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ABSTRACT 

This paper proposes and implements a novel hybrid level set method which combines the 

numerical efficiency of the local level set approach with the temporal stability afforded by a semi-implicit 

technique. By introducing an extraction/insertion algorithm into the local level set approach, we can 

accurately capture complicated behaviors such as interface separation and coalescence. This technique 

solves a well known problem when treating a semi-implicit system with spectral methods, where spurious 

interface movements emerge when two interfaces are close to each other. Numerical experiments show 

that the proposed method is stable, efficient and scales up well into three dimensional problems. 
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1 Introduction 

The level set method has recently become an invaluable tool for investigating the motion of 

interfaces in a wide variety of systems and situations. For example, the method has successfully been 

employed to investigate electromigration [7], epitaxial growth [2] and evolving fluid interfaces [16].  

While useful, the basic level set method is hampered by high computational costs, especially in situations 

concerning surface diffusion. To relieve this constraint, two different classes of approaches have been 

developed. The first class, known as the local level set method, aims to reduce the overall computational 

cost by localizing the level set calculation [14]. The second class aims at developing semi-implicit scheme 

to increase the temporal stability, allowing for larger time steps to be utilized compared to explicit 

methods [17]. In this paper we propose a novel hybrid level set method that combines the numerical 

efficiency of the local level set approach with the temporal stability afforded by a semi-implicit technique, 

and an extraction/insertion algorithm to accurately capture complicated behaviors such as interface 

separation and coalescence.   

First introduced by Sethian and Osher [12], the central concept of the level set approach is to 

describe an interface, Γ , implicitly by embedding it into a function of higher dimensionality, φ . The 

interface is given by the zero level-set of φ , i.e. 

 ( ) ( ){ }| , 0t tφΓ = =x x , (1) 

where x is a position vector and t is time. To describe a body that occupies the space ( )tΩ  we can define 

the level set function φ  such that 
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with ( )tΩ  indicating the region outside the body, as shown in Fig. 1.  

Using this level set formulation the normal of the interface, n, is given by 

 φ
φ

∇
=
∇

n . (3) 
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The positive normal direction points outward from ( )tΩ , i.e. from the region of negative to positive 

( ),tφ x . 

The curvature, κ , is given by the divergence of the normal [14], 

 

φκ
φ

∇
= ∇ ⋅

∇
. (4) 

The curvature is positive for a convex surface of ( )tΩ . 

While any function that satisfies Eq. (2) can be a valid choice for φ , it is advantageous to choose 

specific forms with known good properties. Here we use the signed distance function. By definition, a 

signed distance function describes the shortest distance from any given point in space to the closest 

interface, with a positive value on one side of the interface (outside) and a negative value on the other side 

(inside). 

The motion of the interface carries the associated ( ),tφ x  field in a way similar to a flow that 

carries mass. Denote the interface velocity by v and consider a control volume, it is easy to show that   

 0
t
φ φ∂
+ ⋅∇ =

∂
v . (5) 

The interface velocity can be decomposed into components normal ( nv n ) and tangential ( tv t ) to the 

interface. As φ⋅∇ =t 0 , Equation (5) can be rewritten in the form of the standard evolution equation [14], 

 0.nv
t
φ φ∂
+ ∇ =

∂
 (6) 

The interface motion is determined by calculating the normal velocity of the interface and 

advancing the level-set function using Eq. (6). In general the normal velocity of the interface can be 

caused by various thermodynamic forces via processes such as surface diffusion. Examples include 

surface tension [12, 17], elasticity [15] and electrostatic interactions [7]. In this paper we focus on 

interface motion driven by surface energy, a mechanism that exists in all interface systems and is 

computational challenging due to its dependence on interface curvature. 

Generally speaking, the chemical potential of an atom on an interface, μ, is position dependent. 

