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Elastic Bounds of Bioinspired
Nanocomposites
Biological materials in nature serve as a valuable source of inspiration for developing
novel synthetic materials with extraordinary properties or functions. Much effort to date
has been directed toward fabricating and understanding bio-inspired nanocomposites
with internal architectures mimicking those of nacre and collagen fibril. Here we estab-
lish simple and explicit analytical solutions for both upper and lower bounds of the elas-
tic properties of biocomposites in terms of various physical and geometrical parameters
including volume fraction and moduli of constituents, and aspect ratio and alignment pat-
tern of stiff reinforcements. Numerical analyses based on the finite element method are
performed to validate the derived elastic bounds. [DOI: 10.1115/1.4023976]
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1 Introduction

Nature has always been a source of inspiration for the develop-
ment of novel materials, devices, and architecture in human soci-
ety. Load-bearing biological materials in nature, such as bone,
teeth, antler, and shell, are composites of biopolymers and miner-
als [1–6]. While biopolymers are soft and tough, minerals have
the opposite and complementary properties of being stiff and brit-
tle. Through well-ordered and efficiently organized structures of
constituent materials, biocomposites have achieved remarkable
mechanical properties with stiffness and strength comparable to
those of mineral, and toughness several orders of magnitude larger
than that of mineral [6–8]. The structure-property relationships of
load-bearing biological materials such as bone and shell are of
great interest to mechanicians, materials scientists, biologists,
even clinicians, and intense current efforts are being made to de-
velop bio-inspired synthetic composites.

Recent years have witnessed many studies aimed at developing
synthetic composites that mimic the microstructures of biological
materials. Tang et al. [9] synthesized nanostructured artificial
nacre by sequential deposition, sometimes referred to as layer-by-
layer assembly, of polyelectolytes and montmorillonite clay. The
resulting “brick-and-mortar” composites exhibited tensile stiffness
(�10 GPa) and strength (�100 MPa) comparable to those of natu-
ral nacre and bone. Using a similar technique of layer-by-layer as-
sembly, Podsiadlo et al. [10] fabricated thin films with
montmorillonite clay platelets aligned in polyvinyl alcohol,

treated them with glutaraldehyde to enhance the inorganic/organic
interface, and made strong (strength �400 MPa) and stiff (modu-
lus �106 GPa) nanocomposites. Bonderer et al. [11] chose Al2O3

and chitosan as components and developed nacre-like platelet re-
inforced polymer films with high strength (�315 MPa), stiffness
(�10 GPa), and ductility (rupture strain �21%). Munch et al. [12]
adopted an ice-templating technique to fabricate ceramic-based
nanocomposites with multiscale structural features mimicking
nacre and excellent properties, including a toughness 300 times
higher than that of their ceramic component. The fact that bio-
inspired nanocomposites made in the laboratory can often attain
mechanical properties comparable to or surpassing their natural
counterparts is mainly attributed to broader choices of constituent
materials for synthetic systems rather than better structural design.
In contrast, biological materials rely on relatively weak inorganic
compounds available in nature for biomineralization to achieve
amazing mechanical properties in all aspects, which is still far
beyond the state-of-the-art of man-made materials. In other words,
there is ample room for further improvement of the existing bio-
inspired composites through optimal design of micro- and nano-
structures. In addition, many novel materials such as carbon nano-
tube and graphene have great potential for applications as key
constituents in bioinspired structural or functional composites
[13–15].

