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Abstract. It has been known that geometric softening can induce strain localizations in solids.
However, it is very difficult to analytically capture the localized deformation states within a three-
dimensional framework, especially when the deformation is large. In this paper, we introduce a
novel approach, which resembles the use of a spline to approximate a curve, to construct analytical
(asymptotic) solutions for large localizations in a circular cylinder composed of a Blatz-Ko material
due to geometric softening. The asymptotic normal form equation (in the form of an ODE) valid for
the axial stretch in a small neighborhood is first derived and then a set of these equations, each valid
in a small neighborhood, can be obtained. The union of these small neighborhoods can cover a large
range of the axial stretch and as a result this set of equations governs the deformation states for the
axial stretch in a large interval. Through a phase-plane analysis on this set of ODEs we manage
to obtain the analytical solutions (in the form of a spline of elliptic integrals) for the large strain
localizations. Both a force-controlled problem and a displacement-controlled problem are solved
and the analytical results capture well the non-uniqueness of the stress-displacement relation and
the snap-through phenomenon, which are often observed in experiments when strain localizations
happen. And, some insightful information on the bifurcation points, is obtained. The important
geometric size effect is also discussed through the analytical solutions.
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1. Introduction. When a specimen under loading changes from a homogeneous
deformation state to an inhomogeneous one with large strain(s) in a localized region,
we say a strain localization happens. This is a widely spread phenomenon in solids
(see Bower [11]). Strain localization may lead to the failure of a specimen, and a clear
understanding of this phenomenon is thus important. In continuum mechanics, the
loss of ellipticity caused by strain softening (in the true stress-strain curve some part
has a negative slope) may lead to the onset of localized deformations. However, to
capture the post-bifurcation localized states analytically (or even numerically) after
the onset is a difficult task, especially in a two/three-dimensional setting. Most ana-
lytical works on localizations in literature are based on one-dimensional models; see
Coleman [1], Coleman and Hodgdon [2], Dai and Bi [3], Triantafyllidis and Aifan-
tis [4], Triantafyllidis and Bardenhagen [5]. In these models, typically some gradient
terms are present. In the first three papers, the gradient terms are present due to the
consideration of the transverse effects (taken into account in an ad hoc manner). In
the last two papers, the gradient terms arise due to the consideration of the micro-
scopic effects (see Aifantis and Serrin [6] and Aifantis [7]). While analytical results
based on one-dimensional theories can provide some useful insightful information on
localizations, high-dimensional effects, which are important as observed in some ex-
periments, are missed out. Jansen and Shah [8] did experiments on concrete cylinders
and the results described well the localization properties. They obtained the typical
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stress-displacement behavior for different height-diameter ratios with normal strength
and high strength from two test series. An interesting finding is that the post-peak
response seems not only a material property but is dependent on the specimen ge-
ometry. They found that the post-peak response becomes steeper with increasing
length (or equivalently, the length-radius ratio) of the specimen. In the experiment
by Gopalaratnam and Shah [9], it was found that the tangent value in the ascending
part of the stress-strain curves seems to be independent of the specimen size but in
the post-peak part there is a softening region and no unique stress-strain relation.
These experiments indicate the importance of the high-dimensional effects. One may
numerically compute localized deformations in a two/three-dimensional setting (see
Tvergaard et al. [10]), but some undesirable dependence on selected mesh size and
orientation could arise. Thus, it would be desirable if the localized solutions could be
captured analytically in a two/three-dimensional setting.

Besides strain softening, if the nominal stress-strain curve has a local maximum due
to geometric softening, strain localization can also happen (see Bower [11]). Geometric
softening means that the specimen under test tends to soften as a result of the change
in its cross sectional area. For example, consider the uniaxial extension test of a bar.
The true stress-strain curve may be monotone increasing but the nominal/engineering
stress-strain curve may have a local maximum due to the cross sectional area change
and then the slope becomes negative (softening). After this maximum point, localized
modes can appear and the deformation becomes inhomogeneous. But, as mentioned
in Bower [11], “It is usually exceedingly difficult to compute what happens after lo-
calization”. Although strain localization due to geometric softening often happens for
ductile (plastic) materials, it can also happen for nonlinearly elastic materials. Actu-
ally, Beatty [12] noticed that there is a local maximum in the nominal stress-strain
curve due to geometric softening for a Blatz-Ko material (see Figure 2.2). Although
it appears that no experimental observation of strain localization in this material has
been reported, such a local maximum noticed by Betty indicates it can happen in a
Blatz-Ko cylinder under tension/extension. Therefore, theoretically it will be inter-
esting to capture the localized solutions to gain insights into this phenomenon (such
as the bifurcation points in a force-controlled problem and a displacement-controlled
problem, which may not be captured by a linearized theory; see the remark below
(6.11) and that above (8.2)). In this paper, within a three-dimensional framework we
shall construct analytical (asymptotic) solutions for large localized deformations in a
circular Blatz-Ko cylinder due to geometric softening.

To deduce the analytical solutions for localizations in a three-dimensional setting,
one needs to deal with coupled nonlinear partial differential equations (PDEs) together
with complicated boundary conditions. Further, the existence of multiple solutions
(corresponding to non-unique stress-strain relation) makes the problem even harder
to solve. Within the framework of weak nonlinearity, sometimes the multiple scale
method may be used to construct the post-bifurcation solutions in nonlinear elasticity.
For example, Fu [13] used such a method to study the necking of an infinitely-long
elastic plate. Recently, a method of coupled series-asymptotic expansions, which was
first introduced to study nonlinear elastic waves (see [14, 15]), was adopted to tackle
the solution bifurcations in thin/slender structures composed of nonlinearly elastic
materials (see [16, 17, 18]). In particular, by such a methodology, Dai et al. [19]
studied localizations in a slender cylinder composed of an incompressible hyperelastic
material subjected to axial tension. Although the analytical results obtained in [19]
can successfully capture some key experimental features, the analysis was carried
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Fig. 2.1. The geometry of the object of study.

out within the framework of weak nonlinearity (small strains). More specifically, the
asymptotic expansions of the stresses were at the deformation gradient F = I. Thus,
the results obtained in that paper is only valid for small localizations near the initial
undeformed state. For a Blatz-Ko material (a compressible hyperelastic material),
the onset of localizations happens at a large axial strain value and also the axial
strain can vary in a large interval (i.e., these are large localizations). In particular,
the latter makes the assumption of weak nonlinearity invalid, and one has to do the
analysis within the framework of strong nonlinearity. This causes a major difficulty
to construct solutions from the original field equations. A main contribution of this
paper is that we introduce a novel approach to overcome this difficulty.

This approach shares some similarity with using a spline to approximate a curve
in a large variable internal through polynomials in many small neighborhoods with
smoothness requirements at the joint points. Here, to construct the localization solu-
tions with the axial strain/stretch value in a large interval, we first use the method of
coupled series-asymptotic expansions to derive the asymptotic normal form equation
(ANFE) valid in a small neighborhood of an axial stretch value. Then, by taking
different values and the proper neighborhoods, we have a set of ANFEs. By imposing
the smoothness requirements at joint points, these equations can give the localization
solutions valid in a large stretch interval. Since the solution of each ANFE can be rep-
resented by elliptic integral(s), we call the analytical solutions for large localizations
constructed by the present approach to be the elliptic-spline solutions.

