + (2 + )y

ox! on' on! 9¢
' i
a5, =(

-1 1 . — q
6_Q+Z6a+€6a+aa ni) de +

(ax; an; an; o¢ ) ' ot
+aﬁ+zaﬁ+§aﬁ+aﬁ n; d.8+(ni+a—zn.) dz

1

Thus by use of the direction cosines ,QQ N ] z and of the identities

B

2 ani 611{ ox; ox
1 _ [ S, T ___r _ v b o t - —
D L D Pk - i OL - il DL Bl

the square of the ratio between the line-elements in deformed and undeformed state can
be written in the form
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: ? ox; On; 9. 611;\ 2
2 \z MDYyl e P +
2 2 9
% o on; on! ( 6@\
1 1 2 i
L7 66*2“2(3‘3*) *52(53) el i
2
2 z \
B® f1 - =—
()
ox; ox; Ox;0n; 0%, aq)
23 3 a ¥ B
On, On; 0x On ox On
2 i i 4 ; S
+ Z o aﬁ E(Z:aa —6_5 +Z —B —a- +

B,
Ry 32)
. o¢ ot 8¢ ot 0t 9¢
oL foL 2 —-_— + — —— A ——
Oz Oz A & 7, 7 ﬁZ
A(l S ') B( - ﬁ‘)
1 2
(65.1)
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The corrections to expression (53. 4) are determined by the terms in (55. 1) that contain
§ . The relative displacements ¢ are always very small so that terms of second and
higher order in { may be neglected. Furthermore, the considerations are for the time
being restricted to small displacements of the middie surface. The coefficients of ¢
may then be approximated by their corresponding values for the undeformed middle
surface. By use of (52.11) the corrections of the strain components are obtained as

- 1 2& 2L =z 1 28 2% gz
AY T -=2 22 L ) Ay, =—— [ 25, a5 2
o \e ( . R R ) BB z 2( R, R, R2>,AYQB 0
—R_ 1_R_
1 2
= oL __1 1 9% _ 11 8¢ .
AY 4o 267 ' My —1__zA6a’A'yBZ 1 -.2BoB
Rl RZ

and, if in these expressions z/R 1 and z/R‘2 are neglected with respect to unity
it follows that

1 _ _ 2 -
A'YO!CE Rl » A'Y,BB - Rz ] AF)/G’!',B = 0 3
(565.2)
. _29¢ _ 19 - 19¢
Mpz = "z A"yafz - Ada’ Aﬂyﬁz - Bag
Condition (54.2) in the form
Ay = =1

zz  m-1Yaat Y8

which, in connection with the first approximation, may be considered a corrective
formula for Yo together with (55.2) yields

ag 1
8z = " 2(m - 1) Yaa t Vg
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orwith £ = 0 for z = 0, and with use of (53.5) as a first approximation for

Vew @nd 7,

BB

1

1
2(m - 1)(')’ozoeoJr

2
£ = - ¥, )Z+2(m——-1)(.paa+p,8,6)z +.... (55.3)

The corrections A’Yaa and A‘YBB then are

"

_ 1 Z 1 =z
Moo™ - 1R (om0 *Vsgo) ~ T 1R, #(Paat pgg) oo
[ (55.4)
=1 =z o1 =z
A= - 1R2('Vaoeo *¥880) m - 1R, 2P gyt pﬁﬁ) P

Further, by use of the assumptions of small displacements,the order of magnitude of
the quantities 8,, etc., are determined. From the general formulas of Weingarten
[37)

axi axi
ani _ (FM - GL) 5o * FL - EM)5p .
da EG - F2

ox, Ox.
On, _ (FN - GM)-ﬁl + (FM - EN)—GEI
o8 EG - F2
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after introduction of primed symbols to denote the deformed state

1,2
2(6“1) _ L%+ M'E' - aU'MF

Oa E'G - p2
r 2 2 2
z 8% \ _ NE' + %6 - oaN'M'F
6,8 ETG! Flz

Z anli anli ~ L'M,G' + N!MtEl _ (LINI + Mtz) FI (55 5)
da 8B E'G - p'2 '

The smallness of the displacements justifies the omission of the quadratic terms in the
changes of the fundamental quantities E' - E

s ete., I' - L etc. With F = M = 0,
it follows that

2 2
' 2 ' 2
Oa E! o8 G

On;, &n!
—L_1_ L.y + _ LNg
Oa OB E G EG

Further, in view of (53. 6) and (53.7) it follows that

t 2 LR 2 =
B' = AT0 + 000) s G = B2 4y ), ABo0

\
v oo42f 1 t_ n2f1 'o_
L'= A (T{_l-+ paa) , N B (F; pBB)’ M ABpa,s (55. 6)
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so that (55. 5) leads to the approximations

On \2
S ! 2[1 , 2 Y
Oa *'R Paa‘Rz Qo

1l
>

2
R, 1 5
2
z<irl> - g2l 2, _Lyﬁﬁor
oF O RZ
&
Gnrant
R L, 1) o1
Z dadp AP (Rl " Rz)paﬁ RiRy Yaﬁo, ©5-1

The calculation of the remaining contributions from fao etc., is carried out as follows:

iE:6xan=_4_—I:_‘=_4A2__1_+
R dada R R. \R. T Paa | ¢

1 1 1 1
s Zi“_"i"”_"zz R iy 5 S
R, og Op R, R, \R, B8
6x:6n axan
i 1 1 1 '
R+—R_)( daAn Z ) —2(—-—+—-—-1--M=_2AB__1_ 1
( 1 2 @0p 6‘60& . R, Ry Ry * R, Pag
3 (6"1) I I TN (1” )
2 o« 2 -2 aoo |
Ry Ry Ry
o'\’ 2
3 %) _ 3 . _ 3B
R2 (‘33) R2G © R (1“’"7{330) ’
2 2 2
1 t
0x.0x
1 1 1 i9% 1 1 1 r
—_— — + —_— = f—_— ——= + F =
(R? Rg Rle)z Ba d3 (Rz R R1R2)
1 2
1 1 1
= AB [ +—= + Y ,
(R? Rg R1R2> @ po
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so that the result is given by

2 1
b = ~ ® Paa ™ R %o
1 1
2 1
= . = Yoas)
%5 R, Pgp ~ R, "Bpo

1, 1
bap izt 2 ) g (55.8)
R] R,

i
i
T
A
+
L\':;UI =
S —————
Q'O
w

The technical theory of shells is founded on the admissibility of omission of contribu-
tions to the strain components that are of the form (55.4). On comparing {53.5), (55.4)
and (55.8) it thus appears to be pointless to take into account the third and fourth term

of (53.5); perhaps one exception should be made if ¥

Yoo T '}/Bﬁo is small in compari-

son to Yoo 880 ° yozﬁo and Phw p,BB is small in comparison to Py pBB s
Py 8 Therefore, in general the omission of the third and fourth term in (53. 5) should

be accepted as a consequence of the schematization introduced, and hence

Yoo = Yygo T 2%Pgq

"8 = Yggo = 2" -

Y, (565.9)

af o Bo

~2
I

- ZZPaﬁ

The considerations that lead to the simplified expressions (55. 9} hold strictly speaking
only for infinitesimal displacements of the middle surface. However, as long as there
is no reason to assume that for finite displacements the order of magnitude of the third
and fourth term of (53.5) is different from that of the neglected influence of the displace-

ment ¢, these expressions may also be applied for finite displacements.

By use of (55.9) the elastic energy per unit surface of the undeformed middle-surface

can be obtained through integration of (54.3). The area of a surface element
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z = const. is given by the absolute value of the vector product of the vectors with
components 9y;/0a da and ayi/é)ﬁ dg , for which due to Lagrange's identity

T
2

- 2 2
9« 08 08 0a) \Ga % OF Oa oz o5 op oa) %P

)
TS (2 - (s s

df

H

Here

2
oy

2 2
ox, 0%, on, On, 2
22 1 +2zz * 222(_1_) = a2 {1 -=2Y
Oa aa aa \ Oa Rl

1
Z Oa
2 2 2

ayi ziaxi 2~} 2z :aiic’in_i+zzz ani = 132< .z
E B8 98 o8 o8 .\ OB R, ’

oy; oy; Ox; 0%, 0%, 3n axiani> ~on, dn,
Ba 08 aa B8 aa 8!3 98 Ba B ag ’

It

s0 that for the area of the surface element it holds that
_ Z z
df = AB{1 - = 1 - o dads (65. 10)

Because quantities of the form Z/Rl Yaag ° z/ Rl Z0gq > ©tC., are already neglected in
expressions (55.9), the factors. 1 - z/R1 and 1 - z/R2 may be replaced by unity
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in. (55.10). The elastic energy in a shell element of thickness h , bounded by the

normal planes @ = const., 8 = const. » @+ do = const., B+ dB = const. , then is

h
2
, Gm ‘ 2
ABdadg im - 1 f dz ”'yaao + yﬁBO - 2'z(Paa+ pﬁﬁ)] +
_h
2
g m -1 ['Y ‘ p 2”
= 2 ——= | (Yaqo - 226, Vppo - 2zfg4) - (YIX,GO - 2z 3 '

from which, after execution of the integration and division by ABdadB, for the elastic
energy per unit area of the undeformed middle surface is obtained

2 2m—l

3 - 1 m N . 2
A = 4Ghm -1 I(YCUG!0+YBBO) m ("Yﬁdaloyﬁﬁo TG'BO )I *

+- 1l gpd m
m

p Pomi2 om -1
12 — I( aca+ Y58) 2

m

' 2
(faa fpp- Fap®) I " (55.11)
It appears from this result that the elastic energy is the sum of two terms of which the
first exclusively depends on the deformations in the middle surface and the second ex-

clusively depends on the changes of curvature of the middle surface, or more briefly,

that the elastic energy is the sum of the membrane and bending energies.

56. THE STRAIN —DISPLACEMENT FUNCTIONS

The components of strain (53. 6) and the changes of curvature (53.7) can easily be

expressed in terms of the displacements u, = x; - X .
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For clarity of the results, it appears worthwhile to express the vector component u,
representing the displacement at a point of the middle surface in terms of the three

unit vectors a., b,, n, .
1 1 1

u, = ua, + Vbi + own, (56.1)

It will then be possible in the formulas for the strains to express the properties of the

middle surface exclusively in terms of the quantities A, B, R1 . R2 .

By use of formula's (52.7) and (52.11) it follows from (56. 1) that

il

ox! ‘
i 1 Jdu v 0A w
A<1+A604+AB aﬁ_ﬁi)ai+

1 0v _u OA 19w u
+A(A6a AB ag)biJ’A(AM*R )ni ’
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so that the strain components are

) 2 /oa\2 2 2 oA\ o2
5.9 tTgt 53 Ty
A“B° \ 88 Ry A"B"\ag Ry

u OA 1 8v w 1 Ou u

‘2—§"§I—a-2"ﬁ—lx—a+2.n—l

o (632 2 Q§2+v2+w2
A2p? \0c A%p? \ O« Rg R2

v OB 1 Ju w 1 Ov v 1

" 2 5B 3o ‘ﬁé‘é'zﬁ"zﬁ“?’fzﬁga
101 19v_ u BA v 8B
Vuﬁo B 98 Ada B &8 B « ‘

ViV
S
Q

L

(56.3)



In these expressions the terms which are linear in u, v, and w agree with Love's

results for 2¢ 262, and w [36, 326].

1 ?

For the calculation of the changes of curvatures of the middle surface, formula(52. 4)
and(52. 5) are used (see also [37] ).

. 2
M =Z n °% 1 Det. (6 5% ai)
i dadp JEG - F2 OudB Ba o

from which, after use of (55. 6),it follows

L . o’xt  ox ox .
PO:’(_]{ = ———-Z‘ Det. 2 ) N _ ---—--R .
A% JEg - oa® ' 6a B8 1
. ’ 2 '
o _ 1 1L o xi ax{ axi | 1
BB - _'§ 7 et. 92 y - R P
B E'G' - ¥ ég° Ba O 2

. 2, ) 1
p{IB _ 1 — 1 — Det. (6 Xi , axi , axl)
AB E'G'" - F dads  Oa ap

By use of the relation following from (55. 6)

12... 2
EiGl_E‘ = AR \/(]+y )(] +y )_nyi
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these expressions become

By 1 1 b (0% 9% 0 1
B ‘ 5 et. 5 s ’ TR
AB Ja P Yowo) € F 7330) " Yapo Ou Sa 9gp 1°
0, 1 1 & 5 Oy 0% 1
PE= 3 g Det. |—, —2, 1) L
ABT Yy oWy -Y wao o082 9o  op 2
X,  ox' ox
paB: 21 9 1 5 Det- 1 , 1 , 1
AB® 1 + Yowo) 1+ Yago) " Yo go 8083 Oa  8g

After omission of 'yozao ’ 'YBBO and ¥ @fo In comparison to unity, it finally follows
that

2, ot
o'x, Ox Ox
p = —-l D . 1 - .i "
e A% o da® ' Oa 8 Ry
2 1 XI 1
Pog= — 1 pot. (25 8% &Y 1
AB® 8g2  Oc | B Ry
2 1 1 ]
O X. X. oOX.
Pop= —21-2 Det. i 9% 0% (56. 4)
A°B %083 8o ' Op

By means of (56. 4) the changes of curvature are rationally expressed in the displace-
ments u = x; - X This is achieved through differentiation of (56.2). The deter-
minants in (56. 4) take the simplest possible form if, after the differentiations have been

carried out, the fixed xi—system is chosen to coincide with the a, b, n system,
so that
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n=0,n=0,n3:1. {56. 5)

2,
"% _pa, o%w, 2 Aoy ,a aw _ |a2 1 (ea)
90 do - B 38 do R1 da Ri g2 \98
o2 [1ea) 8 (A
Y3a \B 98 Yoo \R /"
azx' 2 2
J=_£%+u_&%@_ui<Léﬁ) v (oa
. B3 ,2 B 8p da 5 \B B8P 52 \ 9B
LW A dA
B R, 98
32% 2 2 9 A 9A AZ
——Ei:%-+—a-l;+2£- "324'“%_ (1%)+%R—'§a——w—“-2- , (b6.6)
da” 1 da 1 9@ @ \% 1 98 Ry
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rZ a2 \9¢ 38 \ R
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2 r
ox3 B®, o®w,,B v uB 8B 2 (B
552 R, 852 R, 8 AR, 8 38 \R
a2y 2
1 _ %A , 9'u 1 oB ov 1 A Jv A ow

5098 - 9p 'baap A da oa ' B 0p 88 R, 0B

L o 38A 8B 8 (1_%) 8
AB 98 da 58 \B 9 Y.
aZt 9
% _ 9B ,9%v 1 8B gu _1 2A 5u B aw

a3 ~ da ‘BB ' A da ba ~ B 88 o8 R, oa
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Here use has already been made of the identities

1 (56.9)

which resulted from (52.11) and of the identities

azai azai azni azni
Owdp = BabB8’ OBadp _dpoa

The second and third rows are the same for all three determinants (56.4) and are

determined by the formulas (56. 2) respectively, if (56.5) is substituted. Thus, they
are

A(1+%§§-+z‘%§%‘i%) : A(%%%’fﬁ%) ’
A(_i_g;—v+-1{—,1-—)and
1
B(% %%*%2) (56.10)
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The changes of curvature for infinitesimal displacements follow from {56.4) and (56.6) to

(56.10) after omission of second and third order terms in the displacements u, v, and w

1 8%, 3 ou._ 1 8v _ 1 9Adw
Poa 2 542 AR, 0o " BR, o8 3 da du

1 9 _1_+_l___@§
A da R1 ABRlaa

A2g Oa a3 88 08~ AB Oa \R;, R,
1 0 (1 1 dA w [ 1 9
+ v b _— 4 ik v X, & ,
B 08 (Rz) ABR, OB R, (Rl Rz)
. 1 azw 1 JSu + 1 Ql_ 1 a_AQ,,W_ .\
Pag ™ AB 6208 BR, 88 AR, da = ,25 0B da
1 éBOw _u ©HA v OB
" ap? O 88 ~ ABR; 38 ~ ABR, Ja (56.11)
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These expressions differ from Love's [36 art. 329] as follows

Q-D
R
et
ol
[y

=1 ] 10u, v 8A w 1o6v, u OB w
pﬁB-Kz_RzAa+BB"R+2(B 2" AB a"R)'
1 2
7 =L | 10Ou 10v u O0A v @B
Porp "R, | B9 Ada  AB 5B AB Fa | °

and as the displacements are assumed to be infinitesimal they can be written

o - =Yaao + 1/3,6’0
ca” 1 TR 2R,
1 1
P - K ='ya:ao + y@@o
BB 2 2R R !
2 2
Y
_ ¢ . lapo
paB Rl

These differences are of no significance as the terms —=

Rl 'yazozo » etc., were

omitted already in the expressions for the strains.

57. THE INFLUENCE OF SMALL DEVIATIONS

For applications of the theory developed in Chapter 4 to shell constructions, it is
necessary to know the change of the elastic energy which results from small geometri-
cal deviations. It is assumed that the coordinates X, of points of the middle surface
of the structural model are given as functions of the two parameters « and 8 such
that the lines g = const. and o = const. determine the lines of curvature of this

surface. The previous theory can then immediately be applied to this model.
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An arbitrary surface can in general be obtained from a given surface if each point of
the latter surface is subjected to a displacement in the direction of its normal. It is
assumed that the middle surface of the structure is derived in this manner from the
middle surface of the model by displacements Wo( «, 8) in the direction of the model's

normal
8]
X, = X, t+ wn,,;
1 1 01

the middle surface of the structure is then also given by its coordinates xg as func-
tions of o and B. If it is assumed algo that the shell thickness of structure and
model are equal, points on equal distances z from the middle surfaces of structure
and model, whose projections on the respective middle surfaces are given by the

same values of o and B, can be regarded as corresponding points.

