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  Lecture 10  Grain Growth 

 The phenomenon.  A polycrystal, held at temperature T for time t, the average grain 

diameter grows to D.  Empirically it is found that 
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The parameters B, q and n are fitted to the experimental data.  Typically the exponent 2≈n , so 

that the growth slows down when the average diameter is large.  A grain grows at the expense of 

its neighbors:  small grains disappear and big ones get bigger.  Total number of atoms is 

conserved. 

 The cause for grain growth is readily understood.  Atoms at a grain boundary are poorly 

packed, and have higher energy than atoms in the lattice.  As the grains grow in size and their 

numbers decrease, the net of amount of grain boundary reduces, and thereby the free energy of 

the system reduces.  But how does each atom know about this global agenda of reducing the 

energy of the system?  If you cannot wait for an answer, jump to the last paragraph of this 

lecture. 

 Kinematics (or how things move).  A grain is a piece of a single crystal.  In a 

polycrystal, two neighboring grains of different crystalline orientations meet at a grain 

boundary.  Atoms at the grain boundary are poorly packed, and do not belong to the lattice of 

either grain.  The grain boundary moves as atoms detach from the lattice of one grain, and attach 

to the lattice of the other grain. The structure of the grain boundary itself is preserved.  Grain 

boundary motion is facilitated by local adjustment of atomic position, not long-range atomic 

diffusion. 

 This poorly packed region, which we call the grain boundary, is thin.  It is of atomic 

dimension.  The grain size is typically much larger than the atomic dimension.  Consequently, 
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we can model the grain boundary as a mathematical surface, with no thickness.  Two 

neighboring grains meet at a surface (i.e., the grain boundary).  Three neighboring grains meet at 

a line (i.e., the triple junction).  Four neighboring grains meet at a point (i.e., the vertex).  As the 

grain boundaries move, the triple junctions and the vertices also move.        

 Energetics:  driving force on the grain boundary.  A bicrystal consists of two crystals 

of different orientations bonded by the grain boundary.  The reference state is a single crystal of 

the same number of atoms.  The excess free energy of the bicrystal relative to the single crystal 

defines the grain boundary energy.  Denote the grain-boundary energy per unit area by γ.  The 

grain boundary energy density depends on the relative orientations of the two grains, as well as 

the orientation of the grain boundary.   

 The free energy of the polycrystal is a sum over all grain boundaries: 

  G = γA∑ . 

We neglect the line energy of the triple junction, and the point energy of the vertex.   

  

V > 0 
p > 0 
K > 0

grain boundary

 

 Consider an element of a grain boundary, of area dA, with the sum of the principal 

curvatures K.  Assume that the grain boundary energy density γ  is isotropic.  We now remove 

some atoms from one grain, and append them to the other grain, so that the element of the grain 

boundary moves by a distance nrδ .  The sign convention is shown in the figure.  We have shown 

before that, associated with the motion of the grain boundary, the area of the surface element 



Spring 2004 Evolving Small Structures Z. Suo 

February 21, 2009 3  

changes by dArK nδ− .  Consequently, the free energy change associated with the motion of the 

element is dArK nδγ− .  

 Define the driving force for grain boundary migration, p, as the free energy reduction per 

unit area moving per unit distance.  Equivalently, the driving force is the free energy reduction 

associated with a unit volume of atoms detaches from one grain and attach to the other).  Thus, 

  p = γK . 

The driving force is the product of the grain boundary energy density and the curvature.    

 This driving force has the unit of pressure.  Indeed, it has the same form as the Laplace 

formula for the difference in the pressures on the two sides of a liquid surface.  However, there is 

no reason to think this quantity as pressures in the interior of the solid grains.  The two kinds of 

surfaces have different kinematics:  the liquid surface moves because the liquid flows, and the 

grain boundary moves because atoms switch the allegiance from one grain to the other.  Inside 

the liquid, the matter deforms, allowing the pressure to do work.  Inside the grains, however, 

atoms need do nothing for the grain boundary to move; for all we know, the interior of the grains 

can be rigid.  If we treat the grains as elastic bodies, then we can investigate the stress field 

inside the grains.  In that case, it is the boundary stress, rather than the boundary energy, that 

causes the stress field inside the grains.  We will pick up this topic at a later point. 

 Energetics:  local equilibrium at the triple junction.  Next consider a junction at which 

several grain boundaries meet.  In the three-dimension, the length of the junction is L.  Now 

allow the junction to move by a virtual displacement δu .  Let t  be the unit vector in the 

direction of a grain-boundary.  Associated with the junction motion, the length of the grain-

boundary decreases by t ⋅ δu .  Thus, the free energy varies by 

  δG = −L γt ⋅δu∑  
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It sums over all the grain-boundaries meeting at the junction.  The force on the triple junction is 

  f = L γt∑ . 

 If the triple junction is in local equilibrium, the free energy variation vanishes for 

arbitrary virtual motion.  Consequently, the grain boundary tensions balance: 

  γt = 0∑ . 