The rest of the paper is organized as follows. In section 2, we introduce the three-
dimensional field equations for a Blatz-Ko material and the traction-free boundary
conditions. Some results on the uniaxial tension are recalled. In section 3, by non-
dimensionalization we extract the important small variable and two small parameters
which characterize this problem. Then, in section 4 we derive the ANFE valid for
the stretch value in a small neighborhood through the method of coupled series-
asymptotic expansions. We show that the Euler-Lagrange equation can also lead to
the same equation in section 5. The analytical solutions for localizations at near-
critical loads are constructed in section 6. In section 7, by using the idea described
above we derive the elliptic-spline solutions for large localizations for given engineering
stress values. In section 8, we further manage to deduce solutions for a displacement-
controlled problem. We also examine the strong ellipticity condition for the solutions
obtained, and the smallest energy criterion is used to determine the preferred solu-
tions. Based on the analytical solutions, we give some analysis on the geometrical size
effect. Finally, some conclusions are drawn.

2. Field equations and the uniaxial tension. We study the axisymmetric
deformations of a slender elastic circular cylinder subjected to axial forces at two ends,
as shown in Figure 2.1. Suppose that the radius of the cylinder is a and the length
is l. We shall use the cylindrical polar coordinate system and denote (R, Θ, Z) and
(r, θ, z) the coordinates of a material point in the reference and current configurations,
respectively.

We suppose that the cylinder is composed of a Blatz-Ko material, which is a kind
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of compressible isotropic material. The strain energy function Φ for this material is

Φ =
µ

2

(

I2

I3
+ 2I3

1/2 − 5

)

, (2.1)

where I1, I2, I3 are the principal invariants of the left Cauchy-Green deformation
tensor B = FFT (F is the deformation gradient). Such a material was first proposed
by Blatz and Ko [20] as a model for foam rubber compressible materials undergoing
large deformations. Moreover the nominal stress tensor Σ is given by

Σ =
∂Φ

∂FT
, ΣAi =

∂Φ

∂FiA
, (2.2)

where i = 1, 2, 3 corresponding to r, θ and z, and A = 1, 2, 3 corresponding to R, Θ
and Z respectively. Σ satisfies the field equations:

∂ΣRz

∂R
+

∂ΣZz

∂Z
+

ΣRz

R
= 0,

∂ΣRr

∂R
+

∂ΣZr

∂Z
+

ΣRr − ΣΘθ

R
= 0. (2.3)

We consider the case that the lateral surface of the cylinder is traction-free. Thus, we
have the following boundary conditions:

ΣRr|R=a = 0, ΣRz|R=a = 0. (2.4)

Equations (2.3) together with (2.4) provide the governing equations for two un-
knowns r and z. They are coupled nonlinear PDEs with complicated boundary con-
ditions. And as far as we know, there is no analytical method available to solve them
for general end conditions.

For the homogenous deformation induced by uniaxial tension, it is possible to get
the analytical solution, which was given in Beatty [12]. In this case, we have

r(R, Z) = δ1R, z(R, Z) = δ2Z, (2.5)

where δ1 and δ2 are constants, corresponding to the radial and axial stretches respec-
tively. In this case the field equations (2.3) are naturally satisfied. From (2.4)1, we

have δ1 = δ
−1/4
2 . Then the axial engineering (nominal) stress γ and Cauchy stress γC

can be expressed by the axial stretch δ2 (see Beatty [12]):

γ = δ
−1/2
2 − δ−3

2 , γC = 1 − δ
−5/2
2 . (2.6)

Here µ has been taken to be 1. Plots of the engineering and Cauchy stresses have been
provided in Beatty [12]. Here we replot them in Figure 2.2, from which we see that the
Cauchy stress is monotone increasing but due to geometric softening the engineering
stress has a local maximum at δ∗2 = 2.04767. After δ2 > δ∗2 , the deformation becomes
inhomogeneous and a localization can appear.

To study localizations induced by geometric softening, we first consider a small
disturbance superimposed on the prestretched state of the cylinder. In this case, the
coordinates of a material point in the current configuration can be expressed as

r(R, Z) = δ1R + U(R, Z), z(R, Z) = δ2Z + W (R, Z), (2.7)

where U(R, Z) and W (R, Z) are two small disturbance functions. Then the corre-
sponding deformation gradient tensor F in matrix form is given by

FiA = (δij + ηij)F̄jA, (2.8)
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Fig. 2.2. Cauchy and engineering stress-stretch relations for the Blatz-Ko cylinder in a ho-
mogenous uniaxial tension.

where

F̄ =





δ1 0 0
0 δ1 0
0 0 δ2



 , ηηη =





UR

δ1
0 UZ

δ2

0 U
Rδ1

0
WR

δ1
0 WZ

δ2



 . (2.9)

It is convenient to introduce a tensor function with components κij through κij =
F̄iAΣAj . Since the deformation superimposed on the prestretched configuration is
small, i.e. |ηηη| = max1≤i,j≤3 |ηij | << 1, κij can be expanded at the finite deformation
gradient F̄ up to any order. The formula containing terms up to the third-order
material nonlinearity has been provided in Fu & Ogden [21], which is given as

κji = A0
ji + A1

jilkηkl +
1

2
A2

jilknmηklηmn +
1

6
A3

jilknmqpηklηmnηpq + o(|ηηη|4), (2.10)

where J̄−1A0, J̄−1A1, J̄−1A2 and J̄−1A3 are the tensors of instantaneous elastic
moduli defined by

J̄ = det F̄, A0
ji = F̄jA

∂Φ
∂FiA

|
F=F̄

, A1
jilk = F̄jAF̄lB

∂2Φ
∂FiA∂FkB

|
F=F̄

,

A2
jilknm = F̄jAF̄lBF̄nC

∂3Φ
∂FiA∂FkB∂FmC

|
F=F̄

,

A3
jilknmqp = F̄jAF̄lBF̄nC F̄qD

∂4Φ
∂FiA∂FkB∂FmC∂FpD

|
F=F̄

.

(2.11)

From (2.1) and δ1 = δ
−1/4
2 one can see that the components of these moduli can be

expressed in terms of δ2. Then from (2.9) and κij = F̄iAΣAj we can obtain the expan-
sions of ΣAi. Finally, substituting them into (2.3-2.4) we can obtain two complicated
PDEs together with two complicated boundary conditions for two unknowns U and
W . It is extremely difficult (if possible) to analytically solve such a nonlinear problem
directly. Here, we shall adopt the coupled series-asymptotic expansion method devel-
oped in Dai & Huo [14], Dai & Fan [15] and Dai & Cai [16] to tackle this problem.
Firstly, we shall nondimensionalize this system to identify the relevant small variable
and small parameters.