The square of a line element in the undeformed state of the model is given by (563.2).
If the structure is regarded as a "deformed" state of the model, the square of a line

element of the structure can be written as

2 2
2
0" _ o} ,2 _ .z 2 0|2 _Z 2
de _.(1 Yo )A (1 Rl) dd +(1 +y33 )B (1 R2> dg” +
o 2
+ 2y,; AB (1 - ﬁzi) (1 - -R£2> dadg + dz” ; (57.1)

where yaao cte., are the "strain components' (53.3), (53.4) in the point {(a, 8, 2)
of the model for the displacements o, o, LN in the direction of the unit vectors
corresponding to the middle surface of the model. After use of (55.9),the "strain-

components'' are written

©, ete. (57.2)

aca  Yoao
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Here +° 0
Yaao Paa

Sect. 56 by setting u, v equal to zero and w = W,

are obtained from expressions for y , ete., derived in

wao ’ Pao

The square of a line element of the structure in the deformed state, which state is

characterized by the coordinates x; of the middle surface, is written as

+ 29,0 AB (1 - Ri) (1 - Ri) dodp + dz® (57.3)

in which 7‘0.'05 etc. , are the '"strain-components' at a point ( @, f, z) of the model

for the "displacements"

The quantities u are here the real displacements that occur during deformation of the

structure. The "strain components' may again be written as

=Y

f
oo Zzpaa, etc. (567.4)

YO!CE

If the displacements u, are also expressed in terms of the unit vectors which corre-

spond to the middle surface of the model
u, = ua, + vb, + wn, , (57.5)
i i i i

] 1
then etc., are gbtained from the expressions etc., of
Yaao' Poa i @ P Yaoo' Paa ’

Sect. 56 by replacementof u, v, w by u, v, w + w,
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The actual deformed state of the structure is completely described by the ratio between
(57.3) and (57.1). To calculate from these ratios together with (11, 2), the actual compo-~
nents of strain along the three initially mutual orthogonal directions in the structure

(57.1) is reduced to

02
d?

2 2
=@ +2,.0) 01 - y‘gﬁo S ] A? (1 - Ri) do? +
1+ vy ) Q1 *Vgp )

+a+y 9| B1-Z d;ﬁ—ﬁLA 1——Zda2+dz2
BB : Rz 1+'Y330 Rl

From this formula it appears that the three directions

.z yOZBo z
B(1 - dg + —— — A (1 - Zlda =0, dz = 0 ;
( E;) 1 +vg5° ( R>

. Yaﬁo
de =0, B {1 - Z)dpg +————A (1 -2\ ga =0, (57.6)
R o R

2 1+'yBB'

are mutually perpendicular. The smallness of the differences between structure and
model justifies the omission of quantities of second and higher order in 'yg ot €te.
The direction cosines of the line element d&° with respect to the directions determined

by (567.6) are
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o o 1
o = (1 +'Yaa ) 2 ]
dﬂo
2
: O R U
g =@+ ) 2 !
ago?
2 2
o _ dz
L, T T3 (57.7)
dﬂo

By use of (57.7) da, dB, and dz are eliminated from (57.3). The result is, after

omission of quantities of second and higher order in 'yzla, , ete.,

_ 1 t

di'z 1+ % o ' 02 1 +7s8 02

- _ | _ea@ 5 O, g 02 — BB _gp02
O2 1 +v,.°© aB 'af a 0

a aa

‘YaB' 0 0.0 2
+ 2 . - Y L 8, +148
[\/(T Y, D) @ 70 “F ] L

For small deformations of the structure which slightly deviates from the model, the

quantities 7:9104 , etc., are likewise small. Consequently, if quantities which are
guadratic in 'Y!ozoz , ete., and in 'Y(c)wz , etc., are also neglected, the deformation

components of the structure with respect to the directions determined by (57.6) are
- v 0 - r o - _
Yaa = aa Yaa * 8B Y88 Ygp +Yap "YaB YaB

Vg =Vgz= Yoz = O- (57.8)
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By use of (57.2) and (57. 4)

_ ~ ~ 1 o _ _ *
Yaa "Yaao' "Y aao® 2200 * 22044 Yaqo ~22Pgq ete . (57.9)
g t ] .
The quantities ‘Yaao »Ppg O Ete., follow from the expressions for yaao 1Pyq ¢ etc.,

given in Sect. 56 by replacement of w hy W + w. In this procedure,terms of second

and higher order in W, and its derivatives will again be omitted. The quantities YO?QO

p°® |, etc. , are obtained from v sp » etc., by replacement of u, v, w by
aa aao *Maa
6, 0, W, respectively, whereby terms: of the second order in w, and its derivatives
are likewise disregarded. The following rule can be given for the determination of
* * . .
ya-ao Pag etc.: replace w by v, + w in the expression for ’Y(mo Py ete., of

Sect. 56 and take into account only those terms in w, and its derivatives which are
linear in v, and which contain at least one of the displacements u, v, w or one of

their derivatives.

If '}};a » etc., are disregarded in comparison to unity, the area of a surface element
z = const. is determined by (55.10). This omission is justified, as contributions of
the form 1’2 a * 'gq » €tc., have already been omitted in the calculation of the strain
components. The elastic energy per unit area of the structure or model is then without
modification given by (55.11), but with the modified strain components.
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Chapter 6
APPLICATION TO BAR AND PLATE PROBLEMS

61. THE INCOMPRESSIBLE BAR (PROBLEM OF THE ELASTICA).

611. The Potential Energy.

The ends of a prismatic bar of length 2 are supported in such a way that displace-
ments perpendicular to its axis may be excluded. It is clear that the straight unde-
formed state of the supposedly incompressible bar is always an equilibrium state if
the bar is loaded by compressive forces N acting on the centers of the endpoints;
this equilibrium state is called the fundamental state.

It is assumed that points on the bar axis can only undergo displacements which lie ina
plane spanned by the beam axis and one of the principal axis of inertia of the cross-
section. Let x be the distance from a point P on the undeformed beam axis with
respect to one of the supports and let u and w be the displacements of this point in
the direction of the axis and in the direction normal to it respectively. The origin of
the rigid X system is fixed at the support x = 0 ; the 'x1 axis coincides with the
bar axis, the x, axis lies in the plane of bending of the bar. The coordinates of the

3
point P in the deformed state are

X, = xXx+u, x, =0, X, = w,

so that the length of an element of the bar axis in the deformed state, which initially

had a length dx , is given by
1 2 1 2 t 2
dx dx dx 2 2
2 _ () (2 (P8 |42 o dul’ | faw\*| 2
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The incompressibility of the bar axis is therefore expressed by the condition

(1+ Q) (@) _ 611

The curvature of the bar axis is determined by the formula

r 2! r 21
dx1 d Xy de d xl

.2 - 2
p:idxdx dxdx’

) g
dx

?
ax \*| 2
\ax
from which it follows by use of (61. 1)

2 2
_ dul d™w _ dw du
p= % (1+dx)d2 dx .2]. (61. 2)
x dx

In agreement with the classical bending theory, the elastic energy of a bar element is

assumed to be proportional to the square of the curvature. The total elastic energy

then is

in which @ represents the bending stiffness of the bar. The potential energy of the
axial loads N is, with compression, considered positive
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After substitution of (61.2) the total potential energy V - W is expressed in terms
of the displacements. These are,however, related by the inhomogeneous condition
(61.1), so that the general theory cannot immediately be applied (see Sect. 22). This

difficulty disappears as the displacement component u is eliminated Sy use of (61.1)

du_ [, [\,
dx dx '

Substitution in (61, 2) gives

so that apart from a trivial constant, the total energy is given by

2
t (& 2
1 dx* aw \
V-W-=gza ~E L dx +N 1-(d—w) dx . (61. 3)
] X
1 - (4w

When the quantities appearing here are made dimensionless by

2
x =£ 4, w-:wg’ N=lﬂ?@, V-W =
2

A

bo | =

o’

7 P
and if for brevity, differentiation with respect to is denoted by a dot, then (61.3)
becomes

1 1

.2
P"[ZP]=/—"b-——2dg+2-.rr2x/\/1—zp2d£. (61. 4)
1 -9

0 o
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Expansion of the integrands and omission of terms of higher than fourth order in the

derivatives of ¢ and of a trivial constant yields'

P (y] = P} [4]+ P[] |

1
Pg)”[iﬁ]:/‘(zp"z-rzmz)d&, \  (61.5)
o]
1
P [#]= f(¢°21,b"2—i=rr2w'4)d§ )
Q

It appears also from (61. 5) that the first variation of the energy is identically zero
for the straight configuration of the bar, in agreement with the above statement that
this state is always an equilibrium state,

612, The Buckling Load.

It follows from Sect. 31 that the buckling load is determined by the smallest value
of A for which the variational equation (24.14) is satisfied for an arbitrary kine-

matically admissible function £ that consequently vanishesat &€= 0 andat & = 1
1
A e 20, _
Pll[w,gl = 2/(¢ E - A eydE = 0.
o

Integration by parts yields

1 1 1

2978 | - 2@ Y +2/(zp"" Ay yEdE = 0.
0 (o]

0
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As the function ¢ is arbitrary for 0 < § < 1, ¥ should satisfy the differential

equation

oo +Tr27tzp" = 0. (61. 6)
The requirement that ¢{° is arbitraryat £ = 0 andat § = 1 further yields
$°° = 0 for £ = 0 and = 1, (61.7)
while the kinematic conditions at the supports lead to the requirement
Y = 0 for £ = 0 and £= 1. (61. 8)
The general solution of (61. 6) is
b= A+ BE+ Ccosw\/_i‘g+Dsin1r~f—f'§.

The boundary conditions (61.7) and (61.8) admit a nonzero value for D only. This

value exists if and only if
A= k7n. (k= 1,2, ...),

and remains in that case undetermined. The smallest value of the load parameter
for which (61.6) (61.7) and (61. 8) possess a nonzero solution is therefore Ay = 1 with
the corresponding eigenfunction

$, = sinm§; (61.9)

. The

B |

this function is normalized by introduction of the condition # 1= 1 for £ =

corresponding buckling load is the well known Euler load.
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In the series (61.5) no term of the third order occurs so that P3 [z,bl} as well as

P 91 [zpl, {] are zero. Consequently,the quantity which governs stability in the
critical state would be (see Sect. 25)

1

2,..2 12 .4
A4=P4[§b1] =/(¢1 lybl ‘ZTF Al¢1)d5=
o
1 6
= 1r6/<si1121r§cosz‘fr§ - 4lcos4w§)d§ = 13‘2" (61.10)
0

As it is a positive quantity equilibrium at the buckling load is stable.

613, Equilibrium States for Loads in the Neighborhood of the Buckling Load.

It follows from (61. 5) that

1
t
P, [¢] = 'W2/1P'2d‘s’,

0

1

so that the constant A2 is

1

' ' 4 2 1r4

A2 = P, [!Pl] = -7 cosméd ¢ = -5 - (61.11)
QO
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It follows then from (85.7) that the amplitude of the eigenfunction (61, 9) for loads in
the neighborhood of the buckling load is given by

(61.12)

This result agrees with the approximate solution of von Mises [42] which was obtained

in a different way.

It appears from (61.10) that the displacements from the fundamental state grow very
rapidly as the load is increased. For a load which exceeds the buckling load only by
5% the largest deflection at the middle of the bar amounts to about 20% of the length
of the bar, Consequently,there is little sense in applying the theory of Sect. 38 for
loads further removed from the buckling load. Indeed, the present theory does not
vield improved results for greater loads, but the opposite will be the case. This
should not be surprising in the present case as for such loads and the corresponding
large displacements the assumption of Sect. 38 concerning the smallness of displace-

ments is not in the least satisfied.

614, The Influence of a Small Eccentricity of the Load.

Up till now it was assumed that the resultant of the compressive forces in the end-
points act in the neutral axis of the cross-section. The influence of a small eccen-
tricity €£ of the loading can be taken into account by application of two moments Ne 2
of opposite sign on the ends of the bar in addition to the compressive loads N . These
moments are understood to be positive if in the absence of the compressive loads, the
curved bar axis turns its concave side towards the positive Xq direction, Let 8 be
the rotation of a cross section of the bar, positive in the direction from the Xg- axis
towards the Xy- axis. The energy of the moments then is

Net {(8); -3 = (@) _o} -
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This energy should be added to the sum (61.3) of the elastic energy and the energy of
the compressive loads. On account of the incompressibility of the bar axis, the
angle 6 is determined by '

. dw e
8 = - are sin"> = - arcsing” ,

or affer expansion

. 1.3
9 = —¢ "E'ZP T e

After devision by —%% the total energy can be written as
PMy) + €@ 9] = @ w1+ PRIl P rure (61.13)

in which P27l [#] and Pi\ [¢] are determined by (61.5) and

Ql’L ] = - 2209 . (61. 14)

§=0

In agreement with Chapter 4 only the linear influence of the eccentricity in the dis-

placements is taken into account.
For loads in the neighborhood of the buckling load for the centrally compressed bar,

the equilibrium states are détermined by the stationary values of (44.9). The coeffi-
cients A4 and Aé are given by (61.10) and (61. 11) respectively. B1 is determined

by

= 4. . (61.15)
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For the problem under consideration it is alsc of interest to know the equilibrium

states for loads which are considerably smaller than the buckling load of the centrally
compressed bar, For this purpose use is made of expression (47.8). In order to obtain
connection with equilibrium states of the centrally loaded bar as treated in Sect. 613.,
in expression (47. 8) the coefficient Az ig replaced by A 4° This yields no significant
meodification in the immediate neighborhood of the buckling load of the centrally com-
pressed bar. For greater or for smaller loads it rapidly becomes either so large

that it violates the assumption regarding the smallness of the displacements on which
(47. 8) is based or it becomes so small that the fourth order term in (47. 8) is of

minor importance. Therefore, whenever (47.8) can be applied to the present case,

there is no objection fo the replacement of Az by A The remaining constants

4°
are determined by

=1
! 2. _ .3 0o _ 1 ,' 1 4
B, Ql[wll 2 zpl ir , Ay = 'TAz = 51 s
— 1
§= 0
so that (47. 8) becomes
FM (@) = 4rera +%w4 (1 - A)a® +_312W6§4. (61.16)
The equilibrium states are determined by
dr™(a) 3 4 163
—ga- S 4re€r+am (L-r)a+gma = 0. (61.17)

The stability of equilibrium is governed by the sign of the second derivative of (61.16)

22
IF @ - 4 -a + 20%2. (61.18)
da
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615, Comparison with the Exact Solution

It is possible to give the exact solution for the problem treated above. The energy of

the eccentricity moments amounts to

27r2 eir g

Nefd

]
=R

By use of (61. 4) after devision by % % , the total energy can be written

1
£=1 .2
Ph[lﬂ +EQA‘[1P] = orero + ]lzp 2+27r2V l—q')'2 Id&.
1 -v°
' E= o o

By substitution of %" = - sin ¢ this expression becomes
(=1 7
A A 2 .2 2
P [0] +€Q [8] = 27 eAd + ("7 + 2r Acosf)df .
£= o 0

(61.19)

Equilibrium states are determined by stationary values of the energy, therefore, also

by stationary values of (61.19). The first variation of this expression is

E= 1 !
5| (6] +e@ [61] = 2n%erd6 + / (26°60° - 2r°Asind o) d£ =
(= o FA
E= 1 1
= 2 e+ 0)80 -2 ] @ +x 2asin 6)66 dt ..
£= o 0
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In view of the fact that the variations 69 , for 0 < £ < 1 are arbitrary, the differen-
tial equation

o +7Asing = 0 (61. 20)

must be satisfied, while for £= 0 and ¢ = 1 the boundary conditions must hold

6" +zrze?t = 0 (61.21)
By restriction of the considerations to deviations which are symmetric with respect

to the midpoint of the bar, the boundary condition for £ = 1 may be replaced by the
condition

8 = 0 (61. 22)

=

holding for £ = |

.

b

As is well known the integration of (61.20) can be performed by use of elliptic integrals
(see appendix). The result, the dimensionless deflection 8 at the midpoint of the bar
{the value ¢ for £ = -%) as a function of the load parameter A is represented in

Fig, 4 for the centrally loaded bar (curve I) as well as for a bar with the eccentricity
parameter € = 0,01 (curve [a). Furthermore, in this figure the approximate solu-
tions (61.12) and (61.17) are drawn for € = 0 and for ¢ = 0,01 ; the values of 3
corresponding to these solutions are directly given by a . The boundary between

the stable and unstable regions of the approximate solutions is also indicated. This

boundary is obtained when (61. 18) is set equal to zero. 1,2

1In order to avoid crowding of the figure, a relatively large eccentricity has been
assumed.

2The analysis of the stability of the exact soltion (61. 20) is very complicated and
it will not be persued.
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Moreover, in Fig. 4 the solution of the well known beam column theory is represented
(curve Illa, b for € = 0,01). This solution is obtained by omission of all terms of
an order higher than two in (61. 13). In order that the energy so approximated

would have a stationary value, ¥ must satisfy the differential equation (61. 6) with
boundary conditions

E= 0 and £= 1: $= 0 andy '* = 2. (61. 23)

By use of (61, 23) the four integration constants of the general gsolution of (61, 6) are

determined. For the dimensionless deflection at the middle of the beam. it is found
g=<¢ (1 - sec \/T) _ (61. 24)

This result is well known (see for instance [43], eq. 27). As ¢ — 0 this solution
becomes f= 0 for A £ A 1° while for A =2 1 the deflection is undetermined
(curve IIT). The latter solution can also be obtained if the solution gqbl for neutral
equilibrium of the equation (61. 6) with boundary conditions (61.7) and (61. 8) which
holds for A =A 1 and infinitesimal values of a, is regarded as an approximate

solution for finite deflections (see also Sect. 35).

It appears from Fig. 4 that the approximate solutions II and IIa are close to the exact
solution if the deflection at the midpoint of the bar does not exceed 20% of the length
of the bar. The approximation by the beam column theory is satisfactory if this
largest deflection remains smaller than 10% of the bar length. In the case of eccen-
tric loads, ‘'the approximate theory developed here may be applied to the natural
equilibrium state for loads below the buckling load for the centrically loaded bar, and
the beam column theory holds for loads up to 90% of this buckling load. The extension
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of the region of validity of the beam column theory is small in this example; this is
due to the small value of A 4 resulting in a very rapid increase of the deflections as
the buckling load of the centrically loaded beam is surpassed.

62. COX'S PROBLEM [23].

The ends of a prismatic, supposedly incompressible bar of length 2 , are simply
supported such that displacements perpendicular to the bar axis are excluded. Again,
consideration will be given to bending which takes place in a plane through the bar axis
and a principal axis of inertia of the eross-section; the same notation will be used as
in Sect. 611,

At the middle midpoint C of the bar AB (Fig. 5a) two identical compressible bars
are attached through hinges. The end points of these supporting bars which lie in 3
plane perpendicular to AB, are simply supported at the rigid points D and E .
The plane of symmetry of this support coincides with the plane of bending of AB. It
is further assumed that the point C cannot undergo displacements in the direction of
the AB bar axis. The distance between the points D and E is denoted 2b, the dis-
tance from C to the midpoint of the line DE is denoted by d (Fig, 5b)

FIG. 5
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It is clear that the straight undeformed state of the bar, which corresponds to unde-
formed supports, is always a possible state of equilibrium when the loading consists
of two opposing compressive forces N . This state of equilibrium is the fundamental
state.