Previous studies have shown that the staggered nanocomposite
structure in biological materials plays a crucial role in determining
their mechanical properties [8,16–27]. Figure 1(a) shows a
generic nanostructure of shell in which reinforcements are aligned
in a “brick-and-mortar” pattern, while Figs. 1(b) and 1(c) exhibit
the stairwise staggering patterns of collagen fibrils in bone and
tendon. Early studies were primarily focused on mechanical
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behaviors of the “brick-and-mortar” structure [6–8,16,26–28].
Gao and his coworkers [8,16] developed a tension-shear chain
model and illustrated how the “brick-and-mortar” structure can
lead to high stiffness and toughness at the same time. Zhang et al.
[29] proposed a two dimensional framework to determine elastic
properties of an arbitrarily staggered structure (including “brick-
and-mortar” and “stairwise staggering” as special cases) based on
the principle of minimum complementary energy, in which the
effects of reinforcement distribution and pattern are represented
by four dimensionless factors. Lei et al. [30] extended the two
dimensional framework of Zhang et al. [29] to three dimensions
and predicted the variations of several mechanical properties with
respect to the aspect ratio of mineral reinforcements. While these
recent studies have revealed new insights on the mechanical prop-
erties of biocomposites, a serious limitation is that the principle of
minimum complementary energy can only be used to derive a
lower bound of elastic properties. The present paper is devoted to

establishing both upper and lower bounds for the elastic properties
of nanocomposites with staggered nanostructure inspired from
biocomposites such as shell, bone, and collagen fiber.

The paper is outlined as follows. In Sec. 2, we first derive an
upper bound based on the principle of minimum potential energy,
and then a lower bound based on the principle of minimum com-
plementary energy. The derived bounds are compared to results
from finite element analysis in Sec. 3 and main conclusions are
summarized in Sec. 4.

2 Derivation of Elastic Bounds

There exist several micromechanics models to capture effective
elastic properties of composites. One prominent example is the
Mori–Tanaka method, which has been shown unable to provide
an accurate assessment for the effective Young’s modulus associ-
ated with the staggered nanostructure of biocomposites [8,29].
The failure of conventional micromechanics models could be
attributed to their intrinsic limitations in properly accounting for
the effects of microstructure. In the following, we will apply prin-
ciples of minimum potential and complementary energies to
derive the upper and lower elastic bounds based on kinematic
relationships between different components in the staggered nano-
structure of biological materials.

2.1 Upper Bound. Figure 2(a) shows a bio-inspired stag-
gered nanostructure whose unit cell consists of n platelets aligned
in a staggered manner in the matrix, each column of the platelets
shifting upward by a distance equal to 1/n the length of the plate-
let relative to its left adjacent column (Fig. 2(b)). Under an applied
elongation D, a kinematically admissible strain field is assumed as
follows (Fig. 2(c)): The hard platelets are assumed to experience a
uniform strain e*, and the shear strains in the soft matrix are
assumed to have two characteristic values,
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>>:
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where D is the total elongation of the unit cell, L is the length of
platelets, and hm ¼ h 1=/� 1ð Þ is the thickness of the soft layer, h
being the thickness and / the volume fraction of platelets. It can
be shown that this strain field is roughly compatible and satisfies
the displacement boundary conditions.

For a unit cell consisting of n layers of platelets (seen in Fig. 2),
the strain energy stored in the platelets is nEpe2

�hL=2, and that in
the matrix is

Fig. 1 Typical staggered nanostructures observed in load-
bearing biological materials. (a) The staggered alignment of
mineral platelets in shell, also referred to as the “brick-and-
mortar” structure; (b) the stairwise alignment of hydroxyapatite
nanocrystals in mineralized collagen fibrils of bone; (c) the
“stairwise staggering” alignment of tripocollagen molecules in
collagen fibrils of tendon, with a periodic unit cell comprising
four tripocollagen molecules. Note that the staggered align-
ment of mineral crystals in bone is a result of mineralization of
collagen fibrils.

Fig. 2 Generalized stairwise staggering alignments mimicking collagen fibrils. (a)
Schematic nanostructure of biocomposites; (b) the unit cell (solid box) with stag-
gering number n, and (c) the assumed kinematically admissible strain field under a
longitudinal elongation D.
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Minimization of the potential energy with dP=de� ¼ 0 gives

e� ¼
n� 1ð ÞGmLD

n� 1ð ÞGmL2 þ n2Ephmh
(3)

Substituting Eq. (3) into Eq. (2) yields an effective Young’s modulus,

E ¼
d2 P

Ln hþ hmð Þ

� �
dD2

� L2 ¼ 1

/Ep
þ n2 1� /ð Þ

n� 1ð Þ/2q2Gm

� ��1

(4)

where q ¼ L=h is the aspect ratio of platelets.
According to the principle of minimum potential energy, Eq.