This is a familiar result.  We can regard the grain boundary energy as a force in the tangent 

direction of the grain boundary.  The local equilibrium of the triple junction is equivalent to a 

force balance.  For example, when three grain-boundaries of identical surface tensions meet at a 

line, they form 120° angle from one another. 

  

grain boundary

junction
δu

t ⋅ δu

 

 Kinetics (or the relation between the force and rate).  We adopt a simple kinetic law.  

The velocity of the grain boundary, v , is proportional to the driving pressure, p : n

  vn = mp , 

which defines the interface mobility m.  In practice, m is determined experimentally. 

 The algorithm for grain growth.  In summary, we have obtained two rules: 

(1) The velocity of an element of a grain boundary is proportional to the mean curvature of 

the element: Kmvn γ= . 

(2) Each triple junction is in local equilibrium:  0332211 =++ ttt γγγ . 
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At a given time, the grain structure is known.  Calculate the curvature of each element of all 

grain boundaries.  Update the grain boundary positions according to rule (1) for a small time 

step.  Maintain  the angles at the triple junctions according to rule (2).  This algorithm has been 

implemented numerically (see Thompson, 1990).  The main difficulty is to calculate the 

curvature, and to maintain the angles.  We’ll talk about a more effective algorithm at a later 

point.  

 The parabolic growth law.  Now we can understand the parabolic growth law readily.  

A dimensional consideration indicates that γm  has the dimension of ( ) /timelengh 2 , the same as 

the coefficient of diffusion.  If we assume that the final grain size is much larger than the initial 

grain size, the problem has only one length scale:  the grain size.  The grain structure grows in a 

self-similar way.  A dimensional consideration requires that the grain size increase with the time 

as .   tmD γ~2

 We can also make a slightly different argument.  Let the average grain diameter be D.  Its 

growth rate is proportional to the mobility m, the surface tension γ, and the curvature.  The latter 

is inversely proportional to the grain diameter, 1/D.  Thus 

  
dD
dt

≈ m
γ
D

. 

The solution to this differential equation is 

  . D2 − D0
2 ≈ 2mγt

This gives us a parabolic growth law. 

 Texture of a thin film.  In the above, we have assumed that the grain boundary energy is 

the only cause for grain growth.  In reality, other forms of free energy can also drive grain 

growth.  For a thin film deposited on a substrate, the grain-boundaries are often perpendicular to 

the surface of the substrate.  It is often found that the grains have some crystallographic 
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relationships with respect to the substrate.  For example, for two copper crystals deposited on a 

single crystal silicon substrate, both surface tension and elastic energy differ for the two grains.  

(Include the surface tension of the film-vacuum interface and of the film-substrate interface.)  

Such difference in the free energy makes one grain grow at the expense of the other.   

 Let the film thickness be h, and area for the two types of grains be A1 and A2.  We'll 

assume that grains are large compared to the film thickness.  The free energy is 

  G = w1h + γ1( )A1 + w2h + γ 2( )A2 . 

The driving pressure is the free energy change per volume of grain growth.  Thus, 

  p = −
1
h

∂G
∂A2

= w2 + γ 2 / h( )− w1 + γ1 / h( ). 

The grain boundary velocity is v .  The survival grains should have the lowest combination = mp

hw /γ+ .   

  

γ1 γ 2

w1 w2

A1 A2

 

 

 An atomistic picture of the grain boundary migration.  The mobility can be 

understood from the atomic point of view.  Assume a cubic crystal lattice, with the atomic 

spacing a, and the volume per atom Ω = a3 .  When an atom relocates from one grain to the 

other, it has to jump over an energy barrier, εm .  Of all jiggles made by the atom, the fraction 
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exp −εm / kT( ) exceeds the energy barrier.  Let ν  be the atomic vibration frequency.  

Consequently, per unit time, the atom jumps ν exp −εm / kT( ) times over the energy barrier.  The 

free energies (per atom) on the two grains differ by pΩ .  Consequently, the grain boundary 

velocity is 

  vn =
Ω
a2 ν exp −

εm
kT
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When the driving pressure is small, namely, pΩ«kT , the above becomes 

  vn =
νa4

kT
exp −

εm
kT

⎛ 
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⎞ 
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giving the grain boundary mobility 

  m =
νa4

kT
exp −

εm
kT

⎛ 
⎝ 

⎞ 
⎠ . 

 Once again, how does each atom know about the global agenda of reducing the energy of 

the system?  At the grain boundary, an atom performs mindless thermal motion.  Most of the 

time, this atom vibrates with a tiny magnitude.  Occasionally, the atom jumps so violently that it 

detaches from the lattice of one grain, and attaches to the lattice of the other grain.  If the two 

states have the identical energy, the jump forward and backward have the same probability.  

However, if the two states have different energies, the probability will be biased.  This bias 

causes the macroscopic migration of the grain boundary, in the direction that reduces the energy 

of the system. 
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