621. The Potential Energy

Let y be the displacement of the point C in the direction Xq - It follows then that

the length of the supports amounts to \/ b2 + d2 in the undeformed state, and to
2
b

coordinate system X15 Xgy Xg is conceived as fixed with the X" axis along one of the

supporting bars, then the deformation component Y11 of this bar is (see Sect. 11)

+ (d-y)2 in the undeformed state (see fig. 5b). If, for the moment, a rigid

b r@d-y) . __2dy ,_¥

b2 + d2 b2 + a2 b2 +d

M1 -

The elastic potential for the support is then given by expression

: with E = 2¢ B+ 1

11 Tm (62.1)
This result can easily be derived from (12.5) as the deformation components '}’i].
(i = j) are zero while the absence of normal stresses in planes parallel to the support

axis, by analogy to Sect. 54, leads to the conditions

8%¥o9 8%Yag 22

Substitution in (12, 5) then gives (62.1).

The total elastic energy in the supports is

1 2:\h2 . 42 EF 2.2 .3 1.4
2-3Ey, FVb +d" = 3(dy dy +4Y),

{ b2+d2
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where F is the area of the supporting bars. With

— =M andy = £B (62. 2)

in which @ is the bending stiffness of the bar- AB and M a constant introduced by

Cox [23], the energy of the support is written as

2 3 2
87 M%(ﬁz -%B +——B4) . (62. 3)

For the sum of the elastic energy of the beam and energy of the loads, it can by use of
(61. 4) be written

1
.. 2
V—W=%%/l—'¢"-——.é—+2ﬂ'2h\fl'¢'2‘dg=
0O 1-¥
1 1
le /(zp..z_sz.‘a)dng ](w'zw“z-%frzw'zl)d&-
QO o

Here a trivial constant has been disregarded and the series has been terminated after
the terms of the fourth order. By restriction of the considerations to symmetric

deflections with respect to the midpoint C of AB, the total energy is

Energy = —% P27t [¥] + P37* [} + P47\ [¥]
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with

1
2
Pz?\ [¥] = / (;b"2 - nzmp' 2) dé + 8 Mﬁz ,
0
PAW = - snom &g,
1
2
2
P47\ [¥] = [(lP‘th"z - %ﬁzw.z;) & + 22 MZ—234. (62. 4)
o

It should be noted also that in view of (62.2), B is the value of y for § = %- It

appears from (62. 4) that the first variation of the energy is identically zero for the
state in which the bar remains straight, in agreement with the fact that this state is

always a possible state of equilibrium.

622. The Buckling Load

According to Sect. 31,the buckling load is determined by the smallest value of A for
which, with an arbitrary kinematically possible function ¢ , the variational equation
(24, 14} is satisfied

1

2
P Myst] = 2 / @ C - T ) e+ 16T MEE) | = 0
£=5
o} 2

(62. 5)
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After restriction to deflections which are symmetric with respect to C, the kinematic
conditions for the function ¢ are given by

¢ = 0for £= 0 and ¢ =0for§=—é—.
Through integration by parts it follows from (62. 5) that
=1 =1
£=3 £=3
‘e s cae 2, - 2 .
2P ¢ - 2@ +mTAY)E + 167 M (M)g 1%
£=o 1£€= o 2
1
2

+ 2 [ ' C/2 +rr2?\zp")§d§ = 0.
0

Since the function ¢ is arbitrary for 0 < £ < %, ¥ should satisfy the differential

equation

VT A = 0 (62. 6)

due to the fact that ¢ is arbitrary for £ = 0 and ¢ for E = % it follows

" = 0 for £ = 0 and -y °° —wz}\w‘ +81r2Mw=0 for ¢ =-é—
(62.7)

Moreover ¥ should satisfy the kinematic conditions

p=0for £ =0 and y = 0 for £ ='—;. (62. 8)
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The general solution of (62.6) is given by
gb=A+B€+Ccos¢r\/TE+'Dsinn\/xE. (62. 9)

The boundary conditions for §= 0 yield

A=C=20
The remaining constants with mX=p are determined by the boundary conditions at
1
£=3

B+,chos-—%—,u = 0,

4> D cos 3 p +8w2M(-%B+Dsin%-> = 0. (62. 10)
These equations possess a non-zero solution if and only if the determinant of the coef-

ficients is zero. This condition becomes after some manipulation

p.3 coslp
M = - 2 = - Ap . (62.11)
8«2( 'nl —i cosl ) S(t l -1 )
singp - FH COS Fh g5k - gH

The buckling load is determined by the smallest value By T ﬂ'w/'?f; which satisfies
(62.11), I M increases beyond bounds from zero, p; Brows from 7 to the value

8.986 ... determined by the equation
1 1 _
tgg - EN = 0. (62.12)

The value Al for the buckling load lies consequently in the region
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The eigenfunction belonging to A 1 is given by

= _ 1l .
v = sm;.alvﬁ ,ulﬁcosz,ul, (62.13)
it is normalized in such a way that its value for § = % is
- =ginlt, -1 1
,81 = (¢1)§ 1 sin 5 ,ul g b, coS3 “1 . (62.14)
2

Stability at the buckling load is in the first place governed by the quantity

3
_ _ 2.0 3 _ 2.8/ 1 1 1 _
Ag = Pyl = - 8 MFh] = - 87" M3 (smz 1~ 2k cOSE“l) =
_t 3 1 .1 1 13\
= gy cosghy (Singhy - guy cos g ) (62.15)

This quantity is zero only if one of the factors of (62.15) is zero, i.e. when pyp=m
or when By is equal to the value determined by (62. 12); the corresponding values of
M are zero and infinite respectively. Consequently, for values of M between these

bounds, equilibrium at the buckling load is always unstable.

623. Equilibrium States for Loads in the Neighborhood of the Buckling Load

It follows from (62. 4) that

Y
2

P, [4]= “r? /¢'2d§,

O
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1
go that the constant A2 is found to be

1
3
A' --p| [4.] - 2,2 (cos 5—(:0::5l )2d.§=
g T Fal¥y LI H1 g M
Q
22/ 1 3 Sin”l)
= - T (§ + €8y T m . {62.16)

It follows then from (35.6) that, at loads in the neighborhood of the buckling load,
.the amplitude of the eigenfunction (62.13} is given by

w22 (L + Leosy - 3 —11)

0 131 174
2,8 coul ( 1, _1 1 )
gHq cosgHy \BigHy ~gRyCO8TH

The deflection at the midpoint of the bar is

= a8 =an(sin—1~ -1y cosly)
“’g:_l akp) = 2 ghy ~gH  C08gHy /-

[xV]

When this deflection is made dimensionless by

then it follows from (62, 17) that

sin u

2f{1 1 3 1

, “(E*Z‘“’Sﬂl'z m )
1
2

3 CoSs l (s:.inl -
Hq 2 M1 5 M1

1.‘=

(A=A ). (62.18)
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For loads further removed from the buckling load, the theory of Sect. 38 may be applied.
If the displacements from the fundamental state are still so small that the term of the
fourth order in (38.22) may be neglected, it follows, after the derivatives of (38.22) are

set equal to zero,

a= - % . — . (62.19)
A3 + J\A3
Here (see also (62, 4))
0 _ 0 _ 1 _ 1 ) t _ v ) _

and thus (62. 19) agrees completely with (35.6). Therefore, the theory of Sect. 38 does
not cause important modification of (62, 18), even if the load is considerably different
from the buckling load.

624, The Influence of Small Deviations

At present it will be assumed that in the undeformed state the bar axis AB slightly
deviates from the straight line, while the undeformed state of the supports remains
unchanged. The deviation will be such that in the undeformed state the coordinates
of a point of the bar axis are given by

(62. 20)

The deviation of the undeformed state from the model with coordinates X, =X,

Xq = 0 which was considered above is small if the quantity LA is small. In agree-

ment with Chapter 4, this smallness justifies omission of quantities of second and
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higher order in v, and its derivatives. The length of a line-element of the unde-
formed bar axis then is

——

2
N
dg = 1+ E(_ dx = dx. (62.21)

It is assumed thatat x = 0 and at x = £ the function w0 becomes zero.,

If the point (62, 20) undergoes displacements u and w in the directions of the axes,

then the length of a line element of the deformed bar axis is

/ 2 dw 2"
v du o  dw
dl = é.+—i> +(E—+a~x-) dx .

The incompressibility of the bar axis is consequently expressed by the condition

2 dw 2
du o dw\y _
(1 +—a§) +(EX_+E> = 1. {62. 22)

£ S

The curvature of the bar axis in the undeformed state is

o .20 o 2 0
dxldx3 dx3 dx1
2 2 d?‘w
e = dx dx dx dx= _ 0
= + = * 7

3
2 22

dx® dx? l
&) &)
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and in the deformed state it is

2
(1 . du d WO N dZW) ) dWO . dw d2u
ax dXz dxz dx dx dX2

After expansion and omission of terms of the fifth and higher order in the derivatives

of v and w as well as of terms of the second and higher order in W it follows

2 2 2 2
R +gzﬂ+;?_‘5gi2+%fﬂd_‘i+;gi)2ﬂ
2 dx dx dX2 2\ dx dx2

The energy in a beam element is taken to be proportional to the square of the change
of curvature p' - p° . H terms of the sixth and higher order in the derivatives of
W, and w , as well as terms of the second and higher order in w are neglected,
the total energy in the bar is

2° {
2 2.\ 42 2 2
l o t _ po dﬂoz ..l_af i...w.___ + o(dw d"w +
2 P 2 32 o \ax/ 2
O

2 2 N
dw 2 2

+ g2 dw (dw} . (dw ) {d v dx . (62.23)
dx dx \ gx2 dx dx
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The energy of the loads is

Nu = N -— dx ,

for which, after use of (62.22) and expansion with omission of terms of the sixth and
higher order in the derivatives of W, and w and terms of the second and higher

order in the derivative of W it follows

dw ] 2 dw 3 4
=_1 __6 4w aw _of{dw 18w
Ix l o dw (dx) + dx(dx) +4(dx>l dx . (62.24)

For the energy of the supports, (62.3) remains valid without change. These quantities

are again made dimensionless by

x =88, Yo =€¢o_ﬁa w =98 , N =X

Here # o is a function which deseribes the form of the deviation of the bar axis from
the straight line; € is the deviation parameter which determines the magnitude of
the deviations. At§ = 0 and £ = 1,11)0 is equal to zero. Differentiations with
respect to £ are again denoted by a dot. When the considerations are restricted to
symmetric deflections with respect to the midpoint of the beam then the total energy
as a sum of (62.23), (62.24) and (62.3) is

A

Prergy = ¢ | P, Wi+ By [+ B Wlecq) Blrea, Wil 229

™0
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In this expression the first three terms are given by (62.4), the remaining terms by

1/2
th )= - 2#2 A /
0
1/2
3 ce 2.
QA [= S
(o]

 pdE
0

+o29 g2 _nhyt g g
o] O

)

f

(62. 26)

For small values of ¥ , the conditions given in Sect. 47 for the extended theory

are satisfied. If terms of the fourth order in the displacements are omitted,the
coefficients of (47. 8) follow immediately (see (38.21), (62.4) and {62. 26})

o o} _ -
Ay = Py [‘01] - '7‘1P2'M’1]
sin u
= 2,201 1 _3 1
SATH (2+4°°S”1 17 ) ’
0 _ 5o _
Ag = Pg 4] =Py [¢1]
= % 8 sy ainl, _ 1 1.2
T gty cosgh BingH - FHcoszH)T
T
Ay =0,
1/2
' 2 , 1
B1 = _Q11[¢1] = ~ 27 ,ul /‘po (coslﬁ&- cosiul)dg.

C
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In agreement with the work by Cox it is assumed here that the undeformed beam

consists of two straight parts which are connected to each other in an angle at the mid-

point C. The deviation function zpo is chosen in such a way the midpoint C lies on a

distance d under the line AB

d 1
= e < £ =
v, T 23 ffor 0= £ 2 3
The constant Bl' then is
d
- 2 iginipn - L 1
B1 = - 47 R(smzi-ll 2f»llcos2

The deflection at the midpoint is

_ oLly L 1
agt = e_uﬂ(smzul 2# coszul)

After substitution of

(62. 28)

W) (62.29)

instead of a , a new variable r is introduced which determines the deflection at the

midpoint of the beam as a multiple of the distance d . Expression (47.8) can then be

written
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‘ 2
@A, - M H El . 4m AT ¢ =
1 1 .1 o1 1.,.2
(smgp1 - oH cos§.u1)

3 2 '
R3r + (A - 7&1)R2 r “te ARI r . (62.30)

As it appears from (62.30) the introduction of the new variable T offers the advantage
that the influence of the ratio d/2 has been eliminated. The equilibrium states are
characterized by stationary values of (62.30), i.e.,by

2

- 1 1 =
SRgr” + 2(A - A )R,'r +¢ AR, 0 . (62.31)

The solutions of (62.31) are

! ‘ R, "2 RT1
. 2 1, 2 2°% 1
r =-3(A ?\1)——R & g A ) T (62.32)
3 R, 3
These solutions are real if
12
R R,'
1 2 7 1.
- 7 =M g (62. 33)
R, 3
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As the values of ul lie between 7 and 8.986 all coefficients R of (62.31) are negative.
Consequently for negative values of € , (62.33) is always satisfied. The roots deter-
mined by (62.32) represent in a A versus r graph two separaie branches (see also

fig. 6, page 219 } . Only the branch which is obtained by continuous deformation from
the unloaded, undeformed state is of practical importance. This branch, the natural
branch corresponds to use of the lower sign in front of the square root in (62.32).

For positive values of ¢ twolimits A¥< A 1 and A**¥> A , are determined such

that the solutions (62.32) are real for A < A* and for A > A** . Hereonly the branch

for which A < A * is of practical importance.

Stability of the equilibrium is governed by the sign of the second derivative of (62.30)

1

6Rr + 2(A - A 9

3 IR

1 (62. 34)
In view of (62.32) this derivative is always positive for the solution of (62.32) which
corresponds to the negative square root with the exception of the limit values A* and
A*x*x  determined by (62.33) for positive values of ¢ . Consequently, the natural
branch is always stable for negative values of ¢ . For positive values of € , as the
natural branch passes through A¥,the stability limit will be reached. In view of (62.33),
this buckling load is determined by

R.'R R.'R R' 2 2!
Ve o= A +§e L 3 _ 3¢ 1 3-!-'9"'62 2_3 (62.35)
172" ;2 R 4 r 4
2 2 2

625. Comparison with the solution by Cox

In the derivative above, all terms were disregarded in the energy (62.235) which
correspond to the bar and are of a higher order than two in the derivatives of ¥ ;
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this omission is justified in Sect. 615 for the case in which the maximum deflection

does not exceed 10 percent of the length of the bar. In that case the energy is given
1
by ~.

1/2

2
+ gr'M (Bz - 2% ] %B4> (62. 36)

Equilibrium states are detefmined by the stationary values of (62. 36), thus by

1/2
2 [ A N L A
Q
¥ arMut - 35 2 2280 =0 62. 37
2

for all functions ¢ which satisfy the kinematic conditions

=10 for € = 0 and 2 =0fgr§=%.

The energy formulation used here deviates somewhat from that of Cox in which the
compressibility of the bar has been taken into account. Furthermore, Cox puts the
elastic potential proportional to the square of the specific strain and not, as it has

been done here, proportional to the square of the strain component. These differ-
ences are,however,of minor importance.

215



Through integration by parts it follows from (62.37) that ¥ should satisfy the

differential equation

L W R A (62.38)

with the boundary conditions

g =0 for £ =0 ,
) _wzth'-frzehzb(; +
38 2, 1223\ _1
+81rM<!,’1—2d¢ +2dzzp>—0for§ =3 (62.39)
The kinematic conditions for ¥ read
$ =0 for £ =0 and ¥ = 0 for $=—12—. (62. 40)

For the deviation function (62.28),equation (62.38) becomes identicdl to (62.6). This
equation with boundary conditions (62.39) and (62.40) can be solved rigorously. Two
integration constants of the general solution (62. 9) follow immediately from the

conditions at § = 0

The deflection at the midpoint of the beam is determined by

B=%B +Dsin—é— p with p =7 I

Do =
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o=

Under the condition ¢- = 0 at & =
B +D coslu= 0
HEO%2

the constants B and D may be expressed in terms of §

© ﬁcos% i 3
B = - D = s
sin—l- -1 cosl ’ sinl -1 s;—
5 g HCosSH 1 2 gHcoszH

Finally B is determined by the second condition (62.39)

©3

o

ﬁcos-zl‘-u - sz €~

)

1, 1 1
smzu— 2ucoszu

(62. 41)

An equation for the deflection at the midpoint of the beam as a multiple of the distance

d follows from (62.41) by substitution of 8 &/d = r

r3—3r2+(2+7‘ ;L )r-—gﬁ€=0. (62. 42)
2M 2tg5 b - H

This result agrees completely with that by Cox who neglected

r
R2 + 1
in comparison to unity in his equation (18) [23, in particular p. 264] 1

lFor the derivation of (62.42) Cox developed the functions ¥, and ¥ in Fourier-series.

This detour is showntobe unnecessary by the solution method given here.
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- The stability of the equilibrium states determined by (62. 42) are governed by the
second variation of the energy (62. 36)

1/2
. . . 2
i j (% -n PP aes 8-.-r2M<§2 - 3dpd + %g—zﬁzcz> s
d $=§
; _
1/2 _
~.. . 2 3 2),2
=%!- /(g Z-ﬂzhgz)d-ﬁ-“'[&r M(1-3r+2—r)§:L;:.1-
o 2
(62. 43)

This is of the same form as the second variation (62.4) for the initially straight beam.
The condition for neutral equilibrium can therefore immediately be derived from.
(62.11)

pd
SWZM(1—3r+§r2) —_—— =0 or
2 1 lu--l—ﬂ
R )
A
3r2—6r+2+2—M—"lu— =0. (62. 44)
2tg5 k- H

Ina A versus r diagram, the neutral states of equilibrium for different values of
€ are all represented by the curve determined by (62.44). This curve, according to

(62.11), goes through the point A = hl , ¥ = 0. For the points A < A r=90

and for A > 7\1 , T = 0 representing possible equilibrium states at € 1= 0, equilibrium
is stable and unstable respectively. The transition from a stable to an unstable state of
equilibrium always takes place at a state of neutral equilibrium. Therefore, the
equilibrium states are stable and unstable respectively depending on whether they are
represented by a point on the same or the opposite side of the curve given by (62.44)

as A< 7\1 , T=0 and A > 7\1 , r'=0. In passing along the natural branch from the point
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which represents the undeformed, unloaded state A = r = 0, the buckling load is
reached at the first intersection with the curve (62.44). The corresponding value
A* of the load parameter is obtained by elimination of r from (62.42) and (62.44).
As (62.44) is also the condition for the occurrence of a double root of (62.42), the

tangent to the curve A versus r is at the point A* , r* parallel to the r-axis.

