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  Lecture 4   The Algorithm of Thermodynamics 

 I have taught this course four times before, but have never devoted lectures on basic 

thermodynamics.  It is a subject I’m not good at, but I have used it often in research, in a loose 

way.  One can ride a bicycle without knowing Newton’s laws, even though bicycle-riding is 

governed by Newton’s law.  If thermodynamics gives me so much trouble, perhaps it also gives 

my students a lot of trouble.  I have taken lectures from many teachers on the subject.  None 

have really made me feel comfortable with it.  Now I’m trying to teach you.  I hope that I can 

help you become comfortable with the subject.  Maybe you already are.  Maybe you never will.  

I have no evidence that I can be more effective than these other teachers, but I have the 

enthusiasm of an amateur. 

 To understand thermodynamics, one has to understand its algorithm, a large sample of 

phenomena, as well as techniques of computation and measurement.  This lecture focuses on the 

algorithm.  

 When my older son was very young, perhaps three or four, I began to tell him about 

electrons and protons and molecules.  I’d like to see my son grow up comfortable about things 

that he had no direct evidence of.  I grew up during the Cultural Revolution in China, and knew 

how effective propaganda could be.  Radical ideas seem to become reasonable after one says 

them a lot of times.  This method of persuasion can be used to a good end.  When I was a child, 

people kept telling me that the earth circles around the sun, and I became comfortable with the 

idea, despite that daily evidence seemed to suggest the opposite.  So a bombardment of ideas can 

be effective, and even noble if the ideas are true.  If I keep telling my son about molecules, he 

might grow up as familiar with molecules as with his younger brother.  That will prepare him for 

the Age of Molecules.     
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System, Environment, and Their Interactions 

 A glass of wine is a system, and the rest of the world its environment.  The system 

interacts with the rest of the world in many ways.  The wine is composed of molecules: water 

alcohol, and others.  When you smell the wine, it is because some of the molecules escape from 

the wine and reach your nostrils.  When your hand warms the wine, it is because the molecules 

of your hand vibrate more violently than the molecules in the wine.  We say that your hand adds 

heat to the wine.  When the wine is placed in an electric field, the electron clouds of the 

molecules change shape somewhat, and the electric dipoles of the molecules orient more along 

the electric field direction.  We say that the electric field does work to the wine. 

   

Quantum States (or Microstates)   

 A system has many quantum states.  Each quantum state has a definite energy.  Different 

quantum states may have the same value of energy.  Consider, for example, a system composed 

of a proton and an electron.  We call this system the hydrogen atom.  Because the proton is much 

heavier than the electron, we may assume that the proton is stationary, and allow the electron to 

move.  At the ground energy level, the wavefunction of the electron has a spherical symmetry.  

This energy level corresponds to two quantum states, because the electron can have two spin 

orientations.  At the second energy level, 13.6 eV above the ground level, the system has 8 

quantum states, 2 having spherical symmetric wavefunctions, and 6 having dumbbell-shaped 

wavefunctions.  At higher energy levels, the system has even more quantum states.  

 For a large system, such as the glass of wine, with many electrons and protons and 

neutrons, we may not be certain of the exact value of the energy. It will suffice to know energy 

within some narrow range. 
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 In many model systems, such as vacancies in a crystal lattice, quantum mechanics does 

not enter explicitly.  In this example, each configuration of the vacancies in a lattice is described 

in classical terms. Each configuration of the system is called a microstate.  Since the quantum 

mechanics governs our world, the existence of atoms and vacancies is consequences of the 

quantum mechanics. In this lecture, we use the terms microstate and quantum state 

interchangeably.   

 

Closed System        

 We quantify the interactions between a system and the rest of the world by a set of 

variables: the energy of the system, the number of particles in the system, the volume of the 

system, the amount of electric charge in the system, etc.  How many modes of interaction do we 

need to account for?  The answer has to be pragmatic.  We’ll account for as many modes as our 

instruments can detect. 

 A system is said to be a closed system if it has no interaction with the rest of the world.  

(Both Callen and Kittel-Kroemer use the closed system in this sense.  Some other people call 

such a system an isolated system, and reserve the name closed system for something else.  I like 

the name closed system, because I’ll talk a lot about opening the system in one way or another.  

When a system is closed, it is closed to any interaction.  When a system is open, it is open to one 

specific interaction or another, as specified.) 