3. Non-dimensionalized equations. The first step is to introduce a very im-
portant transformation (cf. Dai & Huo [14])

U = uδ1R, s = δ2
1R

2. (3.1)

Here, scaling U by δ1R is suggested by (2.7)1 and introducing s is for the purpose
to eliminate 1/R in (2.3). The length of the cylinder in the prestretched state is δ2l,
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which is a natural choice to scale the spatial variables. Suppose that we consider the
elongation up to h with the constraint ǫ = h

δ2l being small (h is a measure of the axial
displacement). Thus, we introduce the dimensionless quantities through the following
scales:

s = δ2
2l

2s̃, Z = δ2lz̃, W = hw̃, u =
h

δ2l
ũ. (3.2)

In the prestretched state the radius becomes δ1a. We consider the case that the square
of the radius-length ratio is small, i.e. ν = ( δ1a

δ2l )
2 is a small parameter. It should be

noted that even if a/l is relatively large, ν can still be small (since δ2
1/δ2

2 could be
small).

Substituting (3.1) and (3.2) into Eqs. (2.3), we obtain

3δ−1
2 wzz + 4δ2ws + 2(1 + δ

5
2
2 )uz + 2s[2δ2wss + (1 + δ

5
2
2 )usz] + · · · = 0, (3.3)

24δ
7
2
2 us + 2(1 + δ

5
2
2 )wsz + δ

3
2
2 uzz + 12δ

7
2
2 suss + · · · = 0. (3.4)

Here and hereafter, we have dropped the tilde for convenience. The full forms of (3.3)
and (3.4) are very lengthy and are omitted for brevity. Substituting (3.1) and (3.2)
into the traction-free boundary conditions (2.4), we obtain

4δ
11
4

2 u + δ
7
4
2 wz + 6δ

11
4

2 sus + ǫ[δ
7
4
2 uwz − 6δ

11
4

2 u2 + s(−4δ
1
4
2 w2

s − δ
3
4
2 u2

z

−24δ
11
4

2 uus − (2δ
− 3

4
2 + 6δ

7
4
2 )uzws) − 24δ

11
4

2 s2u2
s] + · · · = 0, at s = ν,

(3.5)

2δ
1
4
2 ws + δ

− 3
4

2 uz + ǫ[−4δ
1
4
2 uws − (δ

− 3
4

2 + 4δ
7
4
2 )uuz − 4δ

− 3
4

2 wswz

−(3δ
− 7

4
2 + δ

3
4
2 )uzwz − s(8δ

1
4
2 usws + (2δ

− 3
4

2 + 6δ
7
4
2 )usuz)] + · · · = 0, at s = ν

(3.6)
Equations (3.3)-(3.6) compose a new system that is still very complicated and

difficult to be analyzed directly. However, it is characterized by a small variable s
and two small parameters ǫ and ν, which permit us to use expansion methods to do
simplifications.

4. Coupled Series-Asymptotic Expansions. Note that s is a small variable
as 0 6 s 6 ν. It can be seen that the two unknowns w and u of the system (3.3)-(3.6)
depend on the variable z, the small variable s and the small parameter ǫ and ν, that is
w = w(z, s; ǫ, ν), u = u(z, s; ǫ, ν). As long as we assume that w and u are sufficiently
smooth in s, they have series expansions in terms of the small variable s:

u(z, s; ǫ, ν) = u0(z; ǫ, ν) + su1(z; ǫ, ν) + s2u2(z; ǫ, ν) + · · · , (4.1)

w(z, s; ǫ, ν) = w0(z; ǫ, ν) + sw1(z; ǫ, ν) + s2w2(z; ǫ, ν) + · · · . (4.2)

Substituting (4.1) and (4.2) into the traction-free boundary conditions (3.5) and (3.6),
we obtain

4δ
11
4

2 u0 + δ
7
4
2 w0z + ν(δ

7
4
2 w1z + 10δ

11
4

2 u1) + ǫ(δ
7
4
2 u0w0z − 6δ

11
4

2 u2
0)

+10δ
11
4

2 ǫ2u3
0 + O(ν2, ǫν, ǫ3) = 0,

(4.3)
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2δ
1
4
2 w1 + δ

− 3
4

2 u0z + ν(δ
− 3

4
2 u1z + 4δ

1
4
2 w2) − ǫ[4δ

− 3
4

2 w1w0z + (3δ
− 7

4
2 + δ

3
4
2 )u0zw0z +

4δ
1
4
2 u0w1 + (δ

− 3
4

2 + 4δ
7
4
2 )u0u0z ] + ǫ2[6δ

− 7
4

2 w1w
2
0z

+ (6δ
− 11

4
2 + δ

− 1
4

2 )u0zw
2
0z

+ 6δ
1
4
2 u2

0w1

+(δ
− 3

4
2 + 6δ

7
4
2 )u2

0u0z + 8δ
− 3

4
2 u0w1w0z + (3δ

− 7
4

2 + 3δ
3
4
2 )u0u0zw0z ] + O(ν2, ǫν, ǫ3) = 0.

(4.4)
By neglecting O(ν2, ǫν, ǫ3)-terms, the above two equations contain five unknowns:
w0, w1, w2, u0 and u1 (other unknowns appear in O(ν2, ǫν)-terms). Thus, to form a
closed-system, we need to find another three equations which contain and only contain
these five unknowns. For this purpose we further substitute (4.1) and (4.2) into (3.3).
The left hand becomes a series in s and all the coefficients of sn(n = 0, 1, 2, · · · )
should vanish. As a result, we have an infinite system of equations with infinitely-
many unknowns. However, it turns out that the two equations from the coefficients
of s0 and s1 only contain the five unknowns appeared in (4.3) and (4.4)! These two
equations are

[4δ2 − 8ǫw0z + ǫ2(12δ−1
2 w2

0z
+ 16u0w0z )]w1 + 2(1 + δ

5
2
2 )u0z

+3δ−1
2 w0zz + ǫL1(w0, u0) + ǫ2L2(w0, u0) = 0,

(4.5)

[16δ2 − ǫ(32w0z + 32δ2u0) + ǫ2(48δ−1
2 w2

0z
+ 48δ2u

2
0 + 64u0w0z )]w2+

4(1 + δ
5
2
2 )u1z + 3δ−1

2 w1zz + ǫL3(w0, w1, u0, u1) + ǫ2L4(w0, w1, u0, u1) = 0,
(4.6)

where Li(i = 1, 2, 3, 4) are operators on the arguments whose long expressions are
omitted. Similarly, we substitute equations (4.1) and (4.2) into (3.4). It turns out the
equation from the coefficient of s0 only contains the above-mentioned five unknowns!
This equation is

[24δ
7
2
2 + 96ǫδ

7
2
2 u0 + 240ǫ2δ

7
2
2 u2

0]u1 + 2(1 + δ
5
2
2 )w1z + δ

3
2
2 u0zz

+ǫL5(w0, w1, u0) + ǫ2L6(w0, w1, u0) = 0.
(4.7)

Equations (4.3)-(4.7) provide a closed nonlinear ODE system for the five unknowns.
Mathematically, it is still very difficult to solve them directly. To go further, we
shall use the smallness of the parameter ǫ. From (4.5), we see that it is a linear
algebraic equation for w1 if w0 and u0 are regarded to be known variables. Thus
we can express w1 by w0 and u0. This is another key why the present methodology
works! Substituting w1 into (4.7), we can also express u1 by w0 and u0. Similarly, we
substitute w1 and u1 into (4.6) to obtain the expression of w2 in terms of w0 and u0.
We point out that in the process of obtaining expressions of w1, u1 and w2 we drop
O(ǫ3)-terms, to be consistent with (4.3) and (4.4). Finally, substituting w1, u1 and
w2 into (4.3) and (4.4) and omitting O(ν2, ǫν, ǫ3)-terms (to be consistent with (4.3)
and (4.4)) yield two equations with only two unknowns w0 and u0. It turns out that
one equation can be integrated once, and as a result we obtain