In Fig. 6 some A versus r curvesare drawn for the case M = 1 ; in view of (62.11),
the value of the load parameter corresponding to the buckling load of the initially
straight beam is ?\1 = 4.

Curve Ia is valid for the initially straight bar, the curves Ib and Ic are valid for
the values 0.1 and -0.1 of the deviation parameter ¢ respectively. Of the last
mentioned curves, only those branches are represented which are obtained continu-
ously from the undeformed state. The line of partition between the stable and unstable
regions is given by curve Id . The stable parts of the A versus r curves are given

by heavy lines, the unstable parts by dotted lines.

Further, in Fig. 6 some A versus r curves are drawn for the approximate solution
for M = 1. Curve Ila holds for the initially straight beam (see (62. 18)), the curves
IIb and IIc hold for the values 0.1 and -0.1 of the deviation parameter ¢ respectively
(see (62.32)). The line of partition between the stable and unstable region is given by
curve IId; this curve is obtained when (62.34) is set equal to zero. It appears from
the figure that the approximation is good if r does not exceed the value 0.4, i.e..if

the deflection at the midpoint of the bar is not larger than 40% of the distance d .

In Fig. 7 the buckling load A* of the bar is given as a function of € for the case of
positive values of € . Curve I corresponds to Cox's solution obtained by elimination
of T in (62.42) and (62.44), curve II corresponds to the approximate solution

(62.35). Also in this case the agreement is very satisfactory.
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»* 2 FIG. 7

Finally, it may be noted that the analysis of Cox's problem is also based on the
assumption of a completely elastic material. As a consequence, the considerations
have significance only as long as the occurring deformations are very smail. In
view of the results of Sect. 621, the strain components in the supporting bars are of
an order of magnitude of dz/(b2 + d2) if the deflection at the midpoint of the beam is
of the same order of magnitude as the distance d . Consequently, in the foregoing
it has tacitly been assumed that the angle ECD of the supports differs little from
180° (see Fig. 5h).

63. THE PROBLEM OF THE EFFECTIVE WIDTH

The simplest case of the problem of the effective width may be formulated as follows.
The edges of a flat rectangular plate are simply supported such that edge displace-
ments can only occur in the plane of the plate. If the plate is loaded in compression

on fwo opposite sides, bucklihg of the plate will take place as a certain ecritical

load (the buckling load) is exceeded. Below the buckling load, a linear relation exists
between the compressive load and the end shortening; after the buckling load is ex-
ceeded the end shortening increases more rapidly than the compressive load. This

is expressed by use of the concept of effective width defined as follows: the ratio of
the effective width to the total width of the plate is equal to the ratio of the compressive
load sustained by the plate to the load on a similar but not buckled plate which has the
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same end shorfening. The extensive theoretical literature about this subject (see [46])
yields good results for loads not too far in excess of the buckling load; on the other

hand the theory is still unsatisfactory for loads far in excess of the buckling load.

For loads not too far in excess of the buckling load the best theory is given by
Marguerre-Trefftz [19]. After a short survey of their considerations (Sect. 632),the
general theory of Chapter 3 will be applied in Sect. 633 here. The results thus ob-
tained agree very well with the results obtained by Marguerre-Trefftz.

631. The Elastic Energy

The elastic energy in an initially flat plate can be calculated by application of the
general theory of Chapter 5. In this particular case, it is simpler, to make use
of the results already obtained by Marguerre and Treffiz {19].

A point in the middle surface of the undeformed plate is described by its coordinates
x and y with respect to a fixed system of orthogonal coordinate axes whose origin
is at the midpoint of the plate. For a plate of length £ and width b the longitudinal
edges are givenby y = + % b and the transverse edges by x = i%l . As the plate
. is deformed a point in the middle surface undergoes a displacement with components
u and v in the directions of the X and y axis respectively and a component w normal
to the surface of the plate. If differentiation with respect to x and y is denoted by
indices x and y placed at right below the arguments, then the total elastic energy is
[19, eq. 36]

dxdy . 63.1)

+§h2[(wxx+wyy) -2 B (wxxwyy—wiy)]



632. The Theory of Marguerre-Trefftz

An infinitely long plate which undergoes an average compression € 1 is considered.

The displacement component u is

u. = —61x+ﬁ, (63.2)

where the second term is a periodic function of x . For the displacement component

v is written

v =gy ti. _ (63. 3)

The transverse displacements of the longitudinal edges (which remain straight) are
:I:% €, b . Also { is a periodic function of x . Along the longitudinal edges

_{'(x,:h-;—b) =0. (63.4)

For the edge values of the dispiacement component i it is also required that

b) = 0. (63. 5)

This implies that the longitudinal edges are connected to stringers of such a stiffness
that they do not noticeably deform under the shear stresses induced in the plate.
This assumption appears to be of minor importance; almost the same resulf may be

obtained if it is assumed that the longitudinal edges are not subjected to loads in the

x-direction, i.e., that no shear stresses act on the longitudinal edges.

Marguerre and Trefftz consider €. as an independent parameter or to put it differ-

1
ently, they consider a plate with a prescribed end shortening. The compressive load
which is (at infinity) acting on the plate then does not contributé to the potential

energy. Further, they consider the two limiting cases that the longitudinal edges '
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are completely free to move in the y-direction and that the edges are completely restrained
from motion in the y-direction. In neither of these cases do the loads on the longi-
tudinal edges contribute to the total potential energy; in the first case because the

total load on the edge is zero, in the second case because displacement of the longi-
tudinal edges is zero. The total potential energy is then determined by (63.1). By

use of (63.2) and (63. 3) this expression becomes

2
m A A 2 2
m—l/'f[_ 2€1+2€2+2(ux+vy) +WX+Wy:l dxdy +

1 A 2 A 2
- 5Gh//|:(~ 261 +2uX +WX) (262 +2vy +wy) +

- (B +WXWy)2]dxdy +

_1
V—ZGh

1 3 m

2
+ = _ofm =1
12 Gh m -1 [(WXX +Wyy) 2 m

2
WXXWYY - ny) ] dxdy .

(63.6)
States of equilibrium are characterized by stationary values of the energy (63.6).

It is known that, as the stability limit is reached the displacement components u

and v are zero while the component w is given by [47]

w o= gcos% coslrbl (83.7)
if the longitudinal edges are free, and by
w = gcosg%’ﬁ cos ¥ with p = mr;z (63.8)
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if the longitudinal edges are restrained from displacement in y-direction [19, eq. 921] .

An approximation is now introduced by the assumption that the displacement com-
ponent perpendicular to the surface of the plate, also after the buckling load has been
exceeded, is given by (63.7) or (63.8). The still unknown components  and Vv are
determined if the first variation of (63.6) is set equal to zero for every possible vari-

ation of U and ¥ . This leads to the differential equations (see [19], sec. V)

4 +a +m+1_?_(ﬁ +y)+ 1 _Ei(w2+w2)+
XX Yv m-18x'x vy m-18x \'x y
+ww - W W =0 ,
X yy y Xy
3 (63.9)
A A m+1 9 A A m 3 2 2
o+ LA + + - + +
vxx-‘-vyy m - 1 8y (ux Vy) m - 1 3y (wx Wy)
+ ww - W_W =90
¥ XX X Xy

Affer restriction of the considerations to free longitudinal edges with the buckling

mode (63.7), a particular solution of (63.9) can immediately be written down [19,
eq. 50}

2
Ta
b = e s g oY+ B D)
(63.10)
§ =TE gp 2Ty (c:osz—ﬂi-fm — 1)
p 16b b b m

The requirement of periodicity is satisfied by this solution. However, the boundary
conditions are not yet satisfied. For this purpose a solution of the homogeneous
equations (63.9) must also be added. It appears,however, that this addition is not
numerically significant [19, sec. V and VI] so that it will not be further considered.

This is even more justified in view of the fact that in reality the boundary conditions

2
1Equation 92 contains a typographical error, it should read b—z =M r; 2 .
£
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(63. 5) are only approximately valid and that (63.10) represents the exact solution if,

instead of (83.5), absence of shear stresses along the longitudinal edges is required.

Introduction of (63.7) and (63.10) in (63.6) determines the energy as a function of the
three parameters €15 S9s B Execution of the integration over the length b of a
half period yields [19, eq. 691)]

22
_ 2] m 2 _m*1l,._ T2
V = Ghb m -1 (61 - 62) + 26162 m -1 (El €2) 4b2 ¥
2
. m Tr4'hza. 4 Bm - 1) (m + 1) F43«4 (63.11)
m - 1 4 m(m - 1) 44 .
12b 64b

In the case of free lateral edges the conditions

av  _ aVv
—_— =9 y
862 8..

should be satisfied for a stationary value of (63.11). These conditions are

22
2m m+17T2a
-——= (e, - &) t+ 2e * — =0,
m-1%Y1 2 1 m 14b2
m+1 n’a m 1*h%a
B T R e il
4b 12b
4 3
d3m - 1) (m + 1) 7t a _
+4( = . .12
mm - ) oL " (63.12)

1The last term of eq. 69 contains a typographical error; it should read mrfl T 7r4h2f2 .
4

12b
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The second equation is satisfied by a = 0 with which from the first equation it follows
that €, = rln- € - For this solution (63.11) becomes

_ 2m +1 2
V = Ghb o €1 ¢

(63.13)

This solution yields the unbuckled state of the plate. With the known value € = €*
for the buckling load (see [47])

2 m2 h2
2

m -~-1b

T
€* = —
3

the remaining solutions of (63. 12) are written

(63.14)

2 2
Ta

4b2 1

This solution is apparently only real for € > €* . In that case the energy (63. 11) is
found to be

= 2____m+1(12 * - L 2
Vo= GhbT (el +eet - 2e ) (63.15)

Knowledge of the stress distribution in the plate is not needed for the calculation of
the effective width. For a variation 551 of the average compression, the work of
the load N acting on a strip of the plate of the length of a half period and the width
equal to b is equal to Nchel . This work should be equal to the increase of the
elastic energy so that

Z
1
o~

dav
del
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should hold. For the unbuckled plate follows from (63.13) that

N =chbz 21l ,
for the buckled plate from (63. 15) that
N = ghp ™ t1 (El +*) .

The ratio of the effective width to the total width is given by the quotient of these

expressions

b
1 ES
i), 65.10

in agreement with the result of Marguerre-Trefftz (19, eq. 86] .

633. Application of the General Theory of Chapter 3

It is assumed that in-plane loads on the edges of the plate which remain straight can
only act in a direction perpendicular to the edge. Moreover,it is assumed that the
total load on the longitudinal edges of the plate y = = % b is zero. Let N be the
resultant of the compressive load acting on a transverse edge, then the energy of the

loads is

Nu (63.17)

This is in agreement with the case treated in Sect. 632.
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The displacements in the fundamental state are assumed to be

U=-e, V=1fy, W=90, (63.18)
while the displacements of a neighboring state are written as
Utu =-ex+u, V+v =fy+v, W+w = w. (63.19)

After introduction of (63.19) in the total energy [the sum of (63.

1) and (63.17)} and
after series expansion, it is found for the linear terms in u, v and w (the first
variation of the fundamental state) that

m -1
o fux+8 ol evy dxdy +
_1 =1
x-—2£ y 2b
+ Nu =2Gh1n_l—1£6f—1e)v +
1 1
x——2fZ y——zb
|x=é£
- la2gn ™ (e--lf)-Nlu
m -1 m
1
x—-zﬂ

It appears thus that the state (63.18) is indeed an equilibrium state if

f =

——1~e and ZGEHTL—1
m m

bhe = N .

To the load parameter

N _ o m N _
= Ebh T 2@m FT) GbE - © (63.20)
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therefore belongs the fundamental state

U=—7Lx,V=%Ay,W=O. (63.21)

The expansion of the increase in the energy during transition from the fundamental
state to a neighboring state, obtained by substitution of (63.19) into (63.1), is now
written in the form

[w] +APy [u] +P) [ + P [u]

PM [ = P

with

i)
b
=
|

@, + Vy)2 -

1 1 2
[uxvy -3 (uy + vX) :| +

2
+ h [ +w ) WXXWyy - wxy)] dxdy ,
Ppg =canm [[.om®-1 2 axd
2[] m-1 2 Wy Y
. J m
0 _ m 2 2
Py lul = hm-1[[l(“x+vy)(wx+wy)+
m -1 2 2
i luxwy + Vwa - (uy + vx) wxwy] l dxdy ,
PO [ = Gh-—2 w +w2 dxd (63. 22)
4 m -1 y Y - ’

The buckling load is reached when the second variation

Pylu = P)[u] +AB, [y
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is semi-definite. Because the displacements in the plane of the plate and those per-

pendicular to the plane of the plate yvield mutually independent contributions, these

contributions should separately be equal to zero. The integrand of the contribution

first mentioned is also semi-definite so that for the first system of eigenfunctions at

the buckling load the following should hold

from which by use of the boundary conditions

u = const. for x = &:%E , Vv = const. for y ='i~%b
it follows that
uy = v1 =0
The variational equation (38.4) for neutral equilibriom then is
m 1 .2
or [ o+ 1
m -1 m2 -1
-2 o~ (Wxxgyy + wagXX - -zwxygxy) - 27AWX§X

dxdy

(63.23)

Q.

After division by the factor in front of the integral sign and integration by parts it

follows that
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1
2b
1,2 1 m-1
j 6h [(wxx+mwyy)?x+ m xy§y+
1
_§b
x=+l!
2 2
m- -1
-(wm"rwxyy)g] -2 mz hwxg dy +
=1
x= z.ﬂ
1
22
+ f‘lhz[(w + Ly ) Sl NN
6 Y¥y m XX/'y m Xy X
1
_ig
1
y=5 b
1.2
- (w +w dx
(XXY m)g} 1
y=-gb
mz—l
+ 2 B Aw fdxdy = 0
m

The kinematic conditions for the displacements w are

o =

W=0f0rx=4_-%£andy=:|:

so that in addition

£= 0 forx=d;%£ andy=i%b.
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From this it also follows that

fl

H
DS f =t

o

¢

= = .1 _
X—Ofory—izbandéy 0 for x

Furthermore,the function £ is arbitrary so that for x| < 5 £ and ly{ < %b the
differential equation

2
—1~h2(w + 2w +w )+2uhw = 0 (63.27)
6 XXKX XXYY YVYY m2 XX
with boundary conditions
1 = =41 1 = = a1
wxx+mwyy—0forx izﬂ’wnyrmwxx 0 for y izb
should be satisfied. By use of (63.26) it follows that
w =0forx=il,a w =0fory=iib
vy 277 Txx 2
‘and thus the boundary conditions become
w__ =0 for x = x4 w =0fory=i£b. (63.28)
XX 27 yy 2 '

The solution of (63.27) with the boundary conditions (63.26) and (63.28) may be
written in the form [47]

Cc . TX .
A OS_ITT COoS Tf!

w = . .
sin  f sin’ b °

where the cosine or sine functions are used depending on whether i and j are odd
or even respectively. However, this solution exists only if A attains a value deter-

mined by
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2 2.2 2 4,2
R 2 i2%+2j2 il (63.29)
m- -1 b ] i b
The smallest value of A corresponds to
j and i b

For long plates, the latter condition can always be satisfied with good approximation.
It is assumed to be satisfied for an odd value of i so that the buckling load and the

correspohding eigenfunction are given by

2 22
A _ m T h

m2 -1 3b2

, W, = cos %= cog ¥ , (63. 30)

1 1 b b

which is in agreement with Sect. 632.-

For the analysis of the neighboring states which belong to the fundamental state,the

following is introduced in agreement with the general theory,

U =au +Uu =49, v=av, +vV =V, w = aw, tWw. (63. 31)

As (83.22) is of the form (38.3), the extended theory of Sect. 38 may be applied pro-
vided that the displacements u, v, w are small. Some of the coefficients in expres-
sion (38.22) can readily be determined (see also (38.21))

0

1 1
= - A = - A =
Ay 189 1P [yl
2 4,2
= A m m -1 2 _gp—m_ Thi .32
1 G 3 Wiy @Xdy = Gh o T, (63.32)
m 12h
A% s2a" = pO[u] + AP =
g = Pglyy glyl =0. )
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A A
For the calculation of A 4_234 the functions gzqo 5 must be known. These arc determined

by the variational equation resulting from (38.18), which holds for arbitrary kine-
matically possible functions £,  ,¢

[Z(Exﬁy)(sxwy) +

m - 1' — — 1 — —
-2 {uxny TVt G +nx)]+

+ i 2@+ o (b * )

_gm - — Y . +
2 M- (wxx gy * oyt 2ny§xy)] dxdy
+ W(f,' dxdy +

m 2 2 2
+ hm—lé.fj{(wlx+wly)(§x+ny)+
‘m -1 2

2 } _
o My & Mixy T Vg €y * )] dxdy =0, (e3.33)

together with the condition (38.19) which here takes the form

m-l

®rocVyy * Viyy Vi T PV xy)] dxdy = 0.  (63.34)

In the formulation of this condition use has already been made of (63.24). By analogy
to the foregoing (63. 33) is reduced through integration by parts
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X=%£
m -1 . 5 +
+ B (u + v +§w1xwly)n ay
1
x=-3*
: 1
Eb
1.2 /- 15 slp2m-lg o
' [ ‘Eh (Wxx+meY)CX moRY
1
-Eb
Ix=lﬂ
2
1.2/ mz-ll_ o B +
- _sh(wm+wxyy)+2 m2 "x Y
x=~%ﬂ
1
Eﬂ
_ 1. 2 (w2 v Iwl )
' fl[z("y @) 72 (Mt m ]“

+aw, le)ﬁldx
) by 050
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y=3b
+
1
y=-3b
2m -~ 12 .
m Xy X




1.2/ —
———h( w ) dx +

6 XXy yyy ] .

y=-5b

_ m -1} — m+1 9y ~ —

/f m u:azx-'”‘lyy-'km-lﬁi(x-kvy)+

m_ 2 5 (2 z) 2
"m-12 Bx( 1x+w1y EWlxwlyy a lewlxy £dxdy +

ndxdy +

2
1.2 — — = m- - 1.,—
+ff[6h (w +2Wxxyy+w y +2 mz hwxx ¢ dxdy 0.
(63.35)

The kinematic conditions for the functions U and &, V and 71 follow from (63. 23)

const. and £ = const. for x = = ,

]
il
b fi

{63. 36)

const. and n = const. for y = £+5b.

