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 Lecture 3  From Vacancy Diffusion to Cavity Growth 

The Phenomenological Definition of Diffusivity 

 In the previous lecture, we have adopted a continuum picture of vacancy diffusion.  Let C 

be the vacancy concentration (i.e., the number of vacancies per unit volume), and  be the 

vacancy flux (i.e., the number of vacancies across a plane per unit area per unit time).  These 

quantities are functions of spatial coordinates 
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( )321 ,, xxx  and time t.  Following Fick, we have 

asserted that the vacancy flux is proportional to the gradient of the vacancy concentration: 
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This equation defines the coefficient of diffusion, D.   

 

Diffusivity Can Be Determined Experimentally 

 If we can set up a vacancy concentration gradient in a crystal, and measure the vacancy 

flux, we can experimentally measure the coefficient of diffusion of vacancies.  D is found to be 

independent of the vacancy concentration and vary with the temperature as 

  D = D0 exp −
q
kT
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where D0 and q are constants fitting the experimental data.  Measure the diffusivity at several 

temperatures, and plots  as function 1/kT.  The data points typically fall on a straight line: Dln

  ln D = ln D0 −
q
kT

  

The intercept of the line with the vertical axis gives , and the slope of the line gives q.  

Typically, q is on the order of 1 eV.  Thus, k

0ln D

T«q . 
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Atomic Picture of Vacancy Diffusion 

 The vacancy concentration is low, so that individual vacancies are far apart.  Atoms 

vibrate.  Each vacancy undergoes the Brownian motion.  Imagine that the number of vacancies 

per unit volume, C, has a gradient in the x direction.  Focus on two neighboring atomic layers of 

a crystal lattice lying normal to the x axis.  Layer 1 has C1 vacancies per volume, and layer 2 has 

C2 vacancies per volume.  If , more vacancies jump from layer 1 to layer 2 than the other 

way around.  This gives rise to a net vacancy flux.   

21 CC >

 Atoms vibrate at a frequency ν , on the order 113s10~ −ν .  But not every jiggle is 

energetic enough to move a vacancy from one lattice site to another.  To change site, the vacancy 

must overcome the energy barrier imposed by its neighboring atoms.  Denote this migration 

energy by εm .  Typically, εm ≈  1 eV, much larger than the average vibration energy kT.  A 

vacancy changes ν exp −εm / kT( ) number of sites per unit time. 

 Layer 1 has C1a vacancies per unit area, so that C1aν exp −ε m / kT( ) vacancies per area 

per time are energetic enough to change site.  Some jump to another site in layer 1, some jump to 

layer 2, and some to another neighboring layer.  We'll ignore this detail and simply say all the 

energetic vacancies on layer 1 jump to layer 2.  Similarly, layer 2 has C2a vacancies per unit 

area, so that C2aν exp −εm / kT( ) vacancies per area per time are energetic enough to change site.  

Consequently, the net vacancy flux is the difference, namely,  

  J ≈ C1 − C2( )aν exp −εm / kT( ). 

Recall the definition for the concentration gradient, ∂C / ∂x ≈ C2 − C1( ) / a , and for the 

diffusivity, J = −D∂C / ∂x .  The diffusivity is 

  D ≈ a2ν exp −εm / kT( ). 
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 Models like this should never be taken literally; for numerical values of diffusivities, 

experiments are called for.  But such models develop our intuition into things that we don't have 

direct experience—things that are two large, too small, run too fast, too slow.  (Have you ever 

sat near an atom, counting how many times it jiggles in a second?)  This model really has this 

kind of quality.  It tells us a number of things. 

• The diffusivity really should have the kind of temperature-dependence observed in 

experiments, D = D0 exp −q / kT( ). 

• The pre-exponential factor scales as ( )( ) /sm10m10s10 272101132
0

−−− =≈≈ aD ν .  There is 

dimensionless coefficient that we have dropped.   

• The activation energy q has the physical meaning of the migration energy.  An atomistic 

simulation may compute this quantity. 

• The diffusivity is indeed independent of the concentration. 

 

Cavity Growth Is Caused by a Series of Tiny Effects 

 A tiny fraction of lattice sites are vacant. 

 The tensile stress increases the vacancy concentration at the external surface by a tiny 

fraction.  

 The tiny nonunifomity in the vacancy concentration drives diffusion. 

 A tiny fraction of vacancies change site, by an atomic distance. 

 

From Atomic Time Scale to Cavity Growth Time Scale 

 Atoms vibrate at a huge frequency, 113s10~ −ν , but cavity grows slowly.  How does the 

atomic time scale get slow down at the macroscopic scale?  The time scale for cavity growth is 
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A combination with the atomistic formula for diffusion coefficient gives 
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The small atomic time scale, 1/ν, amplifies to the macroscopic time scale, , by  0t

 the Boltzmann factor ( )kTf /exp ε+  (Only a tiny fraction of lattice sites are vacant.)  

 the Boltzmann factor exp +εm / kT( )

)

 (Only a tiny fraction of vacancies jump over the 

energy barrier.) 

 the length ratio  (The nonuniformity of the vacancy concentration is over the 

length scale  .  The vacancy jump is over atomic distance  a .) 

( 2
0 / aR
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