(4) should be an upper bound for the effective stiffness. Interest-
ingly, for the regular “brick-and-mortar” structure n¼ 2, Eq. (4)

becomes E ¼ ð1=/EpÞ þ ð4 1� /ð Þ=/2q2GmÞ
� ��1

, which is iden-

tical to the corresponding stiffness formula derived by Gao et al.
[8,16] using a different approach.

2.2 Lower Bound. The principle of minimum complemen-
tary energy can be used to derive a lower bound for the elastic
stiffness of biocomposites. In this case, a static equilibrium stress
field is assumed (Fig. 3),
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where s* is to be determined. It can be shown that with the above
shear stress filed, the total force on every hard platelet is in equi-
librium in the axial direction. The normal stress in a hard platelet
can then be obtained from force equilibrium as
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Fig. 3 (a) The assumed static equilibrium stress field in the stairwise staggered
nanostructure under a longitudinal elongation D, (b) the distribution of shear trac-
tion along a hard platelet, and (c) the distribution of normal stress in the platelet

Fig. 4 The finite element mesh in a representative unit cell for
(a) the regular “brick-and-mortar” structure with n 5 2 and (b) a
“stairwise staggering” structure with n 5 5
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The strain energy stored in hard platelets is thus

n
Ð L

0
ðr2 zð Þ=2EpÞhdz ¼ ð 3n� 4ð ÞL3=6n2hEpÞs2

�, and that in the

matrix is n� 1ð ÞhmLs2
�=2nGm. The total axial elongation force on

the unit cell is ððn� 1Þ=nÞLs�, which can be derived from Eq. (6),
and the complementary energy in the unit cell is therefore

PC ¼
3n� 4ð ÞL3

6n2hEp
s2
� þ
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�
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� n� 1
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Minimization of the complementary energy with dPC=ds� ¼ 0
yields

s� ¼
D

3n� 4ð ÞL2

3n n� 1ð ÞhEp
þ hm
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(8)

The average stress in the composite is
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Dividing r by average strain D=L gives the Young’s modulus of
the composite as

E ¼ n 3n� 4ð Þ
3 n� 1ð Þ2

1

/Ep
þ n2

n� 1

1� /

q2/2Gm

" #�1

(10)

Compared to the upper bound given in Eq. (4), the lower bound
only has a different coefficient for the first term in the bracket. For
the regular “brick-and-mortar” structure n¼ 2, Eq. (10) becomes

E ¼ 4
3
ð1=/EpÞ þ ð4 1� /ð Þ=q2/2GmÞ

� ��1
, which has been

derived previously by Zhang et al. [29].

3 Comparison With Finite Element Analysis

Finite element analysis (FEA) of the bio-inspired staggered
structure was carried out to verify the elastic bounds derived in
the previous section. Figure 4(a) shows an FEA model of a unit
cell of the “brick-and-mortar” structure (n¼ 2) under axial dis-
placement loading. Periodic boundary conditions are applied in all
directions. The FEA model of a unit cell for a stairwise staggering
structure with n¼ 5 is shown in Fig. 4(b). Here, the unit cell is
defined as the smallest structure unit for which periodic boundary
conditions hold. In all FEA calculations, the modulus ratio between
hard platelets and soft matrix is taken to be Ep=Gm ¼ 1000, and the
Poisson ratio is taken to be �p ¼ �m ¼ 0:3 for both hard and soft

Fig. 5 Variations of elastic bounds for Young’s modulus as a function of the aspect ratio of platelets for (a) the
“brick-and-mortar” structure with staggering number n 5 2 and (b) the “stairwise staggering” structure with
n 5 5. In both (a) and (b), a moderate volume fraction / 5 50% of mineral is adopted. The dash-dotted line is the
upper bound while the solid line is the lower bound. The filled square data points are from finite element analy-
sis. The predictions from the Voigt and Mori–Tanaka models are shown as the dashed and dotted lines,
respectively.