<}
1l
Do [

As the functions £ and 7m are arbitrary, u and v should satisfy the differential

equations
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—_ _ +m+16

XX +uyy m - l.ﬁ(ax-b?y)rﬂb
* m Iil 1 -%2 _&%{(wh?"- W1y2)+ §2Wlxwlyy - alzlev"’lzr,:y -

Vex t Vgy = _i%(ﬁx V)
t oo a* 8% ( “’ix2+ W1y2>)+ ‘i‘z“’lywlm §2W1xw1xy -

with the boundary conditions

1
Zb
x=d:%1 u = const., / [Z(If +—1—V)+
X m'y
1
-5b
+azw2+iwlz)wd =0 _1I+—+a2 =0 ;
2 (lx 1y /|% » Uy TV T2 Wiy ’
1
2
y = tah: ¥ = const., o v + 2T )+
2 L Yy m X
1
_El
2 2. 1 2. _ — =, .2 _
+§(w1y+ Wlx)}dx-o,u +VX+z_1leWly 0

into

0andy=:t%b:dﬁ = 0.
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- For the function w is obtained the same differential equation as that which followed
from (63, 25) for w

2
1. 2 — — — m -1,— —
—6'1'1 (w + 2w +w )y + Z_TA-W =0 (63.39)
with the boundary conditions
x =220 % =w =0andy=i—1—b-i?=$v' = 0. (63. 40)
o4 5 b .

Equations (63.37) are identical to (63.9) so that they also have the same particular
solution (63.10). In order to satisfy the boundary conditions (63.38) this solution is
combined with a solution

u=cx, v =dy

of the homogeneous equations (63.37). It follows then from the integral condition
(63. 38) that with

all boundary conditions (63. 38) are satisfied. The resulting solution of (63.37) is

2 22
— _ ma . 27X 2y m-l)_rrg
u ——lﬁb Sln —‘—b (COS '—b + m ET X,
(63. 41)
2 ' 2 2
- =ra _. 2y 27x m-1y 7m°a
M 16b °* p (COS b * m ) sz
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Equation (63.39) with boundary conditions (63. 40) is identical to (63.27) with boundary

conditions. (63.26) and (63.28). Therefore, it similarly always has the solution
w =0 (63.42)

and in addition a non-zero solution for the particular values of A determined by
(63.29). The golution corresponding to the smallest \;a.lue A 1 is incompatible with
condition (63.34). Therefore, as long as A remains below the second smallest

value N , there are no nonzero solutions of (63.39).

2 H

Substitution of (63.24), (63.30), (63. 41) and (63. 42} yields after integration for the

term Ah4§4 of (38.22)
A4 _ 4|50 00 AL poAl= atp?
A2 a {P,[ul P, oyt Pylo,] a Pylud
2 4, 4
. | -
- POl - AP T) = Gh —— m” - 1743 (63. 43)
2 2 m- 1 2 3
m 64b

The coefficient of this term is always positive, thus also for A = ?xl , So that

equilibrium is stable at the buckling load.

The equilibrium condition is

A3 0 A
44, 2 +2A4(1 -~ )a =0

with the solutions
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By use of (63.32) and (63. 43) the second solution becomes

2
2 _ 8b _
a—wz(k Al)forh‘gh

1

The average shortening of the plate is

x=%£
e=1 el - (au, + )
J 4 =1
=1
X = 212

which, after use of (63.24) and (63.41), can be written

22

€= e+.ﬂ'g2
8b

(63. 44)

Substitution of the values of e- (63.20) and of gz (63. 44) gives this shortening as a

function of the load parameter

€=2A-A . (A zA)

(63. 45)

If the quantities related to this case are denoted by a dash,it follows by analogy for the

unbuckled plate

E:E:X,

The ratio of the effective width to the total width of the plate (which is equal to the
ratio of load sustained by the buckled plate to the load on a similar unbuckled plate

under the same average shortening) is then given by

(=2
S

m _1 Hi]
- 5 [1+-1].
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This result is the same as that of Marguerre-Trefftz on account of the identity of A 1

with % .,

That the same result has been obtained is due to the circumstance that the function W
which deterrﬁines the change of the buckling mode with respect to Wy appears to be
zero, i.e., that the general theory confirms the assumption which was introduced by
Marguerre-Trefftz concerning the form of the buckling mode. This is due to the facts
that the differential equation in w and its boundary conditions have no known terms

c o= o 0 - ' —
and also that there are no termg containing w in P,, [ul,u] and P21 [ul,u] .

Strictly speaking the application of the theory of Sect. 38 as given here, holds only
for values of A smaller than 7\2 . Since 7\.2 for long plates is only a little greater
than A— for an infinitely long plate,the particular A values actually represent the

continu}lm Az 7\1 — the practical significance of the result would appear to be

litfle. In spite of this, the result (63. 46) for the effective width appears to represent
a good approximation also for A values exceeding A 9 - There is no doubt that this is
caused by the circumstance that the buckling modes which correspond to A g 7\3 etc.

differ only a little from the buckling mode (63.30).
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Chapter 7
THE THIN WALLED CYLINDER UNDER AXIAL COMPRESSION

71. THE DEFORMATIONS AND THE POTENTIAL ENERGY

The two sets of li.nes of curvature for the cylinder are formed by the generators and

. the parallel circles which are introduced as the parameter lines 8 = const. and

« = const,, respectively. The positive directions of the parameter lines are chosen

in such a way that the positive direction of a normal to the cylinder is pointed outwards.
A point of the middle surface of the undeformed cylinder may be described by its
coordinates with respect to a rigid system of coordinates of which the x_- axis coincides

1
with the cylinder axis

X, = Rao, = R sin g8, = R cos 8.

)

X2

The quantities A and B defined by (52.3) are

2

axi
A = 2(3&— =R, B=" (71.1)
while the principal radii of curvature are
R, =», R, = -R; (71.2)

the minus sign in the last relation expresses that the corresponding center of curvature
lies on the negative part of the normal. '
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If for simplicity differentiation with respect to « and with respect to 8 are denoted
by a prime and a dot respectively, then the deformation components of the middle sur-
face take the form [see (56. 3)]

— ,l t _1_ 72 '2 '2
Yoo = R + 5 T+ VT 4w,
R
1 . 1 .2 . 2 . 2
VBBO=§2(V +w)+~R—2[u (v + W)+ (w ~v)], }(71-3)
Y, = —l—(u' +vh +_1—[U'U' v (v o+ w) W (W - )
«@fo R R2 C

The changes of curvature follow from the formulas (56. 4) to (56.10). If terms of the
third order in the displacement components and their derivatives are disregarded in

the development of the determinants,it follows

[ =_1_W"+"'];'—W'u”—(W.-V)V”+ U'+V.+WW”,
f4'3e's Rz R3 )
_ 1 ' . .
DB;B—_Z(—H -3V - 2w +w™") +
R
1 1 oie . .. .
+—§[—wu -{w -V o+ 2w -v) 4+
R

W+ vV AwpwT -2V - wy-u' (Vv +w)+u’ v'],

= ‘—1“(W" - v") +—1

-whu' - (W' - v) (v O+ WD+
Pog RZ RS[

+ '+ v o+ ow) (w' - v')].
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By calculation of these expressions terms, of the form % ¥ 880’ etc., are disregarded.
: 2
Consequently, there is no objection to the simplification of these expressions when-
ever possible by the addition of a part of the disregarded terms. Accordingly, if
1 .1 .
R yozoeo and R ’YB Bo are added to pB R the changes of curvature of the middle surface

are

-

Paq = _lz'W“ +'i3[-w' u" - (W' - v+t v w)w
R R
1 . . lrr,2 1,2 1 .2
= —— - — = —_ + =
pﬁﬁ Rz(w v) +R3[2u +2v g W'k
l2 2' - - ' '0-
+u -2u (v o+ W+ uy - w4 (71. 4)

+ W -V (VAW + @+ v+ w) (W - V)'],

poz,g = R—12 w -9+ El?;[-w‘u" -W -V (VT + W)+

+ @ +v o+ w W - v)']. )

The contributions to the changes of curvature which are linear in the displacements and
its derivatives will suffice for the determination of the buckling load (see [49, 501 )
Use of this simplification will be made also for the analysis of equilibrium for the
buckling load as well as for the neighboring states and the analysis of the influence of
small initial deviations. Hence,

1 o 1
Paa ™ 2™ fgp T 3 W

TSV Py ;15 W - V).  (71.5)

The justification of this simplification will later be given by use of expressions
(71.4) (see Sect, 782).
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The elastic energy in the cylinder is calculated through integration of (55.11) after sub-
stitution of (71.3) and (71.5). If £ denotes the length of the cylinder,the energy is:

£
R 2m

1
Ghl_vf daJ dg
o o]

2 +4 (v +w)2 + 8vu' {v' +w) +

4u'

<}
il
W | b=t

+2(1 - i}) w + v‘)?' + k [w”z + W - v)'2 +

+oww" (W - V)T +2 (1) (W 'V)T2” '

13
R 2

J do [ dg l4u‘ (u'2 + v'2 + w'z) +
(v s}

+4 (V' +W) [u‘2+(v' +w)2 + (W —V)Z] +
+ 4yu’ [u‘z + (v’ +W)2 + (W - v)2] +4v (v" + W) (u'2 + v'2 +w'2) +
+4(1-2) 0 + V) [u' w o+ V(v rwy+w (W -v)]l +
L3
R 2
1

Gh L1 do dg (u'2 + v'z + w‘z)2 +
1-v R2

|

—+

0 o
2
+ [u' 2, (v + w)2 + (w" - V)Z] +
+ 2v (u'2 +v'2 + w'2) {u’z + (v + W)2 + W - V)Z] +

+2 (1-v) [u' WAy (v W+ w (W -v)]zl . (71. 6)
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Here for, brevity

2
= v, —h—2 = k, (71.7)
3R

1
m

Let N be the axial load per unit length of the circumference which is acting on the
cylinder edges, then with the load parameter defined as

- N _ __ N
A= En < 2G (1 + ) h? (11.8)
the energy of the loads is
27 a=£

-W = A2Gh (1 +») R udg| B = A2Gh (1 + V)R[fu' dadf. (71.9)
Q=0

=]

72, THE FUNDAMENTAL STATE

The fundamental state is assumed to be of the form

U= -eRey, V=10, W = fR. (72.1)

The increase in the energy on transition from the fundamental state to the state

U+u=-eR¥+uy, V+v=v, W+w=1fR +w (72. 2)

1

is obtained by substitution of (72,1, 2) in (71. 6) and (71.9). After division by ;Ll-Gh 1-v

and after expansion, this increment is

PAu] = Pl?\ fu] + P27\ [u] + 133’l [u] +P4h[u] . (72. 3)
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For the moment only the first term, which represents the first variation of the energy
in the fundamental state, will be defined

Prul = RJJ' [(— 8e + 8vf + 12e2 + 4vf2 - 8pef - 4e3 - 4Vef2) u'

+ (8f - 8ve +12f2 + 4ve2 - 8vef + 4f3 + 4vezt) (v +w)| dadp +

48 (1-v2 mf[ u' deds.

The equilibrium conditions for the fundamental state are obtained by setting the first

variation equal to zero, and consequently e and f should satisfy

- 8e + 8ui + 12¢% + avt? - svef - 465 - 4vef2 +8 (1 - v2) A= 0,

(72.4)
8f - 8ve + 12f2 + 4ve2 - 8pef + 4f3 + 4ve2f = 0.

In the elastic range e and { are very small and the equation may be linearized; its

gsolution is
e = A, f=vA. (72. 5)

Also, in the integrals Pél[u], terms of the second and higher order in e and f are
disregarded. After use of (72. 5),they take the form

Pml [u = Pmo[u] + P ']
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Here
on[u] =ff‘4u’2+4(v' +w)2+8vu' v +w) +
. w2 "2 . .2 " ope .
+2(1-v) @@ +vY + kW' + (W -v) %+ 2uw w -v) +

+2(1-v) (w - v)‘2] dadg, (72. 6)

Pz'{u] =[f [(— 12 + 4v2) u’2 + 8 (Vv + w)2 +
2

-8 (l-v)u' (v +w-4(01-»)u —4(1-v)v'2+

—a@-piuwvi-4q- v_z)w'z] dadg, (72.7)

P3°{u] = 4u’ (ur2 + v'z +w'2) +

Sl

Jf

+4 V' +w) [u' 2 + (v +W)2 + (W - v)2} +
+ 4pu! [u'z + (v + w)2 + (W - v)2J +
+ 4dp(v' + w)_(u‘z +v'2 + w'z) +

+4(1-v)@@ +v) [u'u' +V (Vo +w W (W - v)” dadg, (72. 8)
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Py'[ul = %{ff

+4v (v +w) {u-z-i-(v' +w)2+(W' - v)2]+

- 4u' (u’2 + V'2 +w'2) +

- 4vy’ [u'z + (v -f-w)2 + (W - v)zl +
s v W) @l eVt wd) s

-4 (1-vY@u -w'" [’u' u + vV (v rw)rw (W - ’v)] ‘dadﬁ , (72.9)

2

2 . .
2y v +w'2)2+[u'2+(v +w)2+(w —v)zl +

+2v (u'2 + v‘z +w'2) [u‘z + (v’ +w)2 + (W - v)2 ]+

+2(1-v) [u' w o+ vV W) +w (W - V)Jz ]dadﬁ, (72.10)

P4’[u] = 0. (72.11)
The second term of the second variation
A N ]
P, u] = P, [u] + )\Pz'[u]

contains the small factor A. Therefore, those contributions in the integrand of P’ [u]

which have a counterpart of the same arguments u', v', w, u*, v' in the integrand
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of Pg[u] appear to be negligible. However,such a simplification may lead to a com-
pletely incorrect result. This is due to the circumstance that the integrand of P(z)[u]
is not definite in the arguments u', v, w, u', v' so that the contributions depending
on these arguments in Pz'[u] may become large in comparison with contributions
depending on the same arguments in the integrand of Pg[u} ; in that case,the omission
of the first mentioned contributions in ?\Pz'{u] can no longer be justified. This objectic
is not valid if in the integrand of Pz'[u] terms are neglected which exclusively depend
onu', v° + w and u" + v', because the integrand of Pg[u] is definite in these argu-
ments. The integral Pz'[u] now becomes as simple as possible if the contiribution

depending on u', v + w and u" + v!

(12 - 4v2) uw? - v (v’ + W)2 +8v {1 -vyu' (v’ +w)+
+2(1 -2 @+’ (72.12)

is added to its integrand, The result is then given by

P,'[u) =[J -1 - o+ 2w + 49'?) dads. (72.13)

73. THE BUCKLING LOAD
The buckling load is determined by the smallest value of M for which the homogeneous

variational equation for neutral equilibrium (38.4) has a nonzero solution, With

arbitrary, kinematically possible functions £,n, ¢ this equation takes the form
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[f !SU'§'+8 (Vi +w) (0" +&)+8u' (nr +4)+
S8 (v W) £ 4 (1-v) @ + V) (E +n) +
+k [2w"§"+2 W' -V (& -n) + 2w (& -+
F2V W - W)L A (L) =W ()|

- a@we +avint+sw'enl dedp = o, (73.1)

As £, n, £ (justas u, v, w) are periodic functions of 3 with period 2r, (73.1)
after integration by parts becomes

27
_/ {[8u'+8v(v' +W)] £+ [4(1_v) @ + ')+
&

Sk (L - V) (W - V) -4 (L - DAy ] n+

+k [2W”+2v(w' ~v)'] £ - [2kw'”+2kv(w' -+

+ Ak (1-v) (W - W) +8(1-v2)7\w'} §’d,3

a=0

+ff“— 80" -4 (1-v)ut -4 (1 +p) V" —8vw’+4(1-v2)ku"]g +
+[—4(1 ) U -4 (1 -v) V' - 8V - 8w+ k{-4 (1 -v) V' +
-2v + (4 -2 W+ 2w 4 (1 - vz) Av"]n+

+ [8vu' +8v +8w+k{-(4d-2) V" -2v" + 2w +

AW 42w } 8 (1 - b9 ;\w”] g] dedp = 0. (73.2)
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It is assumed that the cylinder edges are supported in such a way that the displacement
components v and w in the plane of these edges are zero; as Flugge remarked [50]
these boundary conditions, or at least the one concerning the displacemént W, may
take effect only after the load for the fundamental state has been applied as otherwise
they would be inconsistent with the assumed form of the fundamental state (72.1). In
agreement with these kinematical conditions also n and ¢ should be zero at the edges
of the cylinder. Besides from these restrictions, the function £, n, ¢ are completely

arbitrary so that w, v, w must satisfy the differential equations
8u"+4(L-v)u” +4(L+p) v’ +
' 2 e _
+8w' -4 (1-v)Au" = 0,

A(L+v)u” +4(L-v) v 48y + 8w +k [4(1—v)v”+

Y (73.3)
+2v - (4 - 2v) W - 2w"'] -4 -vHav = o,
gvu' + 8v" + 8w+ k |- (4-2v) v - 2v7" +
+ 2wt 4wttt 4 2w ] +8(1 - v2) Aw''t = 0 )
with the boundary conditions for « = 0 and « = é
v=w=u 4+ v +w) = w4+ pw -v) = 0.
These boundary conditions are reduced to
= v=w=w' =0, (73. 4)
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An arbitrary function of o and F with a continuous mixed second derivative can be
expanded into a double Fourier series. In viewof the boundary conditions (73. 4), these

series can be written in the form

u= Z (Apn cos pacos nf + Xpn cos pa §in ng), )
v= X (Bpn sin po sin ng+ gpn sin pa cos nf), r (73.5)
w o= Z:(Cpn sin po cos ng + Epn sin pw sin ng); |
where
p = ir R
2

while summation should be carried out over all integer values of i and n, including
i=0 and n= 0. Under the assumption that differentiation of u, v, and w may be

applied to the series term by term, the first equation (73. 3) becomes
< | 2 : 2 2 2
Z“—Sp -4{1-v)n +4(1-v);\n]Apn+

+4 (1 +v) pann + SVpCpn cos px cos nh +

+z“u 8p2 -4 (1 -p)nZ+4(1- vz)mnz}Xanr

-4 (1 +v) pann + SerCpIl cos pa sinng = 0.

