
Evolving Small Structures Spring 2004 Z. Suo 

February 21, 2009 1  

  Lecture 2  The Vacancy 

Imperfections in Nearly Perfect Crystals 

 There is a book by this title, edited by W. Shockley, J.H. Hollomon, R. Maurer, F. Seitz, 

published by John Wiley & Sons, in 1952.  I found this book on the shelf in the Gordon McKay 

Library, or perhaps in the UCSB Library, in days before the internet arrived, when I spent time 

in libraries, browsing between shelves.  The book was the proceedings of a symposium held in 

October 1950.  Shockley and his colleagues at the Bell Labs had just invented the transistor.  

You might recognize some of the authors in the book:  Bardeen, Herring, Guinier, Chalmers, 

C.S. Smith, Zener, Read…  Over the years, I’ve returned to the book several times for 

illumination.  The internet did do something good.  A few years ago I bought a copy of the book 

from a book.com.         

 Below the melting point, a pure metal is a crystal.  Each atom vibrates around its lattice 

site.  If you look at one atom, its motion is chaotic; the atom jiggles rapidly, once in this 

direction and then in another.  Its vibration amplitude also changes from time to time.  But if you 

look at many atoms, they appear to be a periodic lattice.  That is, if you find one atom at a point, 

you'll almost certainly find another atom any multiple of the lattice spacing away.  Well, almost.  

The crystal is imperfect.  It has defects:  vacancies, dislocations and grain boundaries.  They are 

the imperfections in the nearly perfect crystal.   

 Next consider the motion of the vacancies.  A tiny fraction of lattice sites are vacant.  A 

vacancy can switch site with a neighboring atom.  The vacancy may inject into the crystal from 

one surface, diffuse through the crystal, and emit from the crystal at another surface.  In this 

lecture we assume that vacancies are the only defects in the crystal.  That is, the solid is a single 

crystal and has no grain boundaries or dislocations.  Vacancies can only be created and 

annihilated at the surface of the crystal.     
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Cavity Growth Is an Atomic Disease 

 For the cavity in the crystal, the remote tensile stress motivates vacancies to inject into 

the crystal from the external surface.  The vacancies then diffuse through the crystal, and emit 

from the crystal at the cavity surface.  This process allows the tensile stress to enlarge the cavity.  

A reverse process allows the surface energy to shrink the cavity.    Vacancy diffusion does not 

cause overall atomic bond stretch (elasticity), or any slip in the lattice (plasticity).  The shape of 

the crystal does change over time, as the cavity enlarges or shrinks.  The growth rate of the 

cavity depends on the diffusion rate of the vacancies.  This picture links a macroscopic 

phenomenon (cavity growth) to an atomic process (vacancy diffusion).  This lecture fills the 

details of this picture.    

 

Equilibrium Vacancy Concentration is Very Small, but Finite 

 Why does a crystal contain vacancies?  It's an outcome of a competition between 

probability and energy.  Consider an analog first.  Imagine a box of marbles, 104 heavy ones and 

104 light ones.  All marbles are identical in size.  Shake the mixture until their average 

distribution doesn't change any more.  What will be this equilibrium distribution?  There will be 

an increasing concentration of heavy marbles toward the bottom.  The mixture is a solution.  The 

act of shaking plays the role of temperature that supplies the kinetic energy.  The gravity 

supplies the potential energy. 
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 Vacancy Formation Energy.  Consider a crystal in equilibrium with vacuum.  Use a 

perfect crystal as the ground state.  Relocate one atom from its lattice site to the external surface.  

The vacancy distorts the crystal locally, increasing the internal energy of the crystal by a certain 

amount, εf, called the vacancy formation energy.  Its magnitude is about 1 eV.  Because of this 

energy increase, the crystal cannot have many vacancies.  On the other hand, complete 

segregation of the atoms and vacuum is a rare event.  The competition between the formation 

energy and the probability determines an equilibrium vacancy concentration. 

 Imagine a crystal made of Na atoms and Nv vacancies.  Empirically we know that 

Nv / Na «1; that is, the vacancies are far apart in the lattice, and therefore do not interact with one 

another.  Consequently, the crystal containing Nv  vacancies has internal energy 

  U = ε f Nv . 

ε f  must be positive; otherwise the crystal will be full of vacancies and you will never see a 

crystal.   