4δ
11
4

2 u0 + δ
7
4
2 w0z − ν[(− 5

8δ
− 11

4
2 + 1

8δ
− 1

4
2 )w0zzz + (− 5

12δ
− 7

4
2 + 1

12δ
3
4
2 + 1

12δ
13
4

2 )u0zz ]

+ǫ(δ
7
4
2 u0w0z − 6δ

11
4

2 u2
0) + 10ǫ2δ

11
4

2 u3
0 = 0,

(4.8)
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and

−δ
7
4
2 u0 − 3

2δ
− 7

4
2 w0z + ν[(1

2δ
− 15

4
2 − 1

16δ
− 5

4
2 )w0zzz + (1

3δ
− 11

4
2 + 1

3δ
− 1

4
2 − 1

24δ
9
4
2 )u0zz ]

+ǫ(3δ
− 11

4
2 w2

0z
− 1

2δ
7
4
2 u2

0) − 5ǫ2δ
− 15

4
2 w3

0z
= C,

(4.9)
where C is an integration constant. Combining (4.8) and (4.9) by eliminating u0zz ,
we can obtain a cubic algebraic equation for u0. Solving it by a perturbation method
we can express u0 by w0 and the constant C. Then substituting this expression into
(4.8) and using the perturbation method again, we obtain the following equation for
the axial strain w0z :

ǫw0z + ǫ2D2w
2
0z

+ ǫ3D3w
3
0z

+ ǫνD1w0zzz = C1, (4.10)

where C1 is a constant, and

D1 =
−15 + 58δ

5/2
2 − 14δ5

2 + δ
15/2
2

24δ
9/2
2 (−6 + δ

5/2
2 )

, D2 = − 3(−16 + δ
5/2
2 )

4δ2(−6 + δ
5/2
2 )

, D3 =
5(−32 + δ

5/2
2 )

8δ2
2(−6 + δ

5/2
2 )

.

(4.11)
The physical meaning of C1 can be identified. By considering the resultant force T
acting on the material cross-section, after some calculations, we find C1 = T/πa2ET −
D0/ET , where D0 = −δ−3

2 + δ
−1/2
2 is the engineering stress at F̄ (i.e. the prestress)

and ET = 3δ−4
2 − 1

2δ
−3/2
2 is the tangent modulus at F̄.

If we retain the original dimensional variable and let V = W0Z = ǫw0z , then we
have

V + D2V
2 + D3V

3 + a2δ
−1/2
2 D1VZZ =

γ − D0

ET
, (4.12)

where γ = T/πa2 is the engineering stress. We call (4.12) the asymptotic normal form
equation (ANFE) of the field equations (2.3) together with the nonlinear boundary
conditions (2.4). We point out that this equation was derived for small deformations
superimposed on a prestreched state (see (2.9)) without an explicit restriction on γ.

Remark: For a fixed δ2, if we make a special choice γ = D0, Eq. (4.12) then
reduces to

− a2δ
−1/2
2 VZZ = D−1

1 V + D−1
1 D2V

2 + D−1
1 D3V

3, (4.13)

which governs the variation of any possible bifurcated solution. The solution of this
equation changes character when D−1

1 = 0, i.e. δ2 = δ∗2 = 62/5 = 2.04767. This may
indicate a bifurcation takes place at γ = D0|δ∗

2
= 0.5824 (which is the load maximum;

cf. Figure 2.2). However, the critical load for bifurcation depends on the radius-length
ratio (see the remark below (6.11)). When this ratio tends to zero (corresponding to
an infinitely-long cylinder), the critical load coincides with the load maximum.

5. The Euler-Lagrange equation. Now, we shall derive the same equation
from the variational principle by considering the energy.

We first expand the strain-energy function Φ about the finitely deformed state F̄

up to the fourth-order nonlinearity. Using the expressions obtained in the previous
sections, Φ can be represented in terms of w0. Then, we find that the average stored
energy over a cross section is given by

Ψ̄ = 1
πa2

∫ a

0

∫ 2π

0 ΦRdRdΘ

= Φ(F̄) + ET ( D0

ET
V + 1

2V 2 + 1
3D2V

3 + 1
4D3V

4 + 1
2a2δ

−1/2
2 D1V VZZ ).

(5.1)
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Without loss of generality, we take the length of the cylinder to be 1 (then a = a/1
can be regarded as the radius-length ratio) and the total potential energy is then
given by

Ω = πa2

∫ 1

0

Ψ̄dZ − T

∫ 1

0

(δ2 − 1 + V )dZ = πa2

∫ 1

0

(

Ψ̄ − γ(δ2 − 1 + V )
)

dZ. (5.2)

By using the variational principle for this functional, we find that the Euler-Lagrange
equation is exactly same as (4.12). This shows that the ANFE obeys the variational
principle for energy.

The expression of the total potential energy (5.2) itself is very important. When
there are multiple solutions, the smallest energy criterion can be used to judge the
preferred solution (configuration).

For convenience, we set V̄ = V + δ2 which is the axial stretch. Then (4.12) can be
rewritten as

V̄ − δ2 + D2(V̄ − δ2)
2 + D3(V̄ − δ2)

3 + a2δ
−1/2
2 D1V̄ZZ =

γ − D0

ET
. (5.3)

This is the ANFE governing the axial stretch in a deformation state near the homo-
geneous deformation with the axial stretch δ2.

6. Analytical solutions for localizations at near-critical loads. As well-
known, the localization phenomenon usually takes place when the stress is close to
the load maximum.

Now we conduct a detailed analysis on the ANFE (5.3) together with proper end
conditions when γ varies near the peak value (correspondingly, the axial stretch is in
the neighborhood of δ∗2 = 2.04767). For that purpose, we choose δ2 = 2.0, then from
(4.11) the constant term and coefficients of equation (5.3) can be calculated and their
values are: ET = 0.0107233, D0 = 0.5821068, D1 = −0.1749928, D2 = −11.303301,
D3 = 11.995243. We impose the free end conditions at Z = 0 and Z = 1, i.e.

V̄Z = 0 at Z = 0, 1, (6.1)

which are sometimes called natural boundary conditions and have been used by many
authors (see [22, 23]). From (5.3), we can see that the asymptotic engineering stress-
stretch response (up to a third-order material nonlinearity) for a homogeneous defor-
mation should be given by

γ = D0 + ET

(

V̄ − δ2 + D2

(

V̄ − δ2

)2
+ D3

(

V̄ − δ2

)3
)

. (6.2)

By varying γ or V̄ , we can get the asymptotic curve, which is shown in Figure 6.1
(a) (the dashed curve). One can see that, around the expansion point δ2 = 2.0 this
asymptotic response captures well the behavior of the homogeneous stress-stretch
curve obtained directly from the strain energy function of the Blatz-Ko material.
This gives some support to our approximation.