The validity of this equation for all values of « and 3 implies that coefficients of
cos pa cos n and cos po sin ng must all be zero. The remaining equations (73. 3)
are treated similarly. The coefficients A, B, C, whose indices will henceforth be

left out, should thus satisfy the three homogeneous linear equations
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9p2 + (L-v)n> - (L-v2)AnZ|A - (1 +v) pnB +

- 2vpC

Il
N

- 2(1L+rv)pnA +[2 (1—1))p2 +4n2 +
+ k{2 (1 —v)pz + nz}- 2 —vz)?\ple + (73. 6)

+[4n + k{@-»)pon + n3}]c

I
=]
-

- 4ypA + [411 + k{2 - ) p2n +n3}]B +

[
e

+ [4 + k(p2+nz)2 - 4(1—v2)?\p2IC

A

The equations for K, B and C are obtained from this by replacement of n by -n.

These equations have a nonzero solution if and only if the determinant formed by their
coefficients is equal to zero. Thus, the states of neutral equilibrium are characterized

by the values of A satisfying the equation

2p2+(1-v)n2—(1—v2)7\n2 -{1+v)pn

—2@+v)pn 2 (1-p)pi+dn® + k(2 (L -v)pZ+n2]-2 (1 - vHAp?

- 4yp 4n +kn [(2 - v) p° +10°]

- 2vp
2 2 _
dn+kn [{(2 -v)p +n7) = 0. (73.7)

4+k @ +n92 -4 -2 rp?

Expansion of the determinant yields, if terms of the second or higher order in the

small quantities A and k are disregarded,
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(1- ) pt+3kliza-vp® 0’12 @4y pP+0?) +

—on® [2 - v) p2 + 02} [@ + ) pE+ 02 ] + (02 + D)

{1- Vz) [(1+ ) p4 + pzn2 + p:2 (p2 + n2)2] (73.8)

After the omission of A, k, kp2 and kn® in comparison to unity (see also Sect. 781)
the ratio of the coefficients A, B and C are calculated from the first two equations

A_pep-n) B _ _nf@+v)p’+n? (73.9)
T3 97 T 2. 272 '
(p” +n%) (" +n7)

The buckling load is determined by A. the minimum of (73. 8) for integer values of i

1
and n and with p = irR/f. The corresponding eigenfunctions are given by (73.5) and
the ratios of the constants A, B and C determined by (73.9). The constants A, B,

and C are taken to be zero.
74, SIMPLIFICATIONS

It appears from experiments that p is large for cylinders with very thin walls [49]; in
that case equation (73. 8) may be simplified to

p2
A= +
(p2 + r12)2 41~ vz) P

k (p2 + n212
2

(74.1)

This equation is only dependent on the ratio

(p2 + n2)2
2
P
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and thus the minimum is obtained for

or

2
p2+n2 = p\/&ll,{t_"_) , (74. 2)

The corresponding minimum of A is [49]

k
1—V2

(74.3)

Here no attention has been given to the conditions that n should be an integer and that
p should he multiple of 7 1} . However, the latter condition is of little importance
unless the cylinder is very short, as the values of p corresponding to i and to i +1
differ very little for large values of i. This conclusion is supported by experiments
[25], from which it appears that the buckling load is independent of the length of the
cylinder and of the boundary conditions as long as the cylinder is not too short

(£/R >0.75). Accordingly, in the following influences of edge restraint will be
neglected and p will be regarded as a continuous variable. For each integer value

of n, (74.2) then yields two values of p

4 .
5
_ 1,/41-v") \/_1_ 1-v= 2,
Ppi,2 = 2 ko * AV n (74.4)

these values are real and unequal if
2
2 1./1-v -
n” < 2\/:——1{— . (74. 5)
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If in

=m (74. 6)

m is an integer,then the values of p corresponding to n = m coincide

4

2
1,/4q -
P, =3 —m(—-k—"—) = m. (74.7)

In view of (73.5), the combination n = p = 0 determines a rigid body displacement of
the cylinder in the direction of its axis and it can therefore be disregarded. Thus for
n = 0, only the solution

4
2
p, = |/ 1L (74. 8)

need be considered. If (74, 6) is satisfied, then in view of (74.7)

(74.9)

The displacements (73.5) were established with due consideration to the boundary con-
ditions (73.4). However, these boundary conditions are again ignored if p is regarded
as a continuous variable, Strictly speaking this implies a restriction of the considera—-
tions to infinitely long cylinders. The condition of periodicity for the particular solutions
replaces in that case the boundary conditions, The latter condition as well as the differ-
ential equations are also satisfied after interchange of sin pa and cos pa in (73.5).
Therefore, the general solution of the equations of neutral equilibrium for the displace-

ment component w is
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+ vy

= a ginpaoa-+b_c a+2
W o P, o ospo

a .sinp o cosnf+
n=1( nl nl

+ bnl sin P sin np + C,1 €08 P (& cos ng+ d111 cos p ¢ sin nB +
+a ., sin P o0 COS ng + bn2 sin P, o sin nfB +

+C o COS P 0 cos ng+ d112 COS P ¢ sin n,B\ +

+ta sia ma cos mp +bm sin me sin mg +

+¢  COS ma cos mp + dm cos ma sin mg, (74.10)

with the understanding that the last four terms are only present if (74. 6) has been

satisfied and that summation should be carried out over all integer values of n which
satisfy (74. 5).

The displacement components u and v are completely determined by (74. 10) and by
the equations (73.3). In view of (73.5), terms of the form sin pa cos ng in (74. 10)
correspond to terms of the form cos pa cos ng and sinpa sinng for u and v,
respectively. The coefficients for these terms are determined by (73.9). The terms
in u and v which apply after replacement of sin pa and/or cos ng by cos pa and
sinng in (74.10), are obtained through replacement of sin pe and/or cos ng by

cos pa and sinng respectively. The ratio of the coefficients is again given by (73.9)
in which now p is replaced by -p and/or n is replaced by -n. The general solution

for u and v then is
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— v ‘b a
u = p—o a, Cos poa - Qsmpom)+

PP ( 2_n2)
Z ,pnl Vpnl

+
n=1 (pnlz + n2)2

(anl cos p ja coB ng+
+ bnl cos p ,a sin ng - ¢hp SiB P ¢ cos ng - dnl sin p ;o sin nB) +

( 2_n2)
pn2 VPpo

2 22
(Pnz +1n J

(anz COS p 0 COS ng+ br12 cO8 p o0 sinng +

o SIn pnzoz cos nfg - dn2 sin pnza! sin nB) +

1-v
4m

(am cos ma cos mg + bm cos ma sin mpg +

- ¢, Sinma cos mg - dm gin mo sin m,G), (74.11)

- a0

. z n[(2+v)pn12+n2](

-a sinpn @ sin ng+

=1 (Pn12+“2)2 \_ “nl 1

+ bnl sinp & cos ng-c¢ . cos p, @ sin ng+ dnl cOS p 0 €OS nB) +

nl

nl@+v)p," +n°]

2 2\2
(pnz +11)

& sin ng + dn2 cos P o0 COS n,B) +

+ (- anz sinp oo sin ng+ bn2 sin p, ,& €OS n@+

C cos
pn

n2 2

3+v
+ 4m

( -a_ sinma sinmB +b_ sin ma cos mp +
™ m
- €, Cos ma sin mg + dm COS Mm@ CcOo8s m,B). (74.12)
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The same remark as was made about (74.10) holds here with respect to the last four
terms of (74.11) and (74. 12).

In view of the above, the general solution of the equations for neutral equilibrium at

the buckling load is a linear combination (with coefficients a5 bo, a1 etc.) of a

number (suppose q) of linearly independent particular solutions Uys Vpo Wpo If
T11 [uh, Vi Wi W Wi] =0 for h # i (74.13)

is satisfied, these solutions are also the solutions of the first ¢ minimum problems

{24. 8); according to Sect. 24 these first ¢ minima should all be zero. Now wi1:h1

R
)

R

T, [u] = P20 [@] or T, [ul] = - Y P2' [u]

it appears that condition (74, 13) is satisfied for an infinitely long cylinder. This follows

easily from the relations

2r 2m ]
cos cos | . .
_{ sin h3 sin 18 dg = ¢ for h # i, _o/- cos hgsinhgdg = 0,
3
. B_}cos cos _ ; 74.14)
ﬂh_ﬁlojz 4 sin Ph ¥ sin Pi% do 0 for h # i f(
1
R R
Iim — cos pa sinpae da = 0.
gy cospesir J

IThe factor R/ 2 is included because Tz[u] would otherwise become infinitely large
for the infinitely long cylinder,
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The general solution (74.10, 11, 12) is then immediately given in the form which is

known from the general theory.

756. STABILITY OF THE CRITICAL STATE

According to the general theory of Sect. 272, stability of equilibrium at the buckling
load is in the first place governed by the question whether or not the third order

form, which results from substitution of (74.10, 11 and 12) in

Pyl = 2% ) + APy ], (75.1)

is identically zero. The integrand of (75.1) consists of a sum of products of the form

cos Ccos cos cos CO8 . COS .

sin Ph¥ gin Pi® sin pjoe sin hp sin P sin 18 (75. 2)

where Py Py pj each have one of the values determined by (74. 4) corresponding to
values of n = h, i, j respectively. Each of these products may be reduced to 2 sum

of products of the form
cos cos <, .
Sin(phipiipj)asm(hilﬂzl)ﬁ . (75. 3)

The products (75.3) must be integrated over the cylinder wall. Since

2T cos
_0/ gin MBdB = 0 for n ¥ 0,

such a product can only yield a nonzero contribution if

h+izj=0. (75. 4)
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The integration with respect to @ does in general not yield such a simple result,
However, if in all contributions of (75.1) the common factor 2_%& is divided out and

the limit process £ -«  is carried out, then as

2
R

—]E-/ pada =0 for p # 0,
o

it follows that a product (75. 2) can only yield a nonzero contribution if

Py + pi + pj = 0. (75.5)
For the buckling modes considered here {p >> 1), application of this result obtained

for infinitely long cylinders to cylinders of a not too small but finite length (£/R > 0.75)
is justified because no influence of the length of such cylinders has been detected experi-
mentally. Besides, the simplification already introduced, whereby p was regarded as
a continuous variable, is also exactly valid only for infinite cylinders.

The number of possible combinations of values of h, i, j and Py Py pj which satisfy
(74.2) or (74.4) is drastically reduced by the conditions (75.4) and (75.5). First of all
it is noticed that

h+i+j=10 or ph+pi+pj=0

is not a possible combination if only positive values of h, i, j and Py Py pj are
included (negative values give no extension of the solutions (74.10, 11, 12) and there-
fore need not be considered). Further, the considerations may be restricted to the

two cases

il

0 and (75. 6)

h+i-1j 0, P, * P Py

1l
=]

h+i-7j O,ph~pi+pj (75.7)
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as all other possible combinations may be obtained from these by permutation of

h, i, and j.

Also,it appears the possibility (75. 6) may be eliminated, as substitution of j and pj
(75.6) in relation (74. 2) which holds for n = j, yields

4

2
(0, +p)° + 0+ D)7 = @ +p)\ L)

from which, with use of (74.2) for n = h and n = i, if follows that
PpP; * hi = 0.

Thus, only the possibilify (75.7) remains. Eliminationof i and P; from the relation

(74. 2), holding for n = i, yields

phpj - hj = 0.

The relation (74.2) for n = j then may be written in the form

4

2 . i 2
j2<1+_h_2 :_.JE 4_(112__1)_)
Ph

Py

from which, with use of (74.2) for n = h, it follows that j = h. The combinations of
n and p, which together determine a product (75. 2) that may yield a nonzero solution,

are thus given by

, R . (75. 8)
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This result can simply be illustrated by a p versus n graph, Here the combinations

of p and n for the buckling modes (74. 4) are represented by the intersections of the
circle (74. 2) with the generators n = 1,2,... (Fig. 8). The two points of intersections
belonging to the same value of n and the point n= 0, p=p o determine together a
term of the integrand of P, [u] which after integration can yield a nonzero quantity.
Exceptfor n= 0, p = Py the assumption p >> 1, allows only relatively large

values of n as only in that case this assumption has been fulfilled.

Still more simplifications can be introduced in the calculation of (75.1). From (74. 10,
11, 12) it follows that u and v are small in comparison to w while their first deriv-
atives may be of the same order of magnitude. Further w' is large in comparison

to w, while w* may be of the same order of magnitude as w'. The most important
terms of the infegrand of Pg [u] (72.8), in comparison to which the remaining terms

may be disregarded, are then given by

4u! w'2 +4 K +w w‘2 + 4pu’ w'z + 4p(v + w)w'2 +

+4(1-v)@@ +vhHw'w = 4[u +v (v +w)]w'2+

*

+40u" + v +WpW T+ 40 -) U VYW oW {75.9)
The most important terms of (72. 9) are of the same form sc that, as ;\1 << 1, the

contribution '?LlP?" {u] may be neglected in comparison to Pg [u]

Although the corresponding amount of writing is quite extensive, the execution of the
calculation of the third order terms now yields no more difficulties, and thus the final

resuit only is reported

_ 2nd 2 2
Pg(Zau) - z 1-v% {3Zn [bo (-a a,-b . bote ¢+
* g Gno) F25 @0 Cro FR0 Oy P G P dnl)] *
3 2 2 2 2 2
+3m [bo (~a_t-b Fre frd Hiza e+ bmdm)]]-('?S.lO)
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n=h
n=3
n=2
n=1
4 -
i\4/4(1-v2) Ph1 p- 40-V°)
ho o
2 k. k

FIG. 8
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Here summation should be extended to all sufficiently large integer values of n which

safisfy (74.5). It appears from (75.10) that terms of the third order do exist so that
equilibrium at the critical state is unstable.

76. EQUILIBRIUM STATES AT LOADS IN THE NEIGHBORHOOD OF THE BUCKLING
LOAD STATE

Since, in view of (72.6 to 11), the energy increment (72. 3) is of the form (38. 3) the
theory of Sect. 38 may be applied. If the considerations are restricted to displace-
ments from the fundamental stdfe of such a small magnitude that already terms of the
fourth order may be neglected, then the stationary value of the energy -Px(aj) for
constant values of a; takes the form corresponding to (38.22)

PMag) = (A- A Pyltay) + Py (@) + APy'(a;) (76.1)
where
PZ’(aj) = PZ' [Eajuj]
P (a;) = P, [zau]
53'(a]-) = P! [Za].uj] (76. 2)

As already has been remarked in the previous section, P3'[uj is of the same form as
Pg [ul so that in (76, 1) the last term may be disregarded as A<< 1. Furthermore,
the second term agrees with (75. 10) so that only the first term needs be calculated.

In the integrand of (72,13) u’ 2
so that

and V’2 are again negligible in comparison to w'2

" - -2 02 .
Pya) = ~4(-v )ff(zajwj) dedg;
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after use of (74, 14) this becomes

52'(aj) = —4(1—V)Ea ff dadp =
[
2; (l—v)i (a02+ b02)+

2 2 2 2 2
+ 2Py (anl by vy +dp )+
n=1
2 2 2 2
+ Epnz (n2+b n2+dn2)+
n=1
2
+ m (a 2+b 2+c 2+d 2){ . (76. 3)
m m m m

Hence (76.1) becomes

sA 2 2
P(a.)=27r£ (1—V)3—R()\—7t)[2pz(a +b )+
J R 1 0 O (o)
2 2 2 2 2
+ X Poi {%n1 tPp1 v t9m )
2 2 2 2 2 2 2 2 2 2\1 -
+ 2P (a +b . re S+ d )+m (a +b_“+c_“ +d )}+
n=1 12 n2 n2 n2 n2 m m m m
+ 3 .inzb -a . a_-b_b +c_c +d_d_Y}+
n=1 0 nl n2 nl "n2 nt n2 ni n2
+ ao(

819 Cna 29 Cp1 * Ppy o v P dnl)]

3 2 2 2 2 2
+ gm [bo (—am - bm +e o F dm ) + 2a0 ,(amcm + bmdm)} { .(76.4)
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The equilibrium states are characterized by stationary values of (76.4) as functiong of
the parameters ao, bo’ anl etc. Differentiation with respect to a, and b0 leads to

the conditions

2 Z 2
- - +
4R 7‘1) po a0 3 n (anlcn2 * anzcnl * bnldnz ¥ bnzdnl) -

n=1
2
+3m (a_c_+b _d ) =0,
mm mm
\ (76.5)
-4R(7x-}\)p2b +32n2(—a a,-b . b, +c.c +d.d )+
1""e "0 =1 nl n2 ninZ nlmn2 nln2
+2m?(ca Pop Pac Pra P =0
m m m m ]

It appears from these conditions that ao and b0 cannot have a nonzero value unless

at least one pair of the remaining coefficients differs from zero,

Diiferentiation with respect to a, leads to the conditiong

1* %n2° ®n1'%n2

2 2 _
-2R (n - }‘1) Py 35 +3n" (- bOanZ + aocnz) = 0,

2 2
“2R( A By ap, +307 (-bga, +age )

, (76.6)

2
~2R (A - A B, ey 300 ( byc , +aa

0%n2 T 92p2)

2 2 _
“2R (=R Ppp Oy * I Byl aga ) = 0.

The conditions obtained from differentiation with respectto b_., b ., d ,, d have
nl’ "n2’ ni’> n2

the same form and follow from (76.6) through replacement of CE and Col.2 by
bn1,2 and dn1,2 respectively. Differentiation of (76.4) with respect to a and Cm

leads to the conditions
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2 2 -
- 2R (A—)\l)m am+3m (—boam+aocm) = 0,

2 2 _
- 2R (A—Al)m cm+3m { bocm+a0am) = 0.

(76.7)

The condition obtained by differentiation with respect to bm and dm follows from

(76.7) through replacement of 2 and cm‘by bm and dm respectively.