Atoms can diffuse on the interface from one region to another to reduce the chemical potential. This 

surface diffusion is important in many physical systems and known to cause morphology changes [10, 
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11]. Surface diffusion is characterized by mass conservation. The normal velocity of the interface can be 

expressed by 2
n sv M μ= ∇ , where  M is a surface mobility term [7]. The surface Laplacian is defined as 

2
s s s∇ =∇ ⋅∇ , where s n∇ =∇− ∂n  is the surface gradient and n∂ = ⋅∇n  [17]. One can easily put M  into 

the time scale without losing generality, so we assign 1M = . The chemical potential on the surface is the 

curvature multiplied by the surface energy density, γ , which may be spatially dependent. Thus the 

normal velocity is given by [3, 17] 

 ( )2
n sv γκ= ∇ , (7) 

Several researchers, such as Chopp and Sethian [3], Smereka [17], and Khenner et al. [6] have 

investigated methods to solve interface motion by diffusion. The main difficulty in many of these 

methods (see Ref. [3, 6]) relates to the fact that Eq. (6) is extremely stiff. In fact, solving this level set 

evolution equation is analogous to solving the fourth-order differential equation t xxxxφ φ= − . Any explicit 

time-discretization method will require the time step to scale as 4( )xΔ , where xΔ  is the grid spacing. 

Clearly this is a very stringent condition. One possible route to reduce the overall computational time is to 

use a local level set method, which restricts calculations to a small region around the interface [14]. 

However, this approach does not remove the stringent time step constraint. 

Ideally an implicit method would be utilized to advance the level set as this would remove any 

time step restriction. The nonlinear nature of Eq. (6) makes the fully implicit method difficult, if not 

impossible, to accomplish. An alternative approach was proposed by Smereka where a semi-implicit 

method was utilized to increase the overall stability of the algorithm. Using this scheme, time steps as 

large as 415000( )xΔ  have been demonstrated. While successful in ameliorating the time step requirement, 

the current semi-implicit method used a global smoothing scheme. This scheme would introduce non-

physical interface motion especially when two surfaces are close. Such spurious motion could be 

detrimental in simulating some phenomena such as interface coalescence. The scheme also faces 

challenges to scale up to large three-dimensional problems since it is carried out over the entire simulation 

domain. 

In the following we propose a novel hybrid level set method that combines the numerical 

efficiency of the local level set approach with the temporal stability afforded by a semi-implicit method 

while accurately capturing interface coalescence by an extraction/insertion algorithm. The plan of this 

article is the following. The numerical scheme is developed in Section 2. Section 3 presents both two- and 
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three-dimensional results demonstrating the capability of the proposed method. Section 4 summarizes the 

key features and future developments. 

2 The Local Semi-Implicit Level Set Method 

In this section we begin with general semi-implicit schemes for the level set method and then 

move on to local implementation and level set extraction. This is followed by a discussion of techniques 

we have employed to ensure mass conservation. Algorithms necessary for the scheme are included in the 

appendices. 

2.1 Semi-Implicit Schemes for the Level Set Method 

A semi-implicit scheme for Eq. (6) can be obtained by adding bilaplacian stabilization terms: 

 4 4
nv

t
φ η φ η φ φ∂
+ ∇ = ∇ − ∇

∂
, (8) 

with η  a positive constant. By writing the time differential to first order accuracy, implicitly calculating 

the left hand bilaplacian, and explicitly calculating the right hand terms we obtain the discrete form of Eq. 

(8), 

 ( )4 11 n n
nt tvη δφ φ++ Δ ∇ = −Δ ∇ . (9) 

Here tΔ is the time step, nφ  is the level set function at time t , 1nφ + is the level set function at time t t+Δ , 

and 
1 1n n nδφ φ φ+ += − is the level set change at the current time step. The bilaplacian term acts as a 

smoothing operator applied to the explicit scheme, suppressing the unstable high wave number modes 

[17]. Compared to explicit methods this approach allows for the use of larger time steps without a loss of 

stability. Similar concepts have been applied to non-conserved level set methods [15] and phase-field 

models [8, 19]. 

 Previous applications of the semi-implicit method were limited to periodic domains, where the 

Fast Fourier Transform (FFT) technique was used to solve Eq. (9). This approach faces challenges in 

three-dimensional problems since the FFT quickly becomes inefficient as the system size increases [4]. 

Consequently, the FFT-based semi-implicit schemes are constrained to two-dimensional or small-scale 

three-dimensional simulations. Additionally, studies have shown that the use of the FFT can introduce 
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spurious interfacial motion [17]. In the following we propose an efficient non-FFT scheme that eliminates 

non-physical motion and scales up well in three-dimensions. 

 A major difficulty in solving Eq. (9) using a non-FFT scheme is that the system of equations from 

discretization of Eq. (9) is neither diagonally dominate nor compact. Due to this fact a typical iterative 

scheme may not converge. We have found that by integrating the Biconjugate Gradients Stabilized 

Method (BI-CGSTAB) [21] and a bilaplacian stencil with isotropic discretization error [13] into our local 

semi-implicit level set scheme, we obtain convergence in all situations. 