 By definition, a closed system has constant values of energy, of number of particles, and 

of all other variables that would register the interactions with the rest of the world, should we 

open the system.  The closed system has a specific set of quantum states.  Which quantum state 

will the system be in? 
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The Fundamental Assumption 

 A closed system is equally likely to be in any one of its quantum states.  This assumption 

sounds so wrong if you read it quickly.  Well, “quickly” is precise the origin of confusion.  Let’s 

say we have prepared the system in a specific quantum state.  For example, we drop a drop of 

water molecules in the glass of wine, and then close the system.  Momentarily, the fresh water 

molecules have no time to visit everywhere in the wine.  For the fundamental assumption to 

make sense, we have to wait long enough for the closed system to reach equilibrium.  Only in 

equilibrium, the closed system is equally likely to be in any one of its quantum states. 

 Let g be the number of quantum states of a closed system.  Every quantum state has the 

same values of the variables that characterize the interactions between the system and its 

environment.  According to the fundamental assumption, the probability for the closed system to 

be in any one of its quantum states is 1/g. 

 

Ink Particles Suspended in Water 

 It’s difficult to observe water molecules in a glass of wine.  Let’s talk about an 

experience we all have.  Say we drop a tiny amount of ink into a full glass of water.  The ink 

contains tiny solid particles (e.g., carbon black) that give the color.    Why do the ink particles 

tend to disperse in the water?  A given configuration of the locations of all ink particles defines a 

microstate of the system.  There is negligible interaction between any two ink particles, so that 

each every particle is free to explore everywhere in the water.  All configurations are equally 

likely.  For example, the configuration that all ink particles are in a small region in the glass is 

just as likely as a configuration that the ink particles are dispersed in the entire glass.  However, 

there are much more configurations that ink particles disperse in the entire glass than the 



Evolving Small Structures Spring 2004 Z. Suo 
 

February 21, 2009 5  

configurations that ink particles are in a small region.  Consequently, dispersion is more likely 

than localization. 

 Let’s make this idea quantitative.  Let V be the volume of the full glass of water.  The 

number of microstates of each ink particle is proportional to V.   We have a dilute concentration 

of ink particles suspended in water, so that the number of microstates for N ink particles is 

proportional to .  If the N particles are confined in a small region in the glass, say of volume 

V/10, the number of microstates is proportional to 

NV

( )NV 10/ .  Thus, 

  
( )

N
N

N

V
V 10
10/V/10volumeinparticlesforNyprobabilit

VvolumeinparticlesforNyprobabilit
==  

This ratio is huge if we have more than a few particles suspended in the glass of water.   

 An event like “N particles dispersed in a glass of water” is such a vague description at the 

levels of each particle, that many microstates fit this description.  Consequently, one such event 

is represented by a set of larger number of microstates.  In a closed system, all microstates have 

the same probability to occur.  An event represented by a set of microstates is more likely to 

occur because the set has more member microstates.  

 

The Multiplicity Function 

 We now open a system in just one way:  the system can exchange energy with its 

environment, but still retains constant values of the number of particles, the volume, etc.  That is, 

of all variables that characterize the interactions between the system and its environment, only 

the energy of the system, U, is actually allowed to vary.  We call this mode of energy transfer the 

heat.  The practice of registering the heat is known as the colorimetry. 

 When the system is held at one value of energy, the system is in effect a closed system 

and has one specific set of quantum states.  When the system is held at another value of energy, 



Evolving Small Structures Spring 2004 Z. Suo 
 

February 21, 2009 6  

the system has another specific set of quantum states.  The number of quantum states of the 

system is a function of its energy, ( )Ug , known as the multiplicity function.  This function is a 

fundamental characteristic of the system.  

 

Thermal Contact:  Systems That Can Exchange Energy  

 Consider two systems.  System 1 has g1 U1( ) quantum states when it has energy .  

System 2 has g  quantum states when it has energy .    The two systems can be totally 

different, like a glass of wine and a piece of cheese, so that the two multiplicity functions can be 

different.  The two systems exchange energy with each other, but do not exchange particles, or 

volumes, etc.  That is why the numbers of quantum states are the functions of only energy.  The 

composite of the two systems is insulated from the rest of the world, and forms a closed system.  

Consequently, the composite is a closed system, and the combined energy, , is constant.    

The two systems are said to be in thermal contact.  After some time, the energy flow stops, and 

the composite system is said to have reached thermal equilibrium.  When the two systems are 

brought into thermal contact, will energy flow from system 1 to system 2, or in the opposite 

direction?  How do the two systems partition the energy at thermal equilibrium?  