 The Entropy.  Now why a crystal tolerates even a few vacancies which increases its 

internal energy?  This is because the perfect crystal in the vacuum is itself such an intolerable 

state:  it is perfectly ordered.  The entropy of the solid increases if some vacancies get into the 

crystal.  

 Boltzmann defined the entropy by 

  gkS ln= . 

Here g is the number of ways to place the Na atoms and the Nv vacancies on the (Na  + Nv ) lattice 

sites.  The constant k has no physical significance beyond choosing a special unit system. 

 Computing the number g, and therefore the entropy, is a combinatorial problem.  A well-

known mathematical question is, given M different objects and M sites, how many ways are 
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there to place one object to each site? The answer is .  The logic goes as follows.  There are 

M ways to place the first object.  After one site is taken, there are (M - 1) ways to place the 

second object, and so on.  The number ways to place all M objects is the product, 

.  Now our objects are not all different.  All the Na atoms are identical, 

and so are all the Nv vacancies.  Consequently, the number of ways to place the Na atoms and the 

Nv vacancies on the (Na  + Nv ) lattice sites is  
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 Recall Stirling's formula for large numbers, ( ) xxxx −≈ ln!ln .  The entropy is 

  S = k Na + Nv( )ln Na + Nv( )− Nv ln Nv − Na ln Na[ ] 

This expression is known as the entropy of mixing.  When Nv / Na «1, the entropy increases as 

the number of vacancies increases.   

 Boltzmann's Constant and Average Thermal Energy.  The value of Boltzmann 

constant is k = 1.38× 10-23 J/K = 8.63 × 10-5 eV/K 

 

Events Centigrade Kelvin kT  
 
Freezing Point of Water 0 °C 273 K 0.024 eV 
Room Temperature 27 °C 300 K 0.026 eV 
Boiling Point of Water 100 °C 373 K 0.032 eV 
A High Temperature 1000 °C 1273 K 0.11 eV 
 

 Equilibrium Vacancy Concentration.  The ground state is a perfect crystal with no 

vacancy.  The free energy of a crystal with  vacancies is vN

  U − TS = ε f Nv − kT Na + Nv( )ln Na + Nv( )− Nv ln Nv − Na ln Na[ ], 
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The vacancy formation energy favors fewer vacancies.  The entropy favors more vacancies.  The 

equilibrium number of the vacancies minimizes the free energy. Setting d U − TS( ) / dNv = 0 , we 

find that the equilibrium number of vacancies is given by 

  
Nv

Na + Nv
= exp −

ε f

kT
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
. 

 We write this expression as 

  c0 =
No.  of Vacancies

 No. of Lattice Sites
= exp −

ε f

kT
⎛ 
⎝ 

⎞ 
⎠ 

. 

We use c  to indicate the fraction of vacancies in a large crystal, under no external stress.  The 

dimensionless ratio εf/kT measures the competition between the trend to segregate and the trend 

to mix.  The crystal takes in more vacancies if each vacancy doesn't increase too much energy, or 

if the temperature is high.  For most solids, εf is on the order of 1 eV, which is much larger than 

kT.  For example, even at T = 1000 K, there is only one vacancy in about 105 lattice sites. The 

above formula connects something related to the interatomic forces, the vacancy formation 

energy εf, to something related to the whole solid, the equilibrium vacancy concentration .   

0

0c

 Experimental Determination of the Vacancy Formation Energy.  R.O. Simmons and 

R.W. Balluffi (Measurement of Equilibrium Concentration of Lattice Vacancies in Gold, Phys. 

Rev. 125, p. 862-872, 1962) devised a method to measure the vacancy concentration in gold.  

They measured the thermal expansion by direct observation of the sample size change, and 

measured the crystal lattice parameter expansion by x-ray diffraction.  The tiny volume increase 

of the sample in addition to that caused by the lattice expansion determined the vacancy 

concentration change.  They then deduced the vacancy formation energy fε  from such 

measurements.   
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Vacancy formation energy and migration energy for common metals. 