Fig. 6 Variation of elastic bounds for Young’s modulus as a function of the aspect ratio of platelets for (a) the
“brick-and-mortar” structure with staggering number n 5 2 and (b) the “stairwise staggering” structure with
n 5 5. A large volume fraction / 5 90% of mineral is adopted. The dash-dotted line is the upper bound while the
solid line is the lower bound. The filled square data points are from finite element analysis. The predictions
from the Voigt and Mori–Tanaka models are shown as the dashed and dotted lines, respectively.
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phases. Note that the longitudinal gap between adjacent platelets is
at least one order of magnitude less than the platelet length so that
its influence is negligible.

Figures 5(a) and 5(b) plot the variations of normalized stiffness
bounds together with the FEA results with respect to the platelet
aspect ratio q for two different staggering patterns n¼ 2, 5,
respectively. The volume fraction of hard platelets is taken to be
/¼ 50%, similar to that of bone. It can be seen that the FEA
results are sandwiched between the derived elastic bounds except
for some slight deviations for aspect ratios less than 100. The
deviations at small platelet aspect ratios can be attributed to some
simplified assumptions in our theoretical framework, such as the
assumption of pure shear in the soft matrix. Comparison of
Figs. 5(a) and 5(b) shows that the elastic bounds become tighter
as the stagger number n increases. This can be easily understood
from comparing Eqs. (4) and (10); the latter indeed becomes
closer and closer to the former as the stagger number n becomes
larger and larger, since n 3n� 4ð Þ=3 n� 1ð Þ2 ! 1 as n!1.
The predictions by the classical Voigt and Mori–Tanaka models,
representative of typical micromechanics methods, are also
included in Fig. 5. The Voigt model can be expressed as
E ¼ /Ep þ 1� /ð ÞEm � /Ep with the Young’s modulus of the
soft matrix Em omitted. The Mori–Tanaka model [31] is one of
the most popular Eshelby-type methods for estimating the effec-
tive elastic properties of composites. For simplicity, here the rec-
tangular shape of the platelets is represented by an ellipsoid so
that the formulae of effective moduli derived by Zhao and Weng
[32] can be used directly. Figure 5 suggests that, while our upper
bound gradually approaches the Voigt limit as the aspect ratio
increases, the prediction from the Mori–Tanaka model substan-
tially underestimates the FEA results. This limitation of conven-
tional micromechanics methods, including the Mori–Tanaka
model, stems from their homogenization schemes that are not able
to account for the influence of specific micro/nanostructures.

Figures 6(a) and 6(b) plot the variations of normalized stiffness
bounds together with FEA results with respect to the platelet as-
pect ratio q for two different staggering patterns n¼ 2, 5, respec-
tively, and a large volume fraction of hard platelets, /¼ 90%,
similar to that of shell. Overall, the trends shown in Fig. 6 for
/¼ 90% are almost the same as those in Fig. 5 for /¼ 50%. The
elastic bounds are seen to provide reasonably tight envelops for
the FEA results, especially when the platelet aspect ratio is larger
than 100. In contrast, the predictions from the Mori–Tanaka
model are substantially lower than the FEA results.

4 Conclusions

It is well known that the well-ordered nano/microstructures of
biological materials play key roles in their mechanical properties.
Conventional homogenization-based micromechanical models fail
to provide a reliable estimate for the Young’s modulus of bio-
composites, as they primarily account for the influence of volume
fraction, shape, and orientation of inclusions but not the specific
nano/microstructures of materials. In contrast, our derived elastic
bounds here are based on models developed specifically for shell-/
bonelike biological materials. Comparison with finite element
analysis (FEA) suggests that the derived elastic bounds provide a
tight envelop for the Young’s modulus of biological or bio-
inspired composites. While our models are simplistic in several
aspects, the elastic bounds given in Eqs. (4) and (10) provide sim-
ple and powerful analytical formulae for the stiffness of biological
and bio-inspired composites. In addition, the elastic bounds can
also be similarly derived for more complicated alignments of pla-
telet (two-dimensional problem) or fiber (three-dimensional prob-
lem) reinforcements.
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