1U

2 U2( ) 2U

21 UU +

 We are careful, so that the act of thermal contact does not alter the two systems in their 

fundamental characteristics.  For example, if the contact creates some additional interface states, 

the number of such states is taken to be negligible for the time being.  When the energy in 

system 1 changes to a new value U , the number of the quantum states of system 1 is still given 

by the same multiplicity function g

1

1 U1( ), just evaluated at the new value of the energy.  The 

same is true for system 2.   
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)

 Here comes the crux of thermodynamic thinking.  For a given energy partition, U  and 

, system 1 has g  quantum states, and system 2 has 

1

U2 1 U1( ( )22 Ug  quantum states.  This energy 

partition grants the composite system  

  ( ) ( )2211 UgUgg =   

quantum states.  The number g depends on energy partition:  a different energy partition grants 

the composite system a different number of quantum states.  The sum of the number of quantum 

states over all energy partitions gives the total number of quantum states accessible to the 

composite system.  According to the fundamental assumption, the composite system is equally 

likely to be in any one of the accessible quantum states, time permitting.  One energy partition 

may grant the composite system more quantum states than another energy partition.  The more 

quantum states an energy partition grants the composite system, the more likely this energy 

partition will occur.  The most likely energy partition grants the composite system the most 

quantum states.  We identify this most likely energy partition as the equilibrium state of the two 

systems in thermal contact.   

 Let’s determine this most likely energy partition.  This is a standard calculus problem.  

When a small amount of energy, δU , flows from system 2 to system 1, system 1 has energy 

UU δ+1 , and ( ) ( ) U
U
gUgUUg δδ

1

1
1111 ∂

∂
+≈+  quantum states.  We retain the Taylor series up to 

the first order in δU .  Similarly, system 2 has energy UU δ−2 , and 

( ) ( ) U
U
gUgUUg δδ

2

2
2222 ∂

∂
−≈−  quantum states.   Consequently, when a small amount of energy 

δU  flows from system 2 to system 1, the composite changes its number of quantum states by 

( ) ( ) ( ) ( )22112211 UgUgUUgUUgg −−+= δδδ , namely, 
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  U
U
ggg

U
gg δδ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
2

2
12

1

1 . 

Divide the above equation by ( ) ( )2211 UgUg , and we obtain that 

  U
U

g
U

gg δδ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
2

2

1

1 lnlnln . 

A given energy partition grants g quantum states to the composite system.  The larger the 

number g, the more likely this energy partition will occur.  Consequently, energy flows in the 

direction to increase the number of the quantum states of the composite system, making 

0ln >gδ .  For example, for energy to flow from system 2 to system 1, namely, 0>Uδ , we 

require that  

  
2

2

1

1 lnln
U

g
U

g
∂
∂

>
∂
∂ . 

The two systems reach equilibrium when  

  
2

2

1

1 lnln
U

g
U

g
∂
∂

=
∂
∂ . 

If we know the two systems, i.e., know the two characteristic functions g  and g1 U1( ) 2 U2( ), we 

can determine how the two systems partition the energy when they reach thermal equilibrium. 

 

The Entropy and The Temperature 

 If you are tired of the phrase “the logarithm of the number of quantum states”, you just 

join the crowd and use a cryptic word.  You call the quantity 

  σ = ln g  

the entropy.  The entropy is also a function of the energy.  The entropy increases if the energy 

increases.  In this definition, the entropy is a dimensionless number.  The entropy is just an 
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abbreviation for the phase “the logarithm of the number of quantum states”.  Nothing more or 

less. 

 As another abbreviation, define the temperature of a system, τ , as 

  
U∂
∂

=
σ

τ
1 . 

The temperature is a function of the energy.  Because the number of quantum states increases 

with the energy, and so does the entropy, the temperature is positive.  The temperature defined 

this way has the unit of energy. 

 Now we can paraphrase the analysis of thermal contact in terms of entropy and 

temperature.  When the two systems are in thermal contact and the composite system is closed to 

the rest of the universe, the following things happen. 

• For a given energy partition, and , the entropy of the composite system is the sum 

of the two systems:  

1U 2U

( ) ( )2211 UU σσσ += . 

• A different energy partition gives a different entropy to the composite system.  The most 

likely energy partition maximizes the entropy.  

• To increase the entropy of the composite system, energy flows from the system with high 

temperature to the system with low temperature. 

• The two systems reach thermal equilibrium when their temperatures equal. 

• Of all energy partitions, the energy partition in thermal equilibrium maximizes the 

entropy of the composite system. 

