
LEFM—Linear Elastic Fracture Mechanics

Crack-tip fields for plane stress and plane strain:  Mode I and Mode II
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Linear, isotropic elastic solids with Young's modulus, , and Poisson's ratio, .
The in-plane stresses in the crack tip fields are the same in plane stress and plane strain,
      however, 0 in plan
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  Universal behavior ( !) as   approaches crack tip:all problems r
Mode I - -Symmetric stresses & strains fields at tip.

22 12Mode I-- On the plane ahead of the tip:  , 0 (standard definition)
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    where  is called the Mode I stress intensity factor
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The distributions, , are given in most texts on LEFMI
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  Universal behavior ( !) as   approaches crack tip ( in the texts):IIall problems r αβσ

Mode II - -Anti - symmetric stresses & strains fields at tip.

12 22 On the plane ahead of the tip:   , 0 (standard definition)
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    where  is called the Mode II stress intensity factor
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  Universal behavior ( !) as   approaches crack tip:all problems r
Mode III - -Out - of - plane shearing (also called "anti - plane shear").
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Derivation of the Mode III fields given in class

By superposition (linear elasticity), conditions at any crack tip can always be
represented as a sum of the three modes. 
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Some Basic Solutions

There are several excellent compilations of solutions.  We will make use of Tada, Paris & Irwin 
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For these two problems the K-field gives and accurate
estimate of the stress ahead of the crack for r/a<1/4



Some Basic Solutions, continued
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An example of results in the
Stress Analysis of Cracks Handbook
by H. Tada, P.C. Paris and G.R. Irwin
ASME Press, New York, NY, 2000

An edge-notched infinite beam under pure
bending.  Pages 55-57 of the Handbook

Results are presented on the this page and the
next for the stress intensity factor (a mode I problem),
the crack opening displacement at the surface, 
and the additional rotation due to the presence
of the crack.





Energy Release Rate, Prescribed Load vs. Prescribed Displacement, and
Relation to Stress Intensity Factors
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Prescribed load/thickness, .   Load-point displacement
 energy release rate ( / )
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Energy Release Rate, continued:   Role of compliance and loading conditions

As indicated in the figure, introduce a linear spring with compliance
in series with the cracked body.  Let  be the total displacement

through which works.  Now,  let .
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and a straight-forward calculation (see pg.8of notes)again gives
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This is not intutive.

MNote!  The energy release rate does not depend on C .
In particular, G is the same for both prescribed load and prescribed displacement.

Most results for G are obtained either from analytical or numerical calculations (see later).
However, the above formula permits experimental evaluation of G by experimentally
measuring the compliance at two nearly equal crack lengths, a and a+da.
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Energy Release Rate, continued:   Relation between G and K’s

Since G is independent of loading, consider a body under prescribed .
Consider two configurations of the cracked body one with a and the other with a+ a.
Because the system is elastic, the energy relea

∆
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as the work done in closing the crack from a+ a to a (see figure).  Because  is prescribed,
no work is done by applied loads in closing crack.  The work to cl
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Mode I situation:
symmetric body and
symmetric loading.
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Energy Methods for Determining Energy Release Rate

Double cantilever beam specimen
Compute compliance of specimen treating each arm as a cantilever beam,

and consider the specimen to have unit thickness and P is force/thickness
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Since this is a mode I problem (by symmetry), Irwin's relation gives
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See notes pg. 10 for the problem of a thin strip (plane stress)
with a semi-Infinite crack subject to rigid grips.  
This is an exact solution. Note it is independent of crack length.
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Energy Methods for Determining Energy Release Rate, continued

Delamination of stressed thin film on elastic substrate

1D analysis (uniaxial stress in film)
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energy released/area due to crack advance:
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 which is independent of crack length.
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This problem does not have symmetry and it is an example where the crack is a combination
of mode I and II.  Later in the course we will determine the two stress intensity factors.

The simple result for G is valid when the crack is long enough such that steady-state conditions
apply.  In practice this means the crack length has to be long compared to the film thickness.