In order to conduct the phase-plane analysis to calculate the analytical solutions,
we rewrite the ANFE (5.3) as a first-order system:

V̄Z = y, yZ =
V̄ − δ2 + D2

(

V̄ − δ2

)2
+ D3

(

V̄ − δ2

)3
+ D0−γ

ET

−a2δ
−1/2
2 D1

. (6.3)
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Fig. 6.1. (a) The asymptotic stress-stretch curve (the dashed curve) and the exact curve (the
full line); (b) The phase plane.

And the equilibrium points of this system are given by

y = 0, and V̄ − δ2 + D2

(

V̄ − δ2

)2
+ D3

(

V̄ − δ2

)3
=

γ − D0

ET
. (6.4)

One can see that the phase plane has a saddle point and a center point as γ varies
near the peak, which is shown in Figure 6.1 (b). In this figure, (V̄s, 0) and (V̄c, 0) are
a saddle point and a center point, respectively. There are three solutions for the same
stress, two of them are the constant solutions, i.e. V̄s and V̄c, and the third type is
the nontrivial solution, which is represented by a certain closed orbit (cf. curve 1 in
Figure 6.1 (b)), as it can contact the V̄ -axis at least twice (so V̄Z = 0 at Z = 0, 1 can
be satisfied). To deduce the solution expression, we integrate (5.3) once to obtain

H + D0−γ
ET

(

V̄ − δ2

)

+ 1
2

(

V̄ − δ2

)2
+ 1

3D2

(

V̄ − δ2

)3

+ 1
4D3

(

V̄ − δ2

)4
+ 1

2a2δ
−1/2
2 D1V̄

2
Z = 0,

(6.5)

where H is an integration constant.
From the phase-plane analysis, we know that the closed orbits corresponding to

some special values of H such that

H +
D0 − γ

ET

(

V̄ − δ2

)

+
1

2

(

V̄ − δ2

)2
+

1

3
D2

(

V̄ − δ2

)3
+

1

4
D3

(

V̄ − δ2

)4
= 0 (6.6)

has four real roots g0 ≤ g1 ≤ g2 ≤ g3, and g1 and g2 are the intersection points of the
closed orbits and the V̄ -axis. Then from (6.5), we have

V̄Z = ±δ
1/4
2

a

√

D3

−2D1

√

(

V̄ − g0

) (

V̄ − g1

) (

V̄ − g2

) (

V̄ − g3

)

. (6.7)

It should be noted that under the free end boundary conditions, for a closed orbit to
represent a solution, we must have V̄ |Z=0 = g1 or g2. Here we only consider the case
V̄ |Z=0 = g1, since the solution for the other case is a simple translation of this solution
((6.3) is invariant for the transformation Z = 1/2 − Z). From (6.7), by applying a
formula in Byrd and Friedman [24] to the integral, we obtain

Z = GaF (φ, χ), (6.8)

where F (φ, χ) is the incomplete elliptic integral of the first kind, and

G =
2δ

−1/4
2

√
−2D1

√

(g3 − g1) (g2 − g0)D3

, χ =

√

(g2 − g1) (g3 − g0)

(g3 − g1) (g2 − g0)
, φ = arcsin

√

(g2 − g0)
(

V̄ − g1

)

(g2 − g1)
(

V̄ − g0

) .

(6.9)
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Fig. 6.2. V̄ − Z plot for a = 0.40. Curve 1, 2 respectively for γ = 0.5812 and γ = 0.5819.

By using the Jacobian elliptic function, from (6.8), we can further obtain

V̄ =
g1 − g2−g1

g2−g0
g0 sn2

(

Z
Ga , χ

)

1 − g2−g1

g2−g0
sn2

(

Z
Ga , χ

) . (6.10)

We focus on the one-period solutions (orbits going around only once). Then by further
using the boundary condition V̄ |Z=1 = g1, we can determine H . In fact, from the
symmetry of the closed orbit, one can see that V̄ |Z=1/2 = g2, i.e. (see (6.8))

1

2
= GaF

(π

2
, χ

)

= GaK(χ), (6.11)

where K(·) is the complete elliptic integral of the first kind. For a given γ near the
critical load, H , and thus gi(0 ≤ i ≤ 3) can be determined uniquely by (6.11). Then,
the analytical solution for 0 ≤ Z ≤ 1/2 is provided by (6.10).

Remark: Whether (6.11) has a solution for H determines whether there exists a
nontrivial (non-constant) solution. Then, the maximum value of γ for which (6.11)
has a solution for H is the critical load for bifurcation in a force-controlled problem.
It should be noted that this load γ0 depends on a. For a = 0.40, 0.35, 0.30, we find
that γ0 = 0.58221, 0.58228, 0.58235, respectively (cf. Figure 8.5). Since the critical
load is determined by this nonlinear relation (which arises from the nonlinear equa-
tion (6.7)), it appears that a linearized theory (i.e. small-on-large stability analysis)
cannot determine this load. When a tends to zero (corresponding to an infinitely-long
cylinder), we find that γ0 = 0.5824, the maximum load in Figure 2.2.

In Figure 6.2, we have plotted the one-period solution curves for two different
values of the engineering stress. Here we take a = 0.40. This value is not too large,
since for δ2 = 2.0, ν = δ2

1a2
/

δ2
2 l2 ≈ 0.028 is small enough for the asymptotic method.

In this figure, we can see that there is a sharp-change region in the middle of the
slender cylinder, which represents the localization and stress concentration. Moreover,
the tip is sharper for a smaller engineering stress value.

Remark: One can also do a near-critical analysis by making the special choice
γ = D0. For δ2 near δ∗2 , to leading order Eq. (4.12) can then be replaced by

− a2δ
−1/2
2 VZZ = D̂1(δ2 − δ∗2)V + D̂2V

2, (6.12)

where D̂1 is the derivative of D−1
1 evaluated at δ∗2 and D̂2 = D−1

1 D2|δ2=δ∗

2
. One can

then solve this slightly simpler equation to get the localized solutions. However, for
the analysis in section 7 we need to allow γ to vary, so in this section we do not work
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with the above equation. Also, it appears that (6.4) can give a better result for the
position of the center point in the phase plane when γ is moderately away from the
load maximum.

7. Analytical solutions for large localizations. For the Blatz-Ko material, a
model describing large deformations, the stretch range of the localization may be very
large. The asymptotic curve, and thus the corresponding phase plane and solutions
in the previous section only make sense for the axial stretch in a small neighborhood
of the expansion point. Therefore the results obtained there could not be used to
describe large localizations.

To capture large localizations, we borrow the idea of using a spline to approximate
a function in a large variable interval. One can divide this interval into many small
neighborhoods and then in each of them one can use a polynomial to approximate this
function. By further imposing proper smoothness requirements at the joint points of
these neighborhoods a spline of polynomials can approximate this function well.

For the present problem, suppose that the axial stretch varies in a large inter-
val. We choose a group of points in this interval and let the adjacent points be close
enough to each other. We take the joint small neighborhoods around these points.
Although each neighborhood covers a small stretch interval, the union of these neigh-
borhoods covers the whole interval. We can do the expansion at each value of δ2 of
these points. According to the previous section, one can obtain the solution valid in
the corresponding small neighborhood. The solution for a large localization can be
obtained if we join these solutions (each valid in a small neighborhood) together. We
remark that such a spline approximation is done in a stretch interval, not a variable
interval.