 
 Al  Cu  Au  Ni  Fe  Mo  

Ev f(eV)  0.65-0.70  1.20-1.30  0.94-0.98  ~1.80  1.40-1.60  3.00-3.24  
Ev m(eV)  0.60-0.65  0.70-0.75  0.78-0.88  ~1.04  ~1.20  1.30-1.60  

 
 
Encyclopedia of Materials: Science and Technology (Elsevier, Online) 
Crystals: Point Defects, B. L. EYRE, UNIVERSITY OF OXFORD, UK 
 

Tensile Stress Increases Vacancy Concentration in Crystal near External Surface 

 Now consider a crystal subject to a tensile stress, σ, normal to a surface.  An atom leaves 

its lattice site and appends on the surface.  The ground state is the crystal under stress but 

without the vacancy, and the current state is the crystal under stress with the vacancy.  We need 

to know the energy difference between the two states.  Because an applied stress is typically 

much smaller than the cohesive strength of the crystal, the value εf, associated with the lattice 

distortion due to a vacancy, is nearly unchanged by the stress.  As the atom appends onto the 

crystal, the stress does work Ωσ, where Ω is the volume per atom.  Consequently, in creating one 

vacancy-atom pair, the potential energy varies by εf - Ωσ.  The equilibrium vacancy 

concentration in the crystal near the stressed surface is 

  c = exp −
ε f −σΩ

kT
⎛ 
⎝ 

⎞ 
⎠ = c0 exp

σΩ
kT

⎛ 
⎝ 

⎞ 
⎠  

 For representative values, σ = 100 MPa and Ω = 1.6 ×10−29m3, this work is Ωσ  = 10-2 

eV.  Thus, typically, 

  Ωσ «kT«ε f .  

Note the factor exp σΩ / kT( )≈ 1 + σΩ / kT( ).  If 1.0/ =Ω kTσ , the tensile stress increases the 

equilibrium vacancy concentration by 10%.  Because the equilibrium vacancy concentration in a 
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crystal under no stress, c , is small, the vacancy concentration in a crystal under stress is still 

small.  

0

  

σ

reference state atom-vacancy pair

Ωσ

 

Surface Energy Increases Vacancy Concentration in Crystal near Cavity Surface 

 Next consider a cavity of radius R.  When an atom leaves the crystal and appends on the 

cavity surface, the vacant lattice site increases the potential energy of the crystal by εf.  The 

cavity becomes one atom smaller:  the cavity volume changes by 4πR2 dR = −Ω , and the cavity 

surface area changes by 8πRdR = −2Ω / R .  This reduces the surface energy by 2γΩ / R .  

Consequently, the creation of one atom-vacancy pair increases the potential energy of the crystal 

by ε f − 2γΩ / R .  The equilibrium vacancy concentration in the crystal near the cavity surface is 

  c = exp −
ε f − 2γΩ / R

kT
⎛ 
⎝ 

⎞ 
⎠ = c0 exp

2Ωγ
kTR

⎛ 
⎝ 

⎞ 
⎠ . 

 For representative values, γ = 1 N/m, Ω = 1.6 ×10−29m3, and R = 2 ×10−8  m, the energy 

change due to surface tension is this work is 2γΩ / R = 10−2  eV.  Thus, typically, 

  2γΩ / R«kT«ε f .  

Consequently, the surface tension slightly reduces the total energy associated with creating one 

vacancy, and thereby slightly increases the equilibrium vacancy concentration in the crystal near 

the cavity surface. 
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  atom-vacancy pair

ΩΩ

Reference State  

Will the Cavity Enlarge or Shrink? 

 Local equilibrium.  Now return to the problem of a cavity in a crystal under a remote 

hydrostatic tension.  Near the external surface, the vacancy in the crystal is close to the sink, so 

that the vacancy concentration  in the crystal is in equilibrium, as dictated by the stress: 

  c = exp −
ε f −σΩ

kT
⎛ 
⎝ 

⎞ 
⎠ = c0 exp

σΩ
kT

⎛ 
⎝ 

⎞ 
⎠ . 

Near the cavity, the vacancy concentration in the crystal is in equilibrium, as dictated by the 

surface energy:   

  c = exp −
ε f − 2γΩ / R

kT
⎛ 
⎝ 

⎞ 
⎠ = c0 exp

2Ωγ
kTR

⎛ 
⎝ 

⎞ 
⎠  

If the vacancy concentration in the part of crystal near the external surface is higher than that 

near the cavity surface, vacancies diffuse from the external surface to the cavity surface, and the 

cavity enlarges.  The vacancy concentrations in the crystal near the two surfaces should take 

their respective equilibrium vales, as given above.  Comparing the two formulas, we see that the 

cavity enlarges if 

  σ > 2γ / R . 