2.2 The Local Level Set Method 

The key idea of the local level set scheme is to avoid evolving Eq. (6) in the whole domain since 

only the zero-level set, which defines the interface, directly relates to physical motion. Instead, we can 

define a calculation tube enclosing the interface and calculate interface dependent quantities such as 

curvature and velocity in this small tube only. This scheme significantly reduces the amount of 

computation. To do so, we choose a constant 0β > which is on the order of the grid spacing. The 

calculation tube βΛ is defined by all grid points within a distance of β from the interface. 

The integration of local level set and semi-implicit scheme is achieved in the following way. We 

calculate the interfacial curvature and surface Laplacian in the calculation tube βΛ . These values are then 

used to update the level set within the calculation tube by the semi-implicit scheme in Eq. (9). By 

applying the Biconjugate Gradients Stabilized Method (BI-CGSTAB) [21] and a bilaplacian stencil with 

isotropic discretization error [13] to advance Eq. (9) in each time step we have achieved nice convergence 

and accurate results. However, when the calculation involves two interfaces close to each other, we have 

observed interfacial distortions and poor temporal stability. This phenomenon can be understood by 

looking into the stencils obtained by discretizing Eq. (7) and Eq. (9). Both equations depend on fourth-

order derivatives. A second-order discretization of the derivative results in a stencil which is, at minimum, 

5 grid points wide. If there is not enough separation between two interfaces, the level set calculation of 

the two physically separate interfaces can numerically affect each other. The crosstalk can lead to non-

physical interface motion. To better under the phenomenon, Fig. 2 shows two close interfaces whose 

calculation tubes overlap. Physically the motion of two interfaces is independent of each other before they 

contact. However, the sharing of some grid points (black points) in calculating interface quantities such as 

curvature causes the two interfaces to numerically sense the existence of each other. This phenomenon 

makes the level set method unable to accurately capture processes such as interface coalescence or 

separation. In the following we propose a level set extraction/insertion approach to resolve this issue. 



Page 7 of 22 

 

2.3 Level Set Extraction 

Here we propose an extraction/insertion approach as shown in Fig. 3 to deal with close 

interfaces. We first identify distinct bodies, which are then extracted into individual, temporary 

level set functions. The interface motion of each body is calculated separately. The updated interfaces are 

inserted back into the original level-set function. In the following we elaborate on the process of body 

identification and extraction. 

Consider a system consisting of multiple bodies described by a level set function. From the level 

set we know whether a region is interior ( 0φ < ) or exterior ( 0φ > ), but do not know explicitly the 

number of distinct bodies or which grid points belong to which body. We begin by marking all grid points 

as NB (No Body). We scan all the NB points to identify any interior grid point ( 0φ < ). Define the first 

found interior grid point as a seed point and mark it A, which means that the point belongs to a unique 

body A. Scan for all interior grid points directly next to a point marked A, and mark them A as well. 

Continue the process until the search results in zero hit. We refer to this process as finding all of the 

“connected” points within body A. Among the set of NB points scan for another interior grid point. This 

seed point belongs to a different body and is marked B. In a similar manner as identifying body A, we can 

identify all of the “connected” points within body B. Continue to determine other unique bodies until 

there is no interior grid point left in the set of NB. This procedure can identify all unique bodies in the 

computation domain since there must exist at least one exterior grid point between different bodies.  

The level set algorithm also requires information of the exterior grid points within the calculation 

tube βΛ  of each interface. The following is the procedure. We begin by considering all exterior grid 

points directly next to an interface. For each of these exterior points, scan its surrounding grid points to 

determine whether the surrounding points are inside any body. If all surrounding grid points except those 

marked NB are only inside one body, then we mark this exterior grid point as “independent” and associate 

it to that body. On the other hand, the surrounding grid points may be inside two or more bodies, i.e. this 

exterior grid point is next to two or more unique bodies. In that case, we can not associate this exterior 

grid point to any single body. We mark these types of grid points as “dependent”. After all exterior grid 

points directly next to an interface are marked as either “independent” or “dependent”, we move to the 

exterior grid points directly next to this first set of exterior grid points. This process is repeated until all 

exterior grid points within the calculation tube βΛ  have been marked. An example of this delineation is 

shown in Fig. 2, where “dependent” grid points are marked black while “independent” grid points are 
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colored according to which body they are associated to. Note that interior grid points of a body are 

associated to that body only and thus “independent”. 