To summarize, the present methodology contains the following steps: 1. Choose
points in a suitable stretch interval and construct a small neighborhood for each
point. 2. In each neighborhood, find the solution and join together these solutions
by smoothness requirements. 3. Use boundary conditions to determine the constants
appeared in the solutions. Now, we describe these steps below.

We expand the stress (cf. (2.10)) at a group of points whose δ2 values are chosen
as follows:

δ
(j)
2 = δ

(1)
2 + (j − 1)h, 1 ≤ j ≤ jh, (7.1)

where δ
(1)
2 is the first expansion point, and h is the step-length and jh is the number

of points. Depending on the range of the axial stretch of the localization solutions,

one can make specific choices for δ
(1)
2 , h and jh. Here, we choose δ

(1)
2 = 1.7, h = 0.05

and jh = 30, in order to construct the localization solutions with the axial stretch
value inside the large interval (1.67, 3.17). We point out that we do not need to
know the stretch interval [Vmin, Vmax] of a solution beforehand, instead we only need
[Vmin, Vmax] ∈ (1.67, 3.17).

The ANFE for expansion at δ
(j)
2 (cf. (5.3)) is

V̄ − δ
(j)
2 + D

(j)
2

(

V̄ − δ
(j)
2

)2

+ D
(j)
3

(

V̄ − δ
(j)
2

)3

+ a2
(

δ
(j)
2

)−1/2

D
(j)
1 V̄ZZ =

γ − D
(j)
0

E
(j)
T

,

(7.2)
where

E
(j)
T = ET

(

δ
(j)
2

)

, D
(j)
i = Di

(

δ
(j)
2

)

, i = 0, 1, 2, 3, (7.3)
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Fig. 7.1. The asymptotic engineering stress-stretch curve (full line) and the exact curve (-△-)

are the coefficients dependent on δ
(j)
2 . From the ANFE (7.2), one can see that the

asymptotic engineering stress-stretch response near δ
(j)
2 for a homogeneous deforma-

tion should be given by

γ = D
(j)
0 + E

(j)
T

(

V̄ − δ
(j)
2 + D

(j)
2

(

V̄ − δ
(j)
2

)2

+ D
(j)
3

(

V̄ − δ
(j)
2

)3
)

. (7.4)

We shall use the above expression to construct a small neighborhood (δ̂
(j−1)
2 , δ̂

(j)
2 ) con-

taining δ
(j)
2 . More specially, δ̂

(j)
2 is determined by requiring that the j-th asymptotic

curve and (j + 1)-th asymptotic curve intersects at V̄ = δ̂
(j)
2 , i.e.,

D
(j)
0 + E

(j)
T

(

δ̂
(j)
2 − δ

(j)
2 + D

(j)
2

(

δ̂
(j)
2 − δ

(j)
2

)2

+ D
(j)
3

(

δ̂
(j)
2 − δ

(j)
2

)3
)

=

D
(j+1)
0 + E

(j+1)
T

(

δ̂
(j)
2 − δ

(j+1)
2 + D

(j+1)
2

(

δ̂
(j)
2 − δ

(j+1)
2

)2

+ D
(j+1)
3

(

δ̂
(j)
2 − δ

(j+1)
2

)3
)

.

(7.5)

All δ̂
(j)
2 (j = 1, · · · , jh − 1) can be determined from (7.5). Then, by letting j =

1, · · · , jh −1 in (7.4) we can obtain an asymptotic engineering stress-stretch curve for
V̄ from 1.67 to 3.17, which is plotted in Figure 7.1. It can be seen that it agrees with
the exact curve very well. Actually, (7.4) is a spline approximation of the engineering
stress-stretch curve.

In order to construct the solutions, we now conduct a phase-plane analysis with

the engineering stress as the bifurcation parameter. For V̄ in (δ̂
(j−1)
2 , δ̂

(j)
2 ], we can

rewrite (7.2) as a first-order system by

V̄Z = y, yZ =
V̄ − δ

(j)
2 + D

(j)
2

(

V̄ − δ
(j)
2

)2

+ D
(j)
3

(

V̄ − δ
(j)
2

)3

+
D

(j)
0 −γ

E
(j)
T

−a2
(

δ
(j)
2

)−1/2

D
(j)
1

. (7.6)

One can see that this system governs the part of the phase plane restricted in the

small neighborhood V̄ ∈ (δ̂
(j−1)
2 , δ̂

(j)
2 ]. Joining all parts together (j = 1, · · · , jh), we

can obtain the phase plane for a given γ. For γ = 0.5707, the phase plane is shown
in Figure 7.2.

Now we study the nontrivial solutions. Eq. (7.2) can be integrated once to give

H(j) +
D

(j)
0 −γ

E
(j)
T

(

V̄ − δ
(j)
2

)

+ 1
2

(

V̄ − δ
(j)
2

)2

+ 1
3D

(j)
2

(

V̄ − δ
(j)
2

)3

+

1
4D

(j)
3

(

V̄ − δ
(j)
2

)4

+ 1
2a2

(

δ
(j)
2

)−1/2

D
(j)
1 V̄ 2

Z = 0,
(7.7)
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Fig. 7.2. The phase plane for γ = 0.5707.

where H(j) are the integration constants. To guarantee the corresponding orbits in
the adjacent pieces of the phase plane joined continuously, we impose that

lim
V̄ →δ̂

(j)
2

−

V̄Z = lim
V̄ →δ̂

(j)
2

+

V̄Z . (7.8)

Taking the above left and right limits in equations (7.7), we can see that these inte-
gration constants should satisfy

H(j)+
D

(j)
0 −γ

E
(j)
T

(

δ̂
(j)
2 −δ

(j)
2

)

+ 1
2

(

δ̂
(j)
2 −δ

(j)
2

)2
+ 1

3D
(j)
2

(

δ̂
(j)
2 −δ

(j)
2

)3
+ 1

4D
(j)
3

(

δ̂
(j)
2 −δ

(j)
2

)4

(

δ
(j)
2

)

−1/2
D

(j)
1

=

H(j+1)+
D

(j+1)
0 −γ

E
(j+1)
T

(

δ̂
(j)
2 −δ

(j+1)
2

)

+ 1
2

(

δ̂
(j)
2 −δ

(j+1)
2

)2
+ 1

3D
(j+1)
2

(

δ̂
(j)
2 −δ

(j+1)
2

)3
+ 1

4D
(j+1)
3

(

δ̂
(j)
2 −δ

(j+1)
2

)4

(

δ
(j+1)
2

)

−1/2
D

(j+1)
1

,

1 ≤ j ≤ jh − 1.
(7.9)

For an orbit in the phase plane, one can see that under the above conditions, its
corresponding solution V̄ and its derivative V̄Z are both continuous at the lines V̄ =

δ̂
(j)
2 . Obviously equations (7.9) have only one free unknown, and H(j) (1 ≤ j ≤ jh)

can be considered as functions of H(m) for a chosen m (1 ≤ m ≤ jh). Therefore every
orbit in Figure 7.2 is uniquely determined by the integration constant H(m).