 

The Second Law    
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 Let us analyze the thermal contact experiment again.  During the experiment, the two 

systems together form a closed system.  Before the two systems are in thermal contact, they are 

insulated from each other, and each system maintains a constant energy.  The insulation between 

the two systems provides a constraint, preventing energy from flowing from one system to the 

other.  Now we remove the insulation between the two systems, so that energy flows from one 

system to the other.  For a given energy partition U  and U , the number of quantum states of 

the composite system is 

1 2

( ) ( )2211 UgUgg = , which is the probability for this energy partition to 

occur.   Entropy of the composite system is defined as gln=σ .  When an internal constraint is 

lifted, the number of quantum states of a closed system increases, and so does the entropy.  This 

is the content of the second law of thermodynamics. 

 

A System Exchanging Energy with a Reservoir:  The Free Energy 

 A system can exchange energy with a reservoir.  The combination of the system and the 

reservoir is a closed system, with constant energy .  The reservoir is so large that the change 

in its energy does not change its temperature.  Denote the constant temperature of the reservoir 

by 

0U

τ .   In equilibrium, how much energy does the system have?   

 Assume that the system itself has energy U and entropy ( )Uσ .  The reservoir has energy 

 and entropy UUUR −= 0 ( UUR −0 )σ .  The composite system has entropy 

  ( ) ( )UUUR σσ +−0 . 

Expand the entropy of the reservoir into the Taylor series,  

  ( ) ( ) ( )
τ

σσσσ UUU
U

UUU R
R

RR −=
∂
∂

−=− 0
0

00  

We rewrite the entropy of the composite system as 
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  ( ) ( )
τ
τσσ UUUR

−
−0 . 

The composite system is a closed system.  In equilibrium, the composite has the maximum 

entropy.  Because  ( 0UR )σ  is constant, equilibrium requires that ( )UU τσ−  reach minimum. 

 The quantity 

   τσ−=UF   

is known as the free energy.  We have used it in determining the equilibrium vacancy 

concentration.  In generic terms, the free energy is useful for any system held at a constant 

temperature (by allowing it to exchange energy with a reservoir).  Thus the system is not closed 

any more.  When an internal constraint is removed, the system reaches equilibrium by 

minimizing the free energy.   

 

The Boltzmann Distribution 

 Once again consider the system in thermal contact with the reservoir held at the constant 

temperature τ .  The combination of the system and the reservoir is a closed system.  Their 

combined energy is fixed at .  Energy can flow between the system and the reservoir.  Now 

the system is no longer closed.  Because the energy of the system can take many values, quantum 

states of all energy levels are assessable to the system.  What is the probability to find the system 

in a particular quantum state? 

0U

 Consider one particular quantum state of the system.  In this quantum sate, the system 

has energy ε .  The reservoir has the energy ε−0U  and the entropy ( )εσ −0UR . When the 

system is in this quantum state, the reservoir can be in many quantum states.  The number of the 

quantum states of the reservoir is ( )[ ]εσ −0exp UR .  This is also the number of quantum states of 

the composite of the system and the reservoir, when the system is in the particular state.  The 
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probability of finding the system in this quantum state, P, is proportional to the number of 

quantum states of the composite system: 

  ( )[ ]εσ −∝ 0exp UP R . 

Expand the entropy of the environment into the Taylor series as before: 

  ( ) ( ) τεσεσ /00 −=− UU RR . 

Consequently, the probability is 

  ( )τε /exp −∝P . 

We have dropped the factor ( )[ 0exp UR ]σ , which is a constant independent of the system.  

 The probability of finding a system in a state with energy ε  in thermal contact with a 

reservoir at constant temperature τ  is proportional to exp −ε / τ( ).  The higher the energy of a 

quantum state, the less likely the system will be in this state.  This is the Boltzmann factor.  Of 

course, the system may have many other quantum states with the same amount of energy, ε .  

The system is equally likely to be in any one of these quantum states.   

 Denote  as the probability for the system to be in a ground state (with zero energy), 

and 

( )0P

( )εP  as the probability for the system to be in a quantum state with energy ε .  The ratio of 

the two probabilities is 

  ( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛−=

τ
εε exp

0P
P . 

In contact with the reservoir with a constant temperature, the system is unlikely to be in a 

quantum state with energy much above the temperature. 

 

The Partition Function 

 The function 
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  ( ) ( )∑ −=
s

sZ τετ /exp   

is called the partition function.  The summation is over all quantum states s of the system (having 

all possible values of energy).  When the system is in contact with the reservoir with a constant 

temperature τ , the probability of the system in a particular state with energy iε  is 

  ( ) ( )
Z

P i
i

τεε /exp −
= . 

