LEFM—Linear Elastic Fracture Mechanics

Crack-tip fields for plane stress and plane strain: Mode | and Mode Il

Linear, isotropic elastic solids with Young's modulus, E, and Poisson's ratio, v.
The in-plane stresses in the crack tip fields are the same in plane stress and plane strain,
however, o,, =0 in plane stress and o, =v(oy, + 0,,) in plane strain

r{ d Mode I - -Symmetric stresses & strains fields at tip.
I_L'_| Universal behavior (all problems!) as r approaches crack tip:
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The distributions, &,,, are given in most texts on LEFM

Mode I-- On the plane ahead of the tip: o,, = L, o, =0 (standard definition)
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where K, is called the Mode | stress intensity factor



Mode Il - -Anti - symmetric stresses & strains fields at tip.
Universal behavior (all problems!) as r approaches crack tip (5('1'/3 in the texts):
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On the plane ahead of the tip: o, =———, 0,, =0 (standard definition
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where K, is called the Mode Il stress intensity factor

Mode 111 --Out - of - plane shearing (also called ""anti - plane shear"").
Universal behavior (all problems!) as r approaches crack tip:
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| U, :% isin (gj (G = E /(2(1+v))is shear modulus)

Derivation of the Mode Il fields given in class

By superposition (linear elasticity), conditions at any crack tip can always be
represented as a sum of the three modes.



Some Basic Solutions
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Exact solution: Ku =77\ 7a For these two problems the K-field gives and accurate
o estimate of the stress ahead of the crack for r/a<1/4
77X
Op =———— (%, >2a,X,=0)

There are several excellent compilations of solutions. We will make use of Tada, Paris & Irwin



Some Basic Solutions, continued
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(see Tada, et al page???



An example of results in the
Stress Analysis of Cracks Handbook
by H. Tada, P.C. Paris and G.R. Irwin
ASME Press, New York, NY, 2000

An edge-notched infinite beam under pure
bending. Pages 55-57 of the Handbook

Results are presented on the this page and the

next for the stress intensity factor (a mode | problem),

the crack opening displacement at the surface,
and the additional rotation due to the presence
of the crack.

THE PURE BENDING SPECIMEN

A. Stress Intensity Factor
e
_ e I
- X
Ky = ov/ma F (%)
Numerical Values of F(%) b h
The curve in the following figure was drawn based on the
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Methods and References

1. Singular Integral Equation, Bueckner 1960

2, Boundary Collocation Method (h/b > 2), Gross 1965a
3. Weight Function Method, Bueckner 1970, 1971

4. Green’s Function Method (h,{r) > 1.5}, Emery 1969

5. Asymptotic Approximation, Benthem 1972



Empirical Formulas
a. Accuracy
b. Method, reference

F() = 1.122 — 1.40(%),) + 7.33(%)2,13‘03@/5)-‘“4_0(:1,@,]4

a. 0.2% for 4fp, < 0.6
b. Least squares fitting (Brown 1966)

F(%p) = g tan5y p— 1

2b

a. Better than 0.5% for any 9/,
b. Tada 1973

B. Displacements

Crack Opening at Edge

daa

b=
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Gross” results (Gross 1967, Boundary Collocation Meth-
od) are expected to have 0.5% accuracy for 0.2 < 4/, < 0.7.
An empirical formula with 1% accuracy for any 9/, is (Tada
1973)
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Additional Remote Point (”/b >2) Displacement (Rotation) Due to Crack
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The following formula has better than 1% accuracy for any %, .
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Method: Paris’ Equation (Paris 1957) (See Appendix B.)
Reference: Tada 1973
(See also pages 2.16, 2.27, 9.1 etc., for related solutions.)
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Energy Release Rate, Prescribed Load vs. Prescribed Displacement, and

Relation to Stress Intensity Factors

Prescribed load/thickness, P. Load-point displacement = A
G =energy release rate (J /m?)

SE =strain energy of the system/thickness
PA = potential energy/thickness of load

PE = energy of the system/thickness

Note that for any linear elastic system, SE = PA/2,and thus

for prescribed load:
PE =SE - PA=-PA/2

The energy release rate for prescribed load is defined as
G- 10(PA)
2 oa

G =—(ﬁj =
oa ),

Define compliance, C :%

which depends only on geometry, including, a, Eand v. Thus,
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Generic cracked body

Graphical interpretation
of energy release rate
due to crack advance



Energy Release Rate, continued: Role of compliance and loading conditions

As indicated in the figure, introduce a linear spring with compliance

P by
C,, in series with the cracked body. Let A, be the total displacement
through which P works. Now, let A; be prescribed. S
A; =A+C,P=A+(C,, /C)A _1_“}__:.... S
PE:SE+%CM PZ:%C‘1A2+%CM‘1(AT—A)Z tE8 |
and a straight-forward calculation (see pg.8 of notes) again gives —— '
1_,dC "
G=2p’== , d
2 da s

Note! Theenergy release rate does not dependon C,,.

In particular, G is the same for both prescribed load and prescribed displacement.
This is not intutive.

Most results for G are obtained either from analytical or numerical calculations (see later).
However, the above formula permits experimental evaluation of G by experimentally
measuring the compliance at two nearly equal crack lengths, a and a+da.



Energy Release Rate, continued: Relation between G and K’s
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Since G is independent of loading, consider a body under prescribed A.

Consider two configurations of the cracked body one with a and the other with a+Aa.
Because the system is elastic, the energy released in advancing the crack Aa is the same

as the work done in closing the crack from a+Aa to a (see figure). Because A is prescribed,
no work is done by applied loads in closing crack. The work to close the crack is

AW =GAa = %IOM o,,(X,0) [uz (x,07) —u, (X, O‘)]dx 0, (%,0) =K, (a)/~27x

N _ 8 |Aa—X
2 ra [Aa—X U, (x,07)=U, (x,0) = K, (a-+Aa) ==~
B E K (@K, (a+ Aa)jo X dx E = E in plane stress, E = E/(1-v?) in plane strain
1
==K (a)K, (a+Aa)Aa Under all three modes, one finds
1 1
=| G :%KI2 (Irwin's universal relation!) G ZE(Kuz + Kuz)+£ Ky *

Discuss units



Energy Methods for Determining Energy Release Rate

Double cantilever beam specimen

AP AME
Compute compliance of specimen treating each arm as a cantilever beam, _a
and consider the specimen to have unit thickness and P is force/thickness :[
A_Pa®_4pPa’ _ . _A_8 o] _
2 3El Eb° P Eb°
P A4s2
1_,dC 12P%? s
G = — P = =
2 da Eb
Since this is a mode | problem (by symmetry), Irwin's relation gives
Pa
K, =243 o
'R
See notes pg. 10 for the problem of a thin strip (plane stress) SIS SIS NS ST
with a semi-Infinite crack subject to rigid grips. by Iy
This is an exact solution. Note it is independent of crack length.  ; T "rb ;j
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Energy Methods for Determining Energy Release Rate, continued

Delamination of stressed thin film on elastic substrate h
1D analysis (uniaxial stress in film) O : > O
o [N
strain energy/area in film far ahead of tip = — o
2 E delamination crack
strain energy/area in film far behind tip = 0

energy released/area due to crack advance:
2
Gzlah
2 E
which is independent of crack length.

This problem does not have symmetry and it is an example where the crack is a combination
of mode | and Il. Later in the course we will determine the two stress intensity factors.

The simple result for G is valid when the crack is long enough such that steady-state conditions
apply. In practice this means the crack length has to be long compared to the film thickness.