With the natural boundary condition (6.1), the nontrivial solutions are represented
by the closed orbits. For a given γ, there are infinitely-many closed orbits in a phase

plane. Suppose that a closed orbit has the axial stretch value V̄ inside (δ̂
(k1−1)
2 , δ̂

(k2)
2 ]

for some integers 1 ≤ k1 ≤ k2 ≤ jh with the minimum and maximum values V̄min

and V̄max respectively. From (7.7) we can write the expression of V̄Z as a piecewise
continuous function of V̄ for this closed orbit:

V̄Z =























±
(

δ
(k1)
2

)1/4

a

√

M(V̄ , k1), V̄min < V̄ ≤ δ̂
(k1)
2 ,

±
(

δ
(j)
2

)1/4

a

√

M(V̄ , j), δ̂
(j−1)
2 < V̄ ≤ δ̂

(j)
2 , k1 + 1 ≤ j ≤ k2 − 1,

±
(

δ
(k2)
2

)1/4

a

√

M(V̄ , k2), δ̂
(k2−1)
2 < V̄ ≤ V̄max,

(7.10)

where

M(V̄ , j) = − 2H(j)

D
(j)
1

− 2(D
(j)
0 −γ)

E
(j)
T D

(j)
1

(

V̄ − δ
(j)
2

)

−
(

V̄ − δ
(j)
2

)2

− 2D
(j)
2

3D
(j)
1

(

V̄ − δ
(j)
2

)3

− D
(j)
3

2D
(j)
1

(

V̄ − δ
(j)
2

)4

, k1 ≤ j ≤ k2.

(7.11)
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Fig. 7.3. V̄ − Z plot. Curve 1, 2 respectively for γ = 0.5717 and γ = 0.5787.

Remark: If k2 = k1, there is only one piece, and if k2 = k1 +1 there are only two
pieces. Here, we omit the expressions for these two cases.

In order that the closed orbit described by (7.10) is the solution, the boundary
condition (6.1) has to be satisfied. Here, we focus on the one-period solution. Without
loss of generality, we also take the left intersection point between the close orbit and
the V̄ −axis as the initial point of the solution, i.e. V̄ |Z=0 = V̄min. Then, for the
one-period solution the Z−interval for V̄ from the minimum to the maximum should
be 1/2. From (7.10), we have

1

2
= F

(

k1, V̄min, δ̂
(k1)
2

)

+

k2−1
∑

j=k1+1

F
(

j, δ̂
(j−1)
2 , δ̂

(j)
2

)

+ F
(

k2, δ̂
(k2−1)
2 , V̄max

)

, (7.12)

where F is an integral defined by

F(j, α, β) = a
(

δ
(j)
2

)−1/4
∫ β

α

dV̄
√

M(V̄ , j)
. (7.13)

Consequently, integrating (7.10) once, we obtain the expressions of the one-period
solutions (the first-half period):

Z =























F
(

k1, V̄min, V̄
)

, 0 ≤ Z ≤ Z(k1),

F
(

k1, V̄min, δ̂
(k1)
2

)

+
∑k−1

j=k1+1 F
(

j, δ̂
(j−1)
2 , δ̂

(j)
2

)

+ F
(

k, δ̂
(k−1)
2 , V̄

)

,
Z(k−1) < Z ≤ Z(k),

k1 + 1 ≤ k ≤ k2 − 1,

F
(

k1, V̄min, δ̂
(k1)
2

)

+
∑k2−1

j=k1+1 F
(

j, δ̂
(j−1)
2 , δ̂

(j)
2

)

+ F
(

k2, δ̂
(k2−1)
2 , V̄

)

, Z(k2−1) < Z ≤ 1
2 ,

(7.14)

where Z(k) satisfies V̄ (Z(k)) = δ̂
(k)
2 . Once k1, k2, V̄min and V̄max are found, (7.14)

provides the solution.
We point out that depending on the roots of M(V̄ , j) = 0 the integral in (7.13)

can be represented by different elliptic integrals (the detailed expressions are omitted
due to space limit). This is why we call the solutions to be elliptic-spline solutions.

Now we describe the procedure for determining k1, k2, V̄min and V̄max.
For a given γ, one can find from (7.4) the saddle point (V̄s, 0) and center point

(V̄c, 0), and we have V̄s < V̄min < V̄c and V̄max > V̄c (see Figure 7.2). Then, we
calculate the Z−interval of the closed orbit from the minimum value V̄min to the
maximum value V̄max for a chosen V̄min as follows. Since δ̂

(k1−1)
2 < V̄min ≤ δ̂

(k1)
2 , k1
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can be found, and H(k1) can be obtained from (7.7) by setting V̄ = V̄min and V̄Z = 0.
Then, H(j) (k1 + 1, k1 + 2, · · · ) can be calculated from (7.9). We can determine the
number k2 from (7.11) by requiring:

M(δ̂
(k2−1)
2 , k2 − 1) > 0, M(δ̂

(k2)
2 , k2) ≤ 0, (7.15)

since for the closed orbit V̄Z (cf. (7.10)) is real for V̄min ≤ V̄ ≤ V̄max and is undefined

for V̄max < V̄ ≤ δ̂
(k2)
2 if δ̂

(k2)
2 > V̄max (for the case δ̂

(k2)
2 = V̄max, the equality in (7.15)2

holds). Also, the maximum value, which should satisfy δ̂
(k2−1)
2 < V̄max ≤ δ̂

(k2)
2 , can

be determined uniquely from

M(V̄max, k2) = 0. (7.16)

Then, taking an integration in (7.10), we can find the Z-interval S(V̄min). If S(V̄min) =
1/2 (i.e., (7.12) is satisfied), then k1, k2, V̄min and V̄max for the one-period solution
have been determined as above. If S(V̄min) 6= 1/2, we just vary V̄min in the interval
(V̄s, V̄c) until a V̄min is found such that S(V̄min) = 1/2.

For a = 0.40, the plots of the one-period solutions for γ = 0.5717 (k1 = 3, k2 =
23, V̄min = 1.7935, V̄max = 2.8125) and γ = 0.5787 (k1 = 5, k2 = 15, V̄min = 1.8949, V̄max

= 2.4212) are shown in Figure 7.3. We point out that this value of a is not too large,

since we only need νmin = (δ
(j)
1 a)2/(δ

(j)
2 l)2 = (δ

(1)
1 a)2/(δ

(1)
2 l)2 to be small enough. In

fact, when a = 0.40, νmin = 0.042 is in the allowable range.

8. Large localizations in a displacement-controlled problem. The solu-
tions obtained in the above section are for a given γ. We now consider a displacement-
controlled problem such that the total elongation ∆ − 1 is given, where

∆ =

∫ 1

0

V̄ dZ = 2

∫ 1
2

0

V̄ dZ = 2

k2
∑

j=k1

∫ Z(j)

Z(j−1)

V̄ dZ, (8.1)

where we define Z(k1−1) = 0 and Z(k2) = 1/2. The governing equation is still (7.2),
but now γ is an unknown parameter. However, if for a given ∆, we can find the
corresponding γ, then we can obtain the solutions by the steps given in the previous
section. The difficulty is that for a given ∆, there may be multiple values for γ. In
the following, we also only consider the one-period solutions and choose a = 0.40.