The conditions (76.6) may be regarded as a system of homogeneous linear equations

for 2,1 %95 Cp10 Cpa- These equations have a nonzero solution if and only if the

determinant formed by its coefficients

is equal to zero. Expansion of the determinant leads after use of

Pr1Ppe © n2
to the condition
8,2 2 2 27%
n [_4R (;\-Al) -9 (ao +b0 )] =0,
from which it follows that
a+p % = 2R (-2

270

“2R (A - A pnl2 - 3n%b,, 0 3na,
~3n’b, 2R -A) D, an’a, 0
0 3n2a0 -2R (A ~ }\l) pnl2 3r12b0
31123,0 0 3n2b0 -2R (A - Al) pn22

(76.8)

(76.9)

(76.10)



Likewise, the conditions (76.7) as a system of linear homogeneous equations has a
nonzero solution if and only if the determinant '

~2R (L -2 m” - 3m’h_ 3m’a_
2 2. . 2
dm a, - 2R ()L-Al)m +3m b0

is equal to zero. Expansion of this determinant leads again to the condition (76.10).

A surprising feature of condition (76.10) is its independency of n, so that the result
of its satisfaction is that all equations (76.6 and 7), as well as the equations obtained
from these by replacement of

a

n1’ 32 Cn1’ %n2’ Zme € by b b d d b

nl’ n2’ "nl’ n2’ "m’ dm’

have simultaneously a nonzero solution. On the other hand, if (76. 10} is not satisfied,
then (76.6 and 7) have only the trivial zero solution. In that case 2, and b0 are
also equal to zero in view of (76.5).. This selution which represents the -fundamental

state can be left out of further consideration.

For the values of a and bo determined by (76.10); the determinant (76. 8) is of the
rank 2, i.e., all the determinants of the third order formed from its rows and columns
are zero, while at least one of the determinants of rank two is unequal to zero. The
general solution of (76.6) is,therefore,

2
3n
a = (-ba . +ac )
n2 2 0™nl1 "07nl1"’
2R(;\—7\1)pn2
b (76.11)
2
3n
c ., = ( asa_. +b c )
n2 2 0"nl 0'nl”’
2RO-2) Py J
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in which a; and c, are arbitrary constants. The corresponding solutions for bn2

and d Lo are obtained through replacement here of a4 and ¢ by bnl and dnl
respectively. The solution of (76.7) is

_ 3
cm = 5R O - 7\1) _ 3b0 aoam (76.12)
unless a o is equal to zero; in the latter case the solution is given by
b = _2_ R - 2
0.7 gRMA-X) or b, = -3RO-1). (76.13)
depending on whether b o determined by (76.10) has the value
a =0, ¢ arbitrary, resp. a, arbitrary, ¢ = 0. (76.14)

The corresponding solutions for b, and d,, are obtained from this through replace-

ment of A and Cm by bm and d,, respectively.

By substitution of (76. 11 and 12), (76.5) becomes

4 .
na
2 (a’nl nl nl n

- 4R (A - hl) pozao +9 E

2
m a :
. 0 2 2y _
+92R(A_A1)—3bo(am +bm)_0’

4

~4R (A =2} By by + 9 z
n=1 2R (A - A)) P_,

9a2
3 2 (43 .
tym g -1 (am
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By use of (76.9) the first condition becomes

2 9 z 2. 2
- - +—_
RA-M) B oRG - ) 2 P By TPy oy v

9 2 2 2 _
e W m” @ “+b %) | = 0. (76.15)
By use of (76.10), the second condition can be reduced to
b —4R(A—A)p ZP (a +b 2+c 2+cI 2)'+
0 1’ o ZR(;\ )\ } nl ‘nl nl nil nl
9 2 2 2 _
+ SR - )‘1)" Sbo m” (a +bm ) { = 0. {76.16)

Except if ao = b0 = 0, which case may be disregarded, these conditions are only

satisfied by

2 2

2, 2
2R(;t A pnl @y Tl Y )t

- 4R (x - Al) p0

+ZR(A-?\1) -3b0m (@, Th, ) = 0.(716.17)

The case a, = 0 must still be considered separately. The first condition (76.5) is
then immediately satisfied by substitution of (76.11 and 14). Depending on whether
the first or the second relation (76.13) is satisfied, the second condition {76. 5) by

substitution of (76.11 and 14) becomes

2 2 E 2 . 2
~8R° -Ap R 9 2 p® ey “op Tyt
n=1
9 2 2. .2 _
+im’ (@ *+d_% =0, or (76. 18)
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9 9 2 z 2 2 2 2 2
- 8R (A_Al) P, +9n=lp]:11 (anl +bn1 +cnl +dn1 Y+

+-g-m2 (a

24p %y =0 (76.19)
m m

respectively.

The results obtained may be summarized as follows. The displacements (74.10 to 12},
for neighboring states of equilibrium deviating from the fundamental state, should
satisfy (76.10 and 17) and (76.11 and 12). In the case that aj
tions (76.18 or 19) takes the place of (76.17), while (76.12) is replaced by the corres-
ponding relation (76.14). It appears from these results that the displacements in the

= 0 one of the condi-

neighboring equilibrium states are far from uniquely determined. This is partially
caused by the fact that the contributions to the displacements with coefficients a, b,
¢, d with the same indices, all determine the same buckling mode, although with a
relative "phase-shift’”. On the other hand,the indeterminancy between the coefficients
with different indices cannot be attributed to this fact. It is to be expected that this
latter indeterminancy would, at least partially, disappear if in the energy also terms
of the fourth order in the displacements were taken into account. This possibility of
improvement of the theory would introduce a considerable complication of the analysis

and will not be further explored.

The stability of the neighboring states of equilibrium is governed by the second varia-
tion of (76.4)

2nd
RZ

2

2= 2 2 2
A P’\(aj) = (@ - )1 - R -2 |20, (A, +Ab%) +

2 2 2 2 2
* nz=1 pnl (Aanl +Abn1 * Acn1 +Adn1 ) *

2)+

2 2 2 2
+len2 (J.'ka112 +/_\bn2 +Acn2 +Adn2
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+m® aa_%+ap %+ ac_? + Admz)] *

: 2
+ E [ - -
3 Zn bo(-8a,; Aay, -Ab , Ab, +Ac ) Ac , +Ad  Ad ) +

+a, (Aanl Acnz + Aanz Acnl +Abn1 z’.\.dn2 + Abn2 Adnl) +

-a Ab, Aa g - a oAb, Aanl - bnl Ab, Abn2 - b112 Ab, Abnl +
te ; Ab, Ac , + C 9 Ab, Acnl + d111 Ab Adhz + dnz Ab, Adnl +
+ a4 A_ao Acnz + Cho Aao Aanl + a9 Aao Acnl + 4 Aao Aa,nz +
*byy da Ad, vd,Aa Ab g +b o, Aa Ad ) +d ) Aa b |+

2 2

3_2 2 2
+§m bo (—Aam —Abm +Acm +!_\dm ) +

+ Zao (Aam Acm -I~Abm Adm) +

- Zam Abo Aam - me Abo Abm + Zcm Abo Acm +

+ de Abo Adm + Zam Aao Acm + ZCmAao Aam +

+2b Aa Ad +2d AagAb_ ” . (76. 20)

The general conclusion of Sect. 36 that neighboring equilibrium states at loads smaller

than the buckling load are unstable can immediately be used. Further, the coefficient

of, for instance, Aaoz is negative for loads greater than the buckling load. Consequently

(76. 20} is negative only if Aag is different from zero. Therefore, the neighboring

states of equilibrium, as well as the fundamental state,are unstable at loads in excess

of the buckling load. Since an unstable state of equilibrium camnot be realized experi-

mentally, the above analysis offers an explanation why, at least for small deformations,

the thin walled cylinder cannot carry loads greater than the buckling load.
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The neighboring equilibrium states for a cylindrical shell were investigated by
von KArman and Tsien [51]. These writers assumed for the total normal displace-

ment component

w = a, + a, cos pa cos ng3 + a, (cos 2pa + cos 2nf) . (76.21)
The displacement components in the axial and tangential directions are then determined
by application of the equilibrium conditions in the plane of the shell. The three param-
eters in (76.21) are finally found from the condition that the potential energy should be

a minimum.

The displacements assumed by von Karman and Tsien cannot represent the general
solution in the c:itical state. Consequently, their results will presumably be less
accurate for loads reasonably close to the buckling load. This supposition is con-
firmed by the shape of their curves giving the amplitude ay of the critical mode as
a function of the load. At the point which represents the critical state A = A4,

aj = 0, the tangent to the curve is parallel to the a;-axis. According to the general
theory (76.10), however, the amplitude of the critical mode in the neighborhood of the
buckling load increases linearly with the changes in the load. On the other hand, the
theory developed here yields improbable results for loads further removed from the
buckling load. It leads for instance for the unloaded state, A = 0, to equilibrium
states with nonzero values of the coefficients a, b, ¢, d. There is no doubt that
this is caused by the omission in the calculation of the energy of terms of the fourth.

order in the displacements (see also Sect. 783).
77. THE INFLUENCE OF SMALL DEVIATIONS

It is assumed that the undeformed state of the middle surface of the structure can be
derived from a cylinder by displacements w, in the direction normal to the cylinder
surface. The coordinates of a point on this middle surface are then given by

o _

0 . 0
X = Ra, xz =(R+W0)sm,3,x

= +
1 3 (R wo) cosfp .
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It follows from Sect. 57, that the strain components of the middle surface are deter-
mined by (see also (56.3))

1 1 2 2 2 1
'YCH(J:’O* = ﬁzut +_§(ur + v+ w! )+_§ zwot Wf’
R R
_ 1, . 1 1.2 . 2 02
')’BBO* = RZ(V +W)+R2 [u + v tw) (W -WV) ]+
1 . - e '
+~£{§ [2W0 (v +w) +2w W -v)], v (77.1)
Y o ¥ =~1~(u'+v') L [u'u'-i-v' v +tw)+ww -v)| +
apo R 2

R

+i2[w vitw ' (W o-v) +w - w'] .
R 0 o o}

The expressions (71.5) for the changes of curvature remain unchanged.

Just as the extended theory of Sect. 38 could be applied to the perfect cylinder, use
can here be made of Sect, 47. In the energy increment (47.1) on transition from the
displacement configuration U()), which determines the fundamental state of the model,
to a displacement configuration U(a) + u, the inﬂueﬁce of small deviations between
structure and model is expressed by the term (47.2) only. This term, originating
from the elastic energy, is obtained from terms which are quadratic in the total
displacements U(A) +u. If for the time being these total displacements are called

u, v, w, it follows from Sect. 57 that these quadratic terms are obtained by
substitution of (77.1) in (55.11). Thus, they are
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.]_' .___1 _lff T 1 T 4 * 4 2+'
4Gh1—v R [8W0 u'w SWO {v w)

+ 8wO v +wy(w -v)+ vao' w' (v tw)+
+ 8w u' (v +w)+ 8vw0’ u' (wo-v) +
+4(1-v) W, uw + vy v +4 (1 -v) Wo' W +v)(w -v)+

+4 (1 -p) wo'- (' +v") w' | dedg. (77.2)

In the following U (A) + u represents the total displacements, of which the components

are
- ARae +u, v, AvR +w.

The desired expression (47.2) is then obtained by expansion of (77.2) including only
1

1-v

terms which are linear in u, v,and w. After division by % Gh

€AQ" [u] = ffl— 8AW,' W' + 16VAW, (v + W) +

+8vAwy, (W' -v) + 8v2 AW, ' W' - 8V Aw v' +w)+

+ 8v2 Awou' - SVKW‘O (W' -v)| dadg =

= J\ff[-s (1 —-vz) wo' w! +8uw0 pu' +v' +w)|dadg.
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If it is assumed also that W, 1s zero along the edges of the cylinder, then, through
integration by parts, this expression may be reduced to

€AQ,’ [u) = 8x [fwo [(1 - vz) w'"+ v pu' +v +w)] dadp. (77.3)

The considerations are restricted to displacements from the configuration U{r) of
such small magnitude that terms of the fourth order in u, v, w and their derivatives
may be disregarded. The statignary value of the energy FA( a;) for constant values
of aj then takes the form

FA (2;) = €A Q' (3 * PA (ay), (17.4)

which is derived from (76.1) and (77.3) and which corresponds to (47.8). In this
expression _PS?t (aj) is determined by (76.4)} and

erQ,' (@) = exQ,'izan,], (77.5)

where the components of Eaj'u]. are determined by (74.10 to 12). Since p2 is -always
supposed to be large in comparison to unity, the first term between brackets dominates
in (77,3) and all the other terms may be omitted. For (77.5) then follows

278

= . Znk 2 2
e;\Ql' (a].) = - 2 (1-v7) 8Rex{p,” (Aja, +B0bo) +

2
* nZi Poi @pin1 ¥ ByPyg *CniCnn TP *
z pn2 (Anz n2 bn2 + Cn2cn2 + Dnzdnz) +

2
+ m (Amam + mem + Cmcm + Dmdm)_ (77.86)
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where for brevity
R (fw sinp adadg = €A
2mp o o o

R . - .
T} ‘Uwo sinp , acos ngdadg =€ Anl etc. (77.7)

The equilibrium'states are characterized by stationary values of (77.4). Differentiation
with respect to a, and bo leads to the conditions

2
- SRJ\epoz A0 -4R (A - )‘1) P, 2, +

2
+ +
+3 nZl n (anl °n2 N a112 cnl bn], d112 * bn2- dnl)

+3rn2 (am cm+bm dm) = 0,

- 8R7\€p02 Bo -4R (A - Al) poz bo +

,
+3 anln (-8yy 850 Dy bg F €y Cpp T Ay o) F

3 2 2 2 2 2. _
+—2~m (-am —b.m +cm +dm) = 0. (77.8)

Differentiation with respectto a__., a8 ,, ¢ ., ¢C leads to the conditions
nl? "n2’ “nl’ n2

~8RAep_° A, - 2R (A-1,) p 22 +30 (-ba

n2 +a00n'2) =0,

2 2 2 _
-8RAep o Ay ~ZR (A=A Py B, 30 (-ba, tace) =0,
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2 2 2
SR)\epnl Cnl'_ 2R (\ - 7\1) pnl c111 +3n" ( boc):12 +aoan2) = 0,
- 8RAep 2 ¢ -2R(A-A,)pP 2 e +3n2(bc +aa ) = 0. (77.9)
n2 "n2 1" *n2 "n2 o'nl 0 nl ' :

The conditions obtained from differentia,tion with respéct,to bpis bpo, dpgs dyo
follow from (77.9) after replacement of An1,2 Cni,2, an1,2s ©n1,2 by Bni,2;
Dni, 2, bnl,z’ dnl,z , respectively. Differentiation with respect to 2y, and e,

leads to the conditions

I
<

2 . 2 2
- 8RA em A_m - 2R (X - Al) m-a +3m” (- boam + aocm)

2 2 2 —
-~ 8RA em Cm -2R (A - Al) m-e +3m ( bocm +a0am) = 0. (717.10)

The conditions obtained by differentiation with respect to b,, and d,, follow from
(77.10) after replacement of Ay, Cp, 2y, ¢y by By, Dy, by, d, respectively.

The solution of the equilibrium equations can in principle be carried out as follows.
Again, (77.9 and 10) may be conceived to be systems of linear equations for 1,2
Cni,2' 3ms m ‘which then are inhomogeneous. The solution of these equations is
always uniquely determined as long as the determinant (76.8) differs from zero, and,
as it will appear later, this is always the case below the buckling load. Substitution
Qf'this 'solution, which is still dependent on the parameters a and b, in (77.8)

yields two non-linear equations for a

b and bo‘

However, the solution method described above is difficult to apply and the considera-

tions will be restricted to a simpler, special case. For this,the following choice is

made
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This case occurs for instance for an infinitely long cylinder if
w, = €h sin (poa-ao) . (77.11)
The remaining constants (77.7) then are

A =
o]

DO [

S S
h cos @, . BO = uzhs.mao. (77.12)

Equations (77.9 and 10) now have only the trivial solution unless the determinant (76. 8}
is equal to zero. For this zero solution,it follows from (77.8)

20 €A
o

a = = chcosa ,
o }\1—;\ 7\1-)\ o]

o = T—_—x - A _— €h SlIlCI!O. (77.13)

It appears from (77.13) that for A -0, a, and bo also approach zero. The solu-
tion obtained,therefore,corresponds to the undeformed state of the structure when

A —0, i.e, it determines the natural equilibrium state.

The stability of the equilibrium for A < A, is governed by the second variation of
(77.4) which is identical to the second variation (76.20) of the expression (76.4). Sub-
stitution of the zero solution of (77.9 and 10) gives

9 A
AF fap {ZR(K A p2aaZrab Bl
ol 2 1 o o] 0
— (1 -v7)
R
; 2 2 2 2 2 2
+n§=1 |R(7‘1 =) [pnl (a2 ;" tAc ) TP, (B2, tAc,, )7
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2
+3n bo(— A2 4 A2 )+

+
n2 Acnl A c1:12

2
<+
3n a, (Aa]:11 Ac

n2 *

+ Aa Acnl)

2. 2 2 2 2 2
- 21 I R (’\l -A) [pnl (Abnl +Adn1 ) er1:12 (Abnz +Adn2 ) ‘ *
n:

9 .
* 30 bo (-AbnlAan tad;adp) *

Ad +

2
+ 3n 2 (Abn1A d, *Ab nl)

n2

+ IR (7‘1 -A) m2 (A,a,m2 +Acm2) +

+.?i mzb (- aa cmz),+ 3m2ao Al AC | +

IR 0, -0 m” @b +ad_?) +

3 2 2 2 2
+5mb (-ab_ " +ad %) +3m°a_Ab_ Adm, . (77. 14)

The forms of the second order in Aao, A bo’ etc., placed between curly brackets are

not mutually coupled and,thus,they can be considered separately.

The first form is positive definite for A < A 1 semidefinite for A = ?\1 and

negative definite for A > ;.