The sum of probabilities over all states is unity. 

 

Ensemble Average 

  Once more consider the system in thermal contact with the reservoir held at the constant 

temperature τ .  Because the system can exchange energy with the reservoir, the system can be 

in any one of the quantum states having the energy 1ε , of the quantum states having the energy 

2ε , etc.  If we measure the energy of the system, what value should we get? 

 We should get 1ε  sometime, 2ε  sometime, etc.  If we take many measurements, or most 

likely, if our instrument is so slow that a reading takes a long time, we will get an average value, 

given by 

  ( )∑=
s

ssP εεε . 

This is known as the ensemble average.  A direct calculation confirms that, when the system is 

in thermal contact with the reservoir held at the constant temperature τ , the ensemble average of 

the energy of the system relates to the partition function as  

  
τ

τε
∂

∂
=

Zln2 . 

(Carry out the calculation.) 
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Averaged Square Fluctuation 

 Once more consider the system in thermal contact with the reservoir held at the constant 

temperature τ .    How much energy fluctuation will we measure?  Of cause, sometimes we 

measure an energy higher than the average, and sometimes we measure an energy lower than the 

average.  Define the averaged square fluctuation by     

  ( ) ( )22 εεε −=∆ . 

A direct calculation confirms that 

  ( )
τ
ε

τε
∂
∂

=∆ 22 . 

(Carry out the calculation.) 

 For a system containing a large number N of identical particles, the average energy of the 

system is proportional to the number of particles, N∝ε .  A good measure of the energy 

fluctuation is 

  ( )
N
12

∝
∆
ε
ε . 

Consequently, the fluctuation is extremely small if the system contains a large number of 

particles, say  particles. 2410≈N

   

The Multiplicity Function Extended 

 It is straightforward to extend the above algorithm by including other modes of 

interactions between the system and its environment.  For example, a system can be opened in 

two ways, exchanging both energy and particles with its environment.  The number of quantum 



Evolving Small Structures Spring 2004 Z. Suo 
 

February 21, 2009 15  

states of the system, g, is a function of both its energy U and the number of particles N, ( )NUg , .  

For example, the glass of wine can both warm up and evaporate.  The way we open the system 

determines the variables to use.  The content of the system determines the multiplicity function. 

 

Systems That Can Exchange Both Energy and Particles  

 Consider two systems, each having its own multiplicity function,  and 

.  Allow both energy and particles to exchange between the two systems.  Make the 

composite system a closed system, so that 

( 111 , NUg )

)( 222 , NUg

21 UU +  and 21 NN +  remain constant.  Our wine-and-

cheese example may still be helpful.  Seal a glass of wine and a piece of cheese in a bag, which 

isolates the wine-cheese composite from the rest of the universe.   We allow both energy and 

water molecules to transfer between the wine and the cheese, and neglect the transfer of any 

other molecules.  What will be the energy and water content in the wine and the cheese when 

equilibrium is reached?   

 For a given partition of energy and particles, ( )11, NU  for system 1 and  for 

system 2, the number of quantum states of the composite system is 

( )22 , NU

  ( ) ( )222111 ,, NUgNUgg =  

The probability for this partition to occur is proportional to the number g.  The most likely 

partition maximizes the number of quantum states of the composite system.  We have learned the 

beauty of the logarithm before, and will now use it from start.  Take the logarithm on the both 

sides of the above equation, and we use the abbreviation ( ) ( 11111 ,ln, NUgNU )=σ , etc.  The 

above becomes 

  ( ) ( )222111 ,, NUNU σσσ +=  
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For given partition in the energy and the number of particles, the entropy of the composite is the 

sum of the entropies of the two systems. 

 Imagine a slightly different partition: ( )NNUU δδ ++ 11 ,  for system 1 and 

( NNUU )δδ −− 22 ,  for system 2.  The difference in the partition charges the entropy of the 

composite system by 

  N
NN

U
UU

δσσδσσδσ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
2

2

1

1

2

2

1

1  

 We can change the partition of energy and partition of particles independently.  