This is the same condition we had before. 
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Cavity Growth Rate 

 How fast does the cavity enlarge?  When σ > 2γ / R , the vacancy concentration is higher 

in the crystal near the external surface than in the crystal near the cavity surface.  The 

concentration difference drives vacancies to diffuse from the external surface to the cavity 

surface.  It is the rate of vacancy diffusion that limits the rate of cavity growth.  

 The Partial Differential Equations.  We assume that the only imperfection in the crystal 

is vacancies.  There are no grain boundaries or dislocations in the crystal to inject vacancies into 

the crystal, or absorb vacancies from the crystal. The crystal exchanges vacancies only with the 

vacuum, at the external surface of the crystal.  With this assumption, vacancies are conserved 

inside the crystal.  Denote the number of vacancies per unit volume by C  (C = c/Ω), and the 

vacancy flux by J (the number of vacancies across unit area in unit time).  The flux divergence 

must be compensated by the concentration rate: 

   0=
∂
∂

+
∂
∂

i

i

x
J

t
C . 

 Fick's law says that the vacancy flux is proportional to the vacancy concentration gradient: 

  
i

vi x
CDJ

∂
∂

−= . 

Here Dv is the vacancy diffusivity.  Here we accept this law as an empirical finding.  We’ll talk 

about the atomic process of vacancy diffusion in a later lecture. 

 The Boundary Conditions.  The above partial differential equations should be solved 

subject to the following boundary conditions:  

  C =
c0

Ω
exp

σΩ
kT

⎛ 
⎝ 

⎞ 
⎠ 

, at the external surface, 

  
⎟
⎠
⎞

⎜
⎝
⎛ Ω

Ω
=

kTR
cC γ2exp0

, at the cavity surface. 
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 Solving the Boundary Value Problem.  Assume the vacancy concentration has reached 

a steady-state, i.e., ∂C / ∂t = 0 .  Consequently, the concentration profile satisfies the Laplace 

equation, ∇2C = 0.  In the spherical symmetric coordinate, the Laplace equation takes the form 

  
1
r 2

d
dr

r2 dC
dr

⎛ 
⎝ 

⎞ 
⎠ = 0 . 

The general solution to this ODE is 

  C r( ) = a +
b
r

. 

where r is the distance from the center of the cavity, and a and b are the integration constants. 

 Under the local equilibrium assumption, the boundary conditions are 

  C ∞( )=
1
Ω

exp −
ε f

kT
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
exp

σΩ
kT

⎛ 
⎝ 

⎞ 
⎠ ,  C R( )=

1
Ω

exp −
ε f

kT
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
exp

2γΩ
kTR

⎛ 
⎝ 

⎞ 
⎠ . 

Consequently, the vacancy concentration in the solid distance r from the cavity center is 

  C r( ) = C ∞( )+
R
r

C R( )− C ∞( )[ ] 

 The growth rate of the cavity radius is given by 

  
dR
dt

= −ΩJ R( ).

  
dR
dt

= −ΩJ R( ) = ΩDv
dC
dr R

=
Dv
R

exp −
ε f

kT
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
exp

Ωσ
kT

⎛ 
⎝ 

⎞ 
⎠ − exp

2Ωγ
kTR

⎛ 
⎝ 

⎞ 
⎠ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ . 

Simplify the above equation by using exp(x) = 1 + x  for small x, and we have 

  
dR
dt

=
B
R

σ −
2γ
R

⎡ 
⎣ 

⎤ 
⎦ 
, 

with 

  B =
Ω
kT

Dv exp −
ε f

kT
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
. 

After integration (do it yourself), the result looks like this (R0 is the initial radius): 
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We like to present results in dimensionless form.  The length is reported in units of the initial 

radius R0, and the time in . R0
3 / Bγ( )

 

Justification of the Steady-state Approximation 

 The transient diffusion occurs with the time scale of .  The cavity growth occurs 

over the time scale 

vDRt /~ 2
01

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω kTD
kTRt f

v

ε
σ

exp~
2
0

0 .   A comparison shows that  .  It seems 

reasonable to neglect the transient diffusion. 
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