In Figure 8.1, we plot the γ−∆ curves for the constant solutions and the one-period
solution obtained in section 7. In this figure, segment 1 and segment 2 correspond
to the constant solutions V̄s and V̄c respectively, and segment 3 corresponds to the
one-period solution. It can be seen that there exist multiple solutions if ∆ takes a
value equal to or greater than ∆c. In fact, as ∆ increases, there are bifurcations from
one solution to two solutions (at ∆ = ∆c), to three solutions (∆c < ∆ < ∆p), and to
two solutions (∆ ≥ ∆p). For a given ∆ = ∆0, we can draw the vertical line ∆ = ∆0

in Figure 8.1 to find the stress values at the intersection points with the γ−∆ curves.
Once the stress values are obtained, the solutions can be obtained from (7.12) and
(7.14).

Remark: For a displacement-controlled problem, the bifurcation point ∆ = ∆c

is only found when the post-bifurcation solutions of the boundary-value problem are
obtained. This indicates that a small-on-large stability analysis cannot capture this
bifurcation point. A weakly nonlinear theory may not capture it either, since the
axial stretch value varies in a large interval at this point and the state is not near a
homogeneous one.
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Fig. 8.1. The γ − ∆ plot for a = 0.40.

2.062.04

- 0.0005

∆

∆Ω (πa )2

Ι

ΙΙ

d
∆c

- 0.0010

Fig. 8.2. Differences of the total stored energies between solutions I, II and the constant
solutions for ∆c < ∆ < ∆∗ (a = 0.40).

We now find the preferred solution when ∆ ≥ ∆c. But, first we examine the strong
ellipticity condition for the solutions obtained. For the Blatz-Ko material, Knowles
& Sternberg [25] showed that the strong ellipticity never fails if and only if

2 −
√

3 <
λi

λj
< 2 +

√
3 (i 6= j), (8.2)

where λi, λj(i, j = 1, 2, 3) are the principal stretches. As the solutions for a given
γ have been obtained, we can verify the condition (8.2) directly. It is interesting
to note that for the homogeneous deformation (8.2) is satisfied if δ2 < 2.86, which
is significantly larger than δ∗2 = 2.04767, the stretch value at the maximum load.
And we find that, for one-period solutions (8.2) is satisfied when γ > 0.5706. The
corresponding ∆ of the one-period solution for γ = 0.5706 is ∆∗ = 2.06. That is to
say, when ∆ ≥ ∆∗ the corresponding solutions are unstable, so we only consider the
preferred solution when ∆c ≤ ∆ < ∆∗.

For this purpose we calculate the total potential energies of all the possible so-
lutions for ∆c ≤ ∆ < ∆∗. By using (5.1), one can calculate the potential energy
values of the nontrivial solutions. And the total potential energy values for constant
solutions can be easily calculated from the strain energy function directly.

From Figure 8.1, one can see that when ∆ is between ∆c and ∆∗, there are three
possible solutions, two of them are nontrivial solutions labeled by I, II from top to
bottom, respectively. We plot in Figure 8.2 the differences (denoted by ∆Ωd) of the
total potential energies between the two one-period solutions I, II and the constant
solution for ∆c ≤ ∆ < ∆∗.

If we take the solution with the smallest energy value as the preferred one, then
from Figure 8.2, we can see that for ∆ < ∆c the constant solution is the preferred
one, and for ∆c ≤ ∆ < ∆∗ the one-period solution corresponding to the least stress is
the preferred one. The structure response curve (γ − ∆ curve) corresponding to the
preferred solution is shown in Figure 8.3. It is worth noting that a snap-through takes
place at ∆ = ∆c (there exists a stress drop to γc), which leads to the localization.
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Fig. 8.3. The γ − ∆ curve corresponding to the preferred solution for a = 0.40.
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Fig. 8.4. Profiles of the cylinder at different stages.

What we have solved is a problem in a three-dimensional setting, and as a result the
three-dimensional displacement field can be determined. In Figure 8.4, we draw the
profiles of the cylinder at different stages corresponding to points A, B and C in Figure
8.3 (the corresponding axial stretches are ∆A = 2.043, ∆B = 2.046, ∆C = 2.056).

Figure 8.4 also shows that the middle part of the cylinder becomes thinner than
the two ends as we pull the slender cylinder. The middle part becomes thinner as the
engineering stress decreases. We note that, when ∆C = 2.056 (the total stretch), the
largest axial stretch value appeared at Z = 1/2 is 2.8125, which is significantly larger
than the total stretch.

From the expression of the nontrivial solutions (7.14) and (7.13), we can see that
the radius of the cylinder a (can also be considered as the radius-length ratio as we
have already chosen the length of the cylinder to be 1) has an important influence on
the properties of the nontrivial solutions.

By the same steps in the previous sections, we can get the relations between
the total stretch and the engineering stress corresponding to some different values
of a, which are shown in Figure 8.5. From this figure, we observe that there is
a snap-back for a relatively small value of a. And we can also obtain the critical
point (∆c, γc) in Figure 8.5 for different a: (∆c1 , γc1) = (1.985, 0.5726) for a = 0.30,
(∆c2 , γc2) = (2.017, 0.5757) for a = 0.35 and (∆c3 , γc3) = (2.043, 0.5765) for a = 0.40.
We can see that there is no unique stress-displacement relationship in the post-peak
region. And as the value of a increases the point (∆c, γc) also moves up and toward
right. From this result we can reach the conclusion: the thinner the specimen, the
steeper the curve.

Remark: The behavior of large localizations for the compressible Blatz-Ko ma-
terial obtained in this section seems to agree with the experimental results described
in [8,9], which found that the tangent value in the ascending part of the stress-strain
curves seems to be independent of the specimen size but the post-peak response
seems not only a material property but is dependent on the specimen geometry, and
the post-peak response becomes steeper with increasing length of the specimen.

9. Conclusions. We have proposed a novel approach–within a three-dimensional
framework with strong nonlinearity–to analytically tackle the large localization prob-
lem of a circular cylinder composed of a Blatz-Ko material. The asymptotic normal
form equation near an arbitrary axial stretch is derived by the method of coupled
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Fig. 8.5. The γ - ∆ curves for different a.

series-asymptotic expansions. Then the large localization problem is governed by a
set of these equations for a proper group of stretch values with proper end conditions.
A phase-plane analysis, which is based on a phase plane joined by small pieces cut
off from their respective original phase planes, is conducted to construct the elliptic-
spline solutions. The continuity of orbits in the joint phase plane guarantees that
the elliptic-spline solution is C1-continuous at the joint points. Finally, the analytical
solutions obtained are successfully used to study the displacement-controlled problem
and the geometrical size effect. Our results reveal that for a force-controlled problem
the critical load for bifurcation, which is dependent on the radius-length ratio, is de-
termined from a nonlinear equation. This indicates that a linearized analysis cannot
capture this critical load. It is also demonstrated that for a displacement-controlled
problem one needs to work in the setting of strong nonlinearity to capture the critical
elongation for bifurcation. We expect that this novel approach developed here may
also be used to study other instability problems with large deformations.
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