Consequently, each change in partition must be in the direction to increase the number of 

quantum states of the composite system, making 0>δσ .  For example, when 0>Uδ  and 

0=Nδ , to increase g, we require that 

  
2

2

1

1

UU ∂
∂

>
∂
∂ σσ  

Similarly, when 0=Uδ  and 0>Nδ , to increase g, we require that 

  
2

2

1

1

NN ∂
∂

>
∂
∂ σσ  

The two systems reach both thermal and diffusive equilibrium when 

  
2

2

1

1

UU ∂
∂

=
∂
∂ σσ , 

2

2

1

1

NN ∂
∂

=
∂
∂ σσ   

The Chemical Potential 

 Once again define the temperature τ by  

  
U∂
∂

=
σ

τ
1 . 

Define the chemical potential µ  by 



Evolving Small Structures Spring 2004 Z. Suo 
 

February 21, 2009 17  

  
N∂
∂

=−
σ

τ
µ . 

 Entropy of a system is a function of two variables, ( )NU ,σ .  When the energy varies by 

 and the number of particles varies by dN , the entropy varies by  dU

  dNdUd
τ
µ

τ
σ −=

1 . 

 One can also regard the energy as a function of two variables, ( NU , )σ .  When the 

entropy varies by σd  and the number of particles varies by , the energy varies by  dN

  dNddU µστ += . 

Now the independent variables are σ  and N.  The temperature and the chemical potential are 

differential coefficients: 

  ( )
σ
στ
∂

∂
=

NU , ,   ( )
N

NU
∂

∂
=

,σµ . 

 When two systems can exchange both energy and particles, equilibrium is reached when 

the two systems have the identical temperature and the identical chemical potential. 

 

Thermodynamics of Fluids 

 A fluid is characterized by a multiplicity function of two variables, .  For 

example, one can increase the number of quantum states of a gas by increasing either its energy 

or its volume.  We consider bulk properties of the fluid, so that the number of molecules in the 

fluid scale things proportionally.  For example, we can talk about energy per unit mass or per 

molecule.  The shape of the container does not affect the number of the quantum states of the 

fluid.   

( VUg , )

 Following the same algorithm, we define the entropy by 
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  ( ) gVU ln, =σ , 

the temperature τ  by 

  ( )
U

VU
∂

∂
=

,1 σ
τ

, 

and the pressure p by 

  ( )
V

VUp
∂

∂
=

,σ
τ

. 

The motivation for this definition will be clear shortly. 

 Consider two systems in contact, exchanging both energy and volume, but with the total 

energy and volume held constant.  The two systems reach equilibrium when they have the 

identical temperature and the identical pressure.   An example can be a liquid and its vapor in a 

sealed container. 

 The combination of the above two definitions gives the differential expression for the 

entropy function ( )VU ,σ : 

  dVpdUd
ττ

σ +=
1 . 

 Rearranging, we obtain the differential expression for the energy function ( )VU ,σ : 

  pdVddU −= στ . 

This recovers the familiar work term pdV.  Of course this consideration motivates our definition 

of the pressure. 

 The multiplicity function , the entropy function ( VUg , ) ( )VU ,σ , and the energy function 

( VU , )σ  contain the same information.  All thermodynamic properties can be deduced from any 

one of these functions.  For example, if the energy function ( )VU ,σ  is known, the temperature 

and the pressure are differential coefficients: 
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  ( )
σ
στ
∂

∂
=

VU ,  ,      ( )
V

VUp
∂

∂
−=

,σ . 

 Gibbs described a geometric representation.  The function ( )VU ,σ  is a surface in the 

three dimensional space with axes σ , , and U.  Each point on the surface represents a 

thermodynamic state.  The tangent plane of the surface at the point defines the temperature and 

the pressure.  Gibbs went on to use this representation to discuss phase equilibrium.    

V

 

The Ideal Gas 

 A container of volume V contains N molecules.  If distance between the molecules are 

sufficiently large, i.e., if  is large, the probability of finding a molecule is independent of 

the location in the container, and of the presence of other molecules.  The total number of ways 

in which the N molecules can be distributed equals the product of the numbers of ways in which 

the individual molecules be independently distributed.  With N and U fixed, each of these 

numbers will be proportional to V.  The total number of ways is proportional to the Nth power of 

V: 

NV /

  ( ) NVNVUg ×= constant,, . 

The constant is independent of V.  Recall that 

  
V

gp
∂
∂

=
ln

τ
. 

Evaluate the partial differentiation, and we obtain that 

  τNpV = . 

This is the familiar equation of state of the ideal gas. 

 A bag of air acts like a spring.  The volume decreases as the pressure increases.   The 

volume recovers when the pressure drops.  This elasticity clearly does not result from bond 

stretching.  It is known as entropic elasticity.  If you detest any cryptic word as I do, just 
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remember that air molecules will have more microstates if the volume is large.  To confine the 

molecules in a small volume, you press. 