The second form is, for sufficiently small values of A, positive definite because a0
and bo approaoh simultaneously zero along with A . On the other hand it can certainly
admit negative values for A > XA 1 This form is semi-positive definite if its mini-
mum (with the value zero) is aiso reached for a set of values Aanl,z’A cnl,z differ-
ing from zero. For this purpose, the equations

2R (A -2) Ja:vnl2 Aa + 302 (~byAa , +a Ac = 0 etc. (77.15)

n2 o n2)
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which express the minimum conditions, should possess a non-trivial solution.
These equations are, however, identical to (76.6) so that they possess a non-zero
solution if and only if (76. 10) has been satisfied

2.2 _

a +b
0 o

4 2 2

The second form thus can be ma,dé semipositive definite by increase of the ioad
parameter X to a value smaller than j; for which {77.16) is satisfied. Elimina-
tion of a_ and bo by use of (77.13) gives for this limit value the equation

2 . .
2
L %Rz (O -
(A -2

]

which has a solution between 0 and Rl

1
. 2
€
A= AL+ —i __€'h - \/—g A e_h +—9 h (77.17)

for positive values of €, and

1
5 ch \/_i7t ch, 9 i’
R ~ 21 R 16 2

P
Il
»
|
NN

for negative values of €. This latter solution is the same as that for the positive
value |¢l| so that the considerations may be further restricted to positive values

of € .
Furthermore, the determinant (76.8) is different from zero for values of A smaller

than the limit value (77.17) so that the assumption used in the solution of (77.9 and 10)
has been fulfilled.
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The third form of (77.14) is completely equivalent to the second so that it is also
positive definite for values of A smaller than the limit value (77.17).

The fourth and fifth forms of (77.14) are also positive definite for small values of A

and they can also assume negative values for A > A They are semipositive

_ 1
definite if the minimum (with the value zero) determined by the equations

2Ra1 -MAay + 3(- b s +agc) =0,

ZR(A1 -A)Acm + 3(b0ﬂ.cm + aoAa,m) =0 ,

also corresponds to a set of non zero values of Aam s Acm . This requirement
leads again to condition (77.16) which again leads to the value of A determined by
(77.17).

it follows from the foregoing that the second variation (77.14) is positive definite for
Vaiues of A between zero and the value determined by (77.17), while it is semi-
definite for the value last mentioned. Hence, this value determines the buckling load
of the structure. With

-
[ay
Do
==
w
‘2,
4
4

it can be written in the form

«

4

A* =g [1 +2V/ 30 - v¥H e +

Vi Vea - B o+ idha A an.18)

| e
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and with v = 0.3 itis given by

A ¥ =7\1[1 +1.24 e- V1.24¢2 + 1.24¢)| . (77.19)

The great sensitivity of the buckling load for small deviations from the perfect

cylindrical shell is clear from this last formula (see Fig. 9).

1.0 \
0.8
k*

E 0.6 N FIG. ©
04 P —

0.2

o

O 01 02 03 04 OB
€

For instance, the buckling load amounts to 61 percent of the buckling load for the
perfect cylindrical shell for €= 0.1, in which case the amplitude of the deviations
(77.11) is 10 percent of the wall thickness. For €= 0.5 the buckling load is only

34 percent of its original value. The experimentally determined value of about 25 per-
cent of the buckling load for the perfect cylinder with a radius to wall thickness ratio

of R/h = 1000 corresponds to €= 0.9 . This result forms a striking contrast to the
theory of Donnell [22] which can explain the experimentally determined values only if

the amplitude of the deviations is about ten times larger. Although it is,of course,
desirable to extend the investigation to deviations of other forms than (77.11), it may
be concluded now that the theory presented here gives an explanation for the large

differences between theoretically and experimentally determined buckling loads. Also.
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the wide scatter in the experimental results is satisfactorily explained by thé great
sensitivity of the buckling load to small changes in the magnitude of the deviations.

In the previous analysis it was consistently assumed that the elastic limit of the
material would not be surpassed at any point of the structure. This assumption may
be examined after the calculation of the greatest absolute value of the strain component

Y o - When u‘2 and v'2 are disregarded and the substitution of

v
- A + — - i and »AR + i + b .
Ra b (ao CO8 p @ b0 sin %a) n a sinp @ bocos pe  (77.20)

for the total displacements in axial and radial direction is made, then the deformation

component of the middle surface (77.1), by use of (77.11) and (77.13) becomes

*

= - A h i -
'YO_’O:'O 2A ZVTiT ER s1n(pooz QO) +

2 2
A 2 h 2
+ p02 ( 'X"l—j> € F CcOos (poﬂl - Oé'o) +

2

A 2
+ 2p 2 62 h2 cos (pe - @) , {77.21)
© A, -2» R o 0
1
while the change of curvature is
p* - 2 _._._A L 3 - ] .
oy P, N A €R2 sin(p @ - a.) . {77, 22)
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The greatest (negative) total component of deformation is reached for sin(po o - oeo) =1
and for z = - 1/2h; itis (see(57.9))

2
Y A el pz-_-_"__eh—z-. (77.23)

[y
ot

The greatest absolute value is reached at the buckling load A = A ¥ after substitution
of (74.8)

_ LA h 2 h
YQO!_ - 2A% . ZT_“—‘A-* (VE'"E + 3(1 - v )E "ﬁ)

For R/h = 1000, ¥ = 0.3 and the values found in experiments

1 h
* = = = —_ =
). 47\.1 0.156 R ° €= 0,9
it then follows that
Y. = - 00015 ,

oo

The specific strain is consequently smaller than 0.001 so that it is not to be expected
that excess of the elasticity limit will occur if the cylinder is made of steel or dural

alumin,

78. CLOSER CONSIDERATION OF SOME SIMPLIFICATIONS
In this section some of the simplifications which were introduced will be more

closely examined. Justification of omissions, which have been discussed else-

where in the literature will not be attempted here.
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781. Formulas (73.9)

In the derivation of these formulas, kpz and kn2 are disregarded in comparison to
unity. For the buckling modes considered inSect. 74 and thereafter, this omission

is indeed motivated since kp2 and kn2 , in view of (74.8), cannot be greater than
2vk( - vz ; thus, the omission is equivalent to the omission of A in comparison

to unity (see 74.3).

782. Formulas (71.5)

It is sufficient to justify these simplified formulas for the calculation of (75.10). For
this purpose it is remarked that, when use is made of the more accurate formulas
{(71.4), the integrand of the third order term in (71.86) should be supplemented with a
term containing the factor k . With use of the displacements (74.10 to 12),the order
of magnitude of the most important part of this term appears to be kww' . Theh,
again by use of (74.10), a contribution in (75.10) of the form

27l |, 4
T2 kpo 220122 €t
R
is found, or after use of (74. 8)
27d 2
-5 4(1-v") 2,212 etc. (78.1)

R

Because p1211 and plz12 can only become large in comparison to unity if n is large,
terms of the form (78. 1) may be neglected in (75. 10).

783. The Omission of Boundary Influences

This omission is best justified by the experiments which show no dependency of the
buckling phenomenum on the length of the cylinder or on the boundary conditions. But

it may also be made plausible theoretically.

The influence of the boundary conditions were first disregarded in Sect. 74, where p
was conceived as a continuous variable; moreover, p2 was supposed to be so great
that unity could be neglected in comparison to p2 . Under those assumptions, at the

buckling load, infinitesimally close neighboring states of equilibrium were found for
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each value of n satisfying (74.5) by use of the two corresponding values of P19
(74.4).

Iﬁ reality, the smallest value for the solution A, of (73.7) generally corresponds to a

1
completely determined set of values n* and p* = iTR/f . Naturally, this value

p* will not deviate considerably from the values ]_:)"‘n or p"‘nz determined by

1
(74.4) which correspond to n = n* . Further, {73.7) has a solution that differs

only slightly from A 1 for other values of n and for values of p which differ slightly
from the values given by (74.4). In reality, the general solution (74.10),which was

obtained through the simplifications, is for A = A dissclved in a set of single

valued solutions for values of A {j i) with small difflerences between them. The

result of this is that the third order terms determined in Sect. 75, each composed

of three buckling modes, are absent. Equilibrium at the critical state then does not
necessarily have to be unstable. However, this will only influence the neighboring
states of equilibrium if lxl - [ is much smailer than . - A| with i = 2,3, ete.,

and this is only the case in a very small neighborhood of the buckling load.

The same holds for the analysis of the influence of small deviations; only when the load,
for very small deviations can approach the buckling load very closely, a different
elastic behavior may be expected. It is,therefore,not surprising that, for such devia-

tions as occur in reality, nothing of this kind has been observed.

784. Omigsion of the fourth order terms

The admissibility of the omission of terms of the fourth crder may be examined through
calculation of (72.10) and comparison with the remaining contributions in the energy.

This calculation is first executed for a particular neighboring equilibrium state

% " %12 “Pua T %12 "%, T % TP Ty T O
(78. 2)

b, = = R( - A =8 R -

o T3 B2, °m T 3 1)
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These coefficients do satisfy (76.10, 14 and 18). The most important terms of the
integrand of (72.10) are

W'4 + ZW'ZW'2 + wed = (W'2 + w'2)2 .

Substitution of (74.10) and use of (78.2) gives for this integrand

2
mé‘{(Zbo sinZma + Ch sin mocos m,B)2 + szn coszmasinzm‘g] =

p 2
—l—c 2 _ 2b0 cosdmo +

_ 4 2
= m 2b0 +2m

1.2 .
+ 2bocm(cos ma - cosdma)cosmp - 2%m €08 2m dos 2m 3

Execution of the integration gives

=0 - ° _2rd 1 4.4 2

B o
e
B o

Through substitution of {78.2) it finally follows from here that

=0 _2n4 800 4.3, .4
P, @) = Z Sy MR A (78.3)

For the third order terms after use of (78.2)

Py(2) = LLE S vz)s_gmstu_ A)* (78. 4)

K
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go that the fourth order term may indeed be neglected if

2
Zmoy -2)

2
-V
5 <1

In view of (74.3, 8 and 9) this requirement is

A
11 - —}-\1—‘ <<,%(1 - vl (78. 5)

It appears from this condition that the omission of the fourth order terms restricts
the validity of the analysis of Sect. 76 to loads in the immediate neighborhood of the
buckling load.

The circumstances in the analysis of Sect. 77, at least for the form of the deviations
which was considered (77.11), are much more favorable. By use of (77.13) the radial

displacement component
w =a_ sinpa + b co
o} P () o COSP oa

can be written in the form

- 2 2 .
w = \/ao + bo sinfp o - oao)

so that the most important contribution of (72.10) is

=0 1 4 4
P, (&) = - ff P, (@2 * boz)zcos (g - o)deds =
p 4
= 2™ 3 "0 2 2.2
=2 8 R @, +b5" . (78. 6)
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In this casé the third order terms are absent; the second order terms are

?2'(-':1].) = 2_132&(1 - 1:2).2Rp02oil -A)@aZ + b2 . (78.7)

Therefore, the terms of the fourth order may be neglected if-

2 4 .2
3. 2% P | 42
16 Po 2 v
Ry — )

After substitution of (77.13) and use of

2 /
2 _ 1 -v _ 2 h_ _,2
Py 2 k Ay » B M 31 V)

this requirement becomes

«<1l . (78.8)

The maximum of the left hand side of (78.8) occurs for the buckling load (A = A *) 7 .
By use of (77.16) instead of (77.13), the condition is

*
1 -2« e - W (78.9)

1

This condition is reasonably well satisfied and there is no justification, at least for the

deviations considered in Sect. 77, to improve the theory.
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APPENDIX

As far as the writer knows, in the literature {e.g. [45].) the solution of equation (61.20)

.

8 +7%xsin 6 = 0 ' 1

with boundary conditions (61.21) and (61. 22)

E=0: 0 =-m2ex; 62%: 2 = 0 (2)

has only been determined for the case in which 60 (the value of 8 for & =0) has
the same sign as € . However, for Section 615 it is alsc necessary to know possible
solutions for the case with opposite sign of 90 and €. It ig assumed now, just as

previously, that € is positive.

Equation (1) may be written

from which, by use of (2), it follows through integration

0" =a%e2)2 1+ 2.2 (cos& — cos 60). (3)

In view of (2), @° is negative for £=0. As § must be a continuous function of
£, it follows then from (3) that

0 = - '.'T\A_\ ﬁzhez + 2{cos § — cos BO) (4)

as long as the expression under the square root sign remains positive.
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First the case will be considered in which 90 is positive; (4) then definitely holds
for values of ¢ between 0 and 90. If further considerations are restricted to
curved beams for which ¢ is equal to zero only if § = -;: ,» then integration of (4)
yvields

sl
do =—l7T A
| 2
2 2
\/‘ﬂ' Ae” + 2 cosﬂ-—cose)
0
8

which can be written

ds
=/ )

%

[ 1,25 2 2 1 .
=TeA€ =68 —

0\/4 + sin 5 Y sin

Do
o =
m_l

It is assumed that 60 < w1 still is so small that

L2, .2, .21,

7 30 =k < 1. (6)

As | %6 | < % g, < 1 it is then always possible to set

2
. 1 .1 1
s1n6=Esm§6 (0§6§§7r). (N
Herewith (5) becomes
¢
zk_o_gs_@_ 46 ¢

cos 5 6
L = 2 [ 0 -/ ®)
J sz - k2 sin? @ X \/1 - k% sin@

o

with

m . 9

DO |

sin ¢ = Ilzsin%ﬁo O=sos=
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The integral appearing in (8) is the elliptical integral of the first kind F(k,p).

The dimensionless deflection B at the middle of the beam is defermined by

poi

sin ¢ d@

g = — gin 6dE = =
5 . .
\/;\ o Ae +2(cose—cos-9 )
0

0

1

= - %5 2 - =e-—Sio - (10)
TeAe” +. 6 — 7 I

T h?\ \/ | Z(COS cos 0) o=t A

It follows from (6), (9) and (10) that

cos = 1__1_12;9':11'.7\€= £ )
¢ 250 2% 2k c—g

while from (8) and {10} it follows that

= (€=B)F k ¢)-

The relation between B and A is then given by the parameter representation

cos ¢ =

g, k= (=B F K9, V=2 F 9. (1)
It remains to be seen to what extent assumption (6) has been satisfied. According to
(11) the undeformed, unloaded state B =0,A =0 represents an equilibrium state
with k=0 and ¢ = 0. Assumption (6) will therefore be satisfied for all loads below
the limit value for which k becomes 1 for the first time. For k=1, F{k,¢) can

be expressed in terms of elementary functions

F (1, qo)—/ = mtg (37 + 29) .
\/1 — sin Zg

296



The value of ¢ corresponding to this limiting case is, according to the first two

relations, determined by

cos ¢ = elntg(i‘fr& %fP) (12)

For small values of €, (12) has a solution which slightly differs from %Tr; A isin
that case large, on account of the last relation (11). For instance, in the example
treated in Section 615 these quantities were giveﬁ by €=0.01, ¢=0.975 —211-: and

A= 6.25. The limiting case remains conseguently outside of the range of A con-

sidered in fig. 4.

Next the case is analysed in which B_o is negative. It follows from {2) that for small
values of £, #° is negative. In order that the condition # = 0 be satisfied at the
middle of the beam, 6" must change sign for a value £1 (between 0 and %}.
This will be the case if the expression under the root sign in (4) becomes zero as in
view of (1), ¢’ is positive at that point. The integration of (3) must therefore be
carried out separately for £ < gl and § > -El .

be the value of 68 for & = ¢

Let @ then it follows in analogy with (5) that

1 1’

B f=

6o
do .
1. 2. 2 2 1 2 1. 2rVNe @)
\/ZTF Ae” + gin” 56, — sin” 0
it

in which 91 is determined by

sinzéﬂ = —wzi\ez + sin %9 = k

1 1 (14)

The existence of a solution with a negative initial value g, does imply, in view of
{14), that k =1. Substitution of

. = 1 .1 _1
sin@ = ksmzﬂ cz8z 3m)
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with

i = = i l = —_ = — .l
sin 61 g Sin g 8 1, consequently 61 2 T
transforms (13) into
I
—¢ 2
de = de = Wﬁg R (15)
2 2 2 . 27 1
I — k° gin“@ 1 — k* sin“@
- T 9
2
in which ¢ 1is determined by
N S | 1
sin ¢ = ksmzﬂo (0§§°<2ﬂ‘). (16)

In the interval ’él <t < -1§ it holds that

L

0 =1/ \/Trzhez + 2 (cosQ — cos 90),

from which, by integration, it follows that
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Addition of (15) and (17) eliminates gl ; the result is

2F (s, 37) — F (,9) = 27/, (18)
in which F(k, -é—rr') is the complete elliptical integral of the first kind.

The dimensionless deflection at the middle of the beam is determined by

1
2 %
in 6 d@
B = ~ging d& = [ — j*‘
T\/ A r2xe2 4 2 (cos 8 — cos 90)
o N
0.
_f sin 6 d 6 _
WAL 2., 2 '
A —_
T V'.'r Ae® + 2 (cosB cos 60)
51
1 [@=8
= _ 1 __ \/w‘2A52 + z(cosﬂ — ¢cos ¥ ) 1
QO +
T \/7._ ) 6=16,
1 =0
+ —1—\/7r2;\e2 + 2 (cosa — cos 90) (19)
ﬂ\/}‘ 9=91
Now, on account of (14),
2, .2 2 21
'9 — 9 S —_— 1 —6 =
TA € +2(cos 1 cos -o) 4K 4 sin 2 7 0,

so that it follows from (19)

0 - 4 _2k_ . (20)
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1t follows from (14), (16) and (20) that

l TI'VA ) €
cos ¢ = \/1‘%51{12%90 =—2k——"‘7 € = B—€°

k

while from (18) and (20) follows

k= (=€) [2F &, 3M - F &)

The relation between B and A is then given by the parameiric-presentation

€

1 ,
cos ¢ = F_¢» k=(B-€) 12F k, 3mM — F (k,rp)‘ ,
= 2 lor g, im) - F,9) @1)
A’ T[' H) 2 3 .
From the latter relation it follows that
s
2
\/Aé%F(k,%Tr}g% de =1
Q

so that (21) certainly does not have a solution for A <1. As was to be expected, for
the case of a centrally loaded bar (€= 0), the relations (11} and (21} yield identical

results

n

T 1. 3\ f 2 1
? 9 =% BF (ks _2-71'), A =EF(ks _2-‘”-) (22)
The numerical treatment of (11) and (21) does not offer any difficulties. After ¢ is
assigned a value, 8 can be calculated from the first of these relations; next the sec-
ond relation, which forms a transcendental equation for k, is solved; the third rela-

tion yields the corresponding value of A .
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The result for €= 0.01 is represented in fig. 4 (Curve Ia). The branch of negative
B values results from (11), the branch of positive values of 8 belongs to (21).

The numerical treatment of (22) is even simpler; after k is assigned a value, a

corresponding set of values of § and A are immediately found. The result is the
curve I of Fig, 4.
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