
Matrix Cracking in Ceramic and Polymer Matrix Laminated Composites

Stress-strain relation for each ply
with 1-axis parallel to fibers.

With m fν ν ν= ≡

The above assumes bonded fibers.

Reference:  Xia, Carr, Hutchinson, 1993, Acta Mater 41, 2365-2376.

In-plane stress-strain relation of laminate

where

Plane strain tensile modulus



Matrix Cracking, continued

Isolated tunnel crack—plane strain assumed
for crack analysis.

Steady-state energy release rate for tunneling crack:

0

where ( ) is the open displacement computed 
from the plane strain solution.  If there is initial
residual stress then it must be added to .R
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Matrix Cracking, continued—Limit of very stiff fibers   
The previous method can be used for the case of very stiff fibers compared to matrix—see Xia, et al.  We can also get
Insight from the results of Ho and Suo (???) for one isotropic layer sandwiched between two isotropic layers of different modulus.
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Matrix Cracking, continued—some representative numbers
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Matrix Cracking, continued—periodic cracks

The same technique can be used to compute 
assuming .
One makes use of a unit cell with periodic boundary conditions.
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Matrix Cracking, continued—Sequential periodic cracks

A new set of cracks tunneling between 
a set of previous cracks.

4 spacing between existing cracks
/ 2 2 spacing between new tunneling cracks
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With  /( ) ( / ) for cracks with spacing 2  (see previous slide),

/( ) 2 (2 / ) ( / ) for cracks bisecting existing cracks with spacing 4 .
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Matrix Cracking, continued—crack spacing versus stress
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Note that we assume a new set of cracks is nucleated
and bisects the previous set of cracks—thus it is the
sequential G that is relevant.

Note, t/L increases roughly linearly with stress once
the crack spacing exceeds about twice the layer
thickness.  The spacing does not correlate with
stress for large spacing—this behavior is
dominated by initial flaw statistics which is not
considered here.



Competition between crack penetration and deflection at an interface

A little background:  Consider the feasibility of tunnel cracking in a homogeneous isotropic material.
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Cracks will not tunnel
in a homogeneous, isotropic
material because it is more
favorable for them to spread
along their sides.

If the crack is in a layer and
the sides are along an interface,
there are three possibilities:
(i) the crack is arrested along the sides
(ii)  the crack penetrates the interface
(iii) the crack deflects into the interface

Fig. A

Fig. B1

Fig. B2

Fig. B3

We first consider the stress field near the crack tip 
in Fig. A for the tip at the interface. The stress field
is symmetric about the crack assuming the loading
is symmetric.  The stresses have the form:
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Competition between crack penetration and deflection at an interface, continued
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Consider a short crack of length a in B1.
The stress intensity factor K of this crack depends
linearly on k.  Dimensional arguments require:
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Now consider a short crack of length a in B2 & B3.
The stress intensity factors K1 & K2 of this crack depends
linearly on k.  For each case, dimensional arguments require:
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Note that the above ratios are independent of load!
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Competition between crack penetration and deflection at an interface, continued
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Competition between crack advance in interface and kinking out of interface
Reference:  He & Hutchinson, J. Appl. Mech. 1989,  270-278.

Crack in the interface:
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Crack kinking out of the interface:
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Assume ψ > 0 so kinked crack propagates into material #2.
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Brief sketch of solution procedures to determine KI & KII based on integral equation methods.

0Let ( ) & ( ) be components of an edge dislocation at .  The problem
noted in the figure where the dislocation interacts with a semi-infinite crack can
be solved in closed form.  The tractions acting
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Competition between crack advance in interface and kinking out of interface: continued
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The integral equations for the distributions ( ) & ( ) are
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The stress on the plane at due to the applied intensity factors is (classic crack tip fields)
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These are called Cauchy-type integral equations.  There are powerful numerial methods
for solving these equations (Erdogan and Gupta, 1972, Q. Appl. Math. 29, 525-534). 
The desired stress intensity factors, and , and thus the coefficients, , are simply

related to the distribution of the dislocations as . 

Alternatively, finite element methods could be used to obtain the intensity factors and
co

I II ijK K a
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efficients.  However, given the interest in all orientations , integral equation methods
are probably more efficient and somewhat more accurate.

ω



Competition between crack advance in interface and kinking out of interface: continued
KINKING IN A HOMOGENEOUS MATERIAL UNDER MIXED MODE LOADING

1 2 1 2 1 2, ; & are prescribed.E E E K Kν ν ν= = = =

Contending criteria for advance of the kinked crack in a material with isotropic
and homogenerous elastic and fracture properties.
      A)    is determined by 0; advance requires 
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Criterion C was set as a homework problem.  It give a reasonable
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There is very little difference between A & B



Competition between crack advance in interface and kinking out of interface: continued
Bi-material case

0ψ

0ψ=
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0ψ

Kink angle associated with K2=0



Competition between crack advance in interface and kinking out of interface: continued
Bi-material case
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Employ maximum G criterion B--(essentially indentical to A).
Crack advance criterion for material 2 below interface:   
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For a prescribed mode mix, :

Kinking into material 2 will occur if /
is to the of the curve (for a given ), while

                       Crack advance along with interface w

IC C

G

ψ

α
Γ Γ

left 

(2) (interface)

ill occur if
                             / is to the of the curve.IC CΓ Γ right 

(2) (interface)
0/ ( )IC C ψΓ Γ

0ψ

α =

0β =

Curves corresponding to equally likely kinking and advance in
the interface for a wide range of elastic mismatch.
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