 

Osmosis 

 A bag contains a liquid of volume V, with N particles dispersed in the liquid.  The 

particles can be of any size.  When the particles are molecules, we call them solutes.  When the 

particles are somewhat larger, say from 10 nm to 10 µ m, we call them colloids.  The bag is 

immersed in a reservoir of the same liquid but without any such particles.  The liquid is 

incompressible, but we can change the volume of the liquid inside the bag by allowing the 

molecules of the liquid to permeate through the skin of the bag.  The particles dispersed in the 

bag, however, cannot permeate through the skin.  Such a skin is semi-permeable. 

 Our glass of whine now has a rigid, semi-permeable wall in it.  Water 

is on both sides of the wall, but alcohol is only on one side.  Water molecules 

can diffuse across the wall, but not alcohol molecules.  For the alcohol 

molecules to explore more volume, pure water has to diffuse into the 

solution.  If this experiment were carried out the in the zero-gravity environment, infusion would 

continue until the pure water is depleted.  In the gravitation field, the infusion stops when the 

pressure in the solution balances the tendency of the infusion.  This pressure is known as the 

osmotic pressure.       

The physics of this situation is analogous to the ideal gas, provided that the concentration 

of the particles is dilute.  Every particle is free to explore the entire volume in the bag.  The 

multiplicity function of the N particles in volume V scales as .  The liquid molecules 

permeate through the skin to drive the composite system (the bag and the reservoir) to reach 

NVg ∝
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equilibrium.  Consequently, V is variable that enters the multiplicity function. Recall once again 

that 

  
V

gp
∂
∂

=
ln

τ
 

Inserting the expression , we obtain that NVg ∝

  τNpV =  

The particles insert on the skin of the bag the pressure p, known as the osmotic pressure.   

 In equilibrium, the pressure can be balanced in several ways.  For example, for a 

spherical bag, the membrane tension can balances the osmosis pressure.  One can also disperse 

particles in the reservoir, and make sure that the particles do not permeate into the bag.  The 

pressures in the reservoir balances that in bag provided the concentrations of the particles are 

equal. 

 

Thermometry 

 Appendix B of Kittel-Kroemer gives the basic information on thermometry, or the 

practice of registering temperature.  An entry point to the literature is the proceedings of an 

international symposium held every few years under the title Temperature, Its Measurement and 

Control in Science and Industry (The Gordon McKay Library Call Number:  QC 271. A6).  

Once we know how to measure the temperature, assuming that we know how to measure the 

change in the energy, we will know how to measure the change in the entropy.  Recall that 

  
U∂
∂

=
σ

τ
1  . 

The thermodynamics is thus placed on an experimental basis. 
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 Conventional Wisdom about the Temperature.  Bring two systems together and 

insulate them from the rest of the world.  Make sure that the two systems interact with each other 

in only one way:  energy can flow from one system to the other.  Each system retains constant 

values of its volume, particles, and any other parameters that we may find to characterize its 

interaction with environment.  The two systems are said to be in thermal contact.  Note the 

following experimental observations: 

 If when two systems are in thermal contact, one system gives energy, and the other 

system gains energy, the system giving energy is said to have a higher temperature than the 

system gaining energy. 

 If when two systems are in thermal contact, neither of them gives or gains energy, the 

two systems are said to have equal temperatures.  The two systems are said to be in thermal 

equilibrium. 

 Systems in thermal equilibrium with the same system are themselves in thermal 

equilibrium. 

 Empirical Temperature Scales.  These ancient observations are sufficient to establish 

the concept of the temperature, and allow us to order the temperatures.  These observations, 

however, leave the scale of the temperature arbitrary.  One method to define a temperature scale 

is to list a sequence of phenomena that occur at different temperatures.  For example, we could 

list, in the order of their melting points, a collection of pure substances:  nitrogen, water, lead, 

aluminum, gold, etc.  We could register a particular temperature by the name of the substance.  

We would know that the temperature “nitrogen” is lower than the temperature “water” because 

of the following experiments.   We would first make system A in thermal equilibrium with the 

melting nitrogen, and system B in thermal equilibrium with the melting water.  Upon bringing 

system A into thermal contact with system B, we would observe that system A gains energy, and 



Evolving Small Structures Spring 2004 Z. Suo 
 

February 21, 2009 23  

system B loses energy.  Similar experiments would convince us that the temperature “water” is 

lower than the temperature “lead”, “lead” is lower than “aluminum”, and “aluminum” is lower 

than “gold”.     

 All empirical temperature scales are variations of this basic theme.  Some empirical 

temperature scale gives an air of scientific sophistication.  But it’s just an air.  There is no 

substance to such a claim.  For example, around 1720, Fahrenheit suggested that the freezing 

point of water be given the number 32, and the boiling point of water (under the normal 

pressure) be given the number 212.  What would we do for other temperatures?  Mercury is a 

liquid for this temperature range and beyond, sufficient for most purposes for our ancestors.  

Mercury expands as the temperature increases.  We could define the change in the temperature to 

be proportional to the change in the volume of mercury.  What would we do for high 

temperatures when mercury is a vapor, or low temperatures when mercury is a solid?  We would 

switch to materials other than mercury, or phenomena other than thermal expansion.   

 The procedure would be cumbersome, acceptance of any empirical temperature scale 

would be slow, and patriotism may come into play.  Where science is weak, politics is strong.  

However, there would be nothing inherently wrong with the practice; we would still 

communicate to each other about temperatures, once we had agreed on a scale, or on the 

conversion between scales.  The practice was merely untidy. 

 The Thermodynamic Temperatures in Theory.  Thermodynamics provides a far more 

elegant temperature scale.  Let g be the number of quantum states of a closed system having 

energy U.  The thermodynamic temperature τ  is defined as 

  
U

g
∂
∂

=
ln1

τ
. 

As we have seen, this definition conforms to the conventional wisdom about the temperature. 
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 The Thermodynamic Temperatures in Practice.  One method is to establish the 

thermodynamic temperature scale with the aid of model systems that are simple enough that one 

can count the number of quantum states.  For example, an ideal gas obeys τNpV = .  Say we 

want to know the temperature when water melts.  We can use a container with a gas.  Allow 

thermal contact between the freezing water and the gas container.  When heat transfer stops 

between the water and the gas container, the measured value of  is the temperature of the 

melting point of water.  At very low and very high temperatures, the ideal gas thermometer is 

inapplicable.  One can use other simple model systems, such as spins and black body radiation, 

to establish the thermodynamic temperatures. 

NpV /

 Other Temperature Scales.  All other temperature scales are defined by the 

thermodynamic temperature scale.   

 The Kelvin temperature scale T is defined by (1) T is proportional to τ , namely, kT=τ , 

and (2) the triple point of pure water is assigned the number K16.273=tT , exactly.  The 

Boltzmann constant k converts the two temperature scales.  Its experimental determination 

amounts to measuring the fundamental temperature of the triple point of pure water.  The 

experimental value of the Boltzmann constant is .  The conventional entropy 

relates to the fundamental entropy as 

J/K1038.1 23−×=k

σkS = .  This recovers the commonly used relations:  

 and .  The conversion factor:  the temperature 1K corresponds to 

.   

gkS ln= UST ∂∂= //1

eV100.863 4−×

 It is hard to have any respect for a temperature scale that just make the triple point of 

water have an ugly reading.  The pretentious name “absolute temperature” is such an abuse of 

language.  It makes George W. Bush sound sincere.  The Boltzmann constant k has no 

fundamental significance. For any result to have physical meaning, the product kT must appear 
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)

together, and the ratio S/k must appear together.  The world will be rid of the clutter if we simply 

call  the temperature, and ( 1/ln −∂∂= Ugτ gln=σ the entropy.  But, then, an engineer has to be 

a team player.  I’ll live with a piece of clutter if it makes the team happy.  A question still 

remains.  Why is the team happy with it? 

 The Celsius temperature scale, C, relates to the Kelvin scale by , where  is 

the freezing point of water.  The experimental value is 

0TTC −= 0T

K15.2730 =T .  I can see the merit to use 

a temperature scale like the Celsius temperature in daily life.  It feels so much more pleasant to 

hear that today’s temperature is 20 C than 0.0253 eV. 

 The Fahrenheit temperature scale, F, relates to the Celsius scale by .32
100
180

+= CF  

 Our melting-point temperature scale can be mapped to the Kelvin scale or the 

fundamental scale as follows: 

 Melting-point Kelvin Fundamental 
 scale scale scale 
 
 Nitrogen 63.14 K 0.0054 eV 
 Water 273.15 K 0.0236 eV 
 Lead 600.65 K 0.0518 eV 
 Aluminum 933.60 K 0.0806 eV 
 Gold 1337.78 K 0.1155 eV 
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