After body identification and all grid points within the calculation tubes have been associated to a 

body or marked as dependent, we can begin the extraction procedure. For each unique body we extract 

the independent grid points associated to this body and put the original level set values into a temporary 

level set function, φ . At dependent grid points directly next to the extracted body we explicitly calculate 

the distance to the interface using a technique shown in Adalsteinsson and Sethian [1]. We then construct 

a temporary signed distance function at grid points not associated to this extracted body but within β  
grid points of its interface using a third-order, Weighted Essentially Non-Oscillatory (WENO3) upwind 

reinitialization scheme (see Appendix). Note that the interface of φ  corresponds to that of the original 

body while the values away from the interface may differ from the original level set function. Any values 

intrinsic to the interface such as curvature are not affected by this extraction process.  

We use φ  to calculate the curvature information at points directly next to the extracted interface 

with an approach similar to Ref. [17]. The curvature information is then extended by at least 2 grid points 

away from the interface using an extension procedure (see Appendix). Using the extended curvature it is 

possible to calculate ( )( )2
n sv γ κ= ∇ x  at grid points next to the interface. This process is followed by an 

extension of nv  to the rest of the calculation tube βΛ . We then calculate ntv φΔ ∇  in βΛ . The next step 

is to solve for 1nδφ +  by Eq. (9) using the BI-CGSTAB/isotropic bilaplacian method. Here we solve for 

1nδφ + in a smaller tube around the interface, αΛ , using the points in βΛ  but outside of αΛ as boundary 

conditions. This technique allows for the application of an iterative method to solve the semi-implicit 

system of equations. The smaller tube is defined by all grid points within a distance ofα from the 

interface, where nβ α ∇≥ +  and n∇  depends on the specific discretization form used for the bilaplacian 

smoothing term in Eq. (9).  The parameter α  should be large enough so that the interface stays within 

αΛ  during one time step or designated number of time steps. On the other hand, a large α  also means 

wider calculation tube and thus more computation. Thus one need to balance the two conditions when 

deciding α . 

Now we have obtained the updated interface position for each extracted body. In the following 

we put this information back into the original level set function. For independent grid points within αΛ  
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we can simply set 1 1n nδφ δφ+ +=  and update the level set value such that 1 1n n nφ φ δφ+ += + . Dependent grid 

points are treated differently since they are shared by two interfaces. Our approach is to extend the 

velocity calculated from independent grid points to these dependent points. We then update their values 

using a first-order explicit discretization of the level set evolution equation, Eq. (6). 

Recently Macklin and Lowengrub [9] developed an approach to calculate the curvature at points 

close to two different interfaces. This approach is more accurate than the standard treatment and can 

alleviate some of the spatial errors associated with merging interfaces. However, the approach does not 

alleviate any time step restrictions. If a semi-implicit scheme with a bilaplacian stabilization term is 

utilized, the crosstalk between bodies would still occur, resulting in spurious motion of interfaces. The 

proposed level set extraction approach allows the implementation of semi-implicit schemes, leading to 

both accurate capture of interface merging and fast computation. 

2.4 Discretizations 

Unless otherwise noted all spatial derivatives are approximated by second-order central 

difference functions. The curvature of the level set is written in two-dimensions as 

 
( ) ( )

2 2

1 2 3 22 2 2 2

2xx yy x xx y yy x y xy

x y x y

φ φ φ φ φ φ φ φ φ
κ

φ φ ε φ φ ε

+ + +
= −

+ + + +
, (10) 

and in three-dimensions as  

 
( )

( )
( )

2 2 2

1 2 3 22 2 2 2 2 2

2x xx y yy z zz x y xy x z xz y z yzxx yy zz

x y z x y z

φ φ φ φ φ φ φ φ φ φ φ φ φ φ φφ φ φ
κ

φ φ φ ε φ φ φ ε

+ + + + ++ +
= −

+ + + + + +
, (11) 

where ε  is a small parameter to ensure that the denominator does not equal zero. The surface Laplacian 

of the curvature is calculated in a way similar to Smereka [17]. First consider the surface gradient of the 

curvature term, ( ) ( ) ( )s nγκ γκ γκ∇ = ∇ − ∂n . In component form this can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )x y z x y z x x y y z z
s x y z x y z

x y z

n n n n n n

A B C

γκ γκ γκ γκ γκ γκ γκ∇ = + + − + + + +

≡ + +

e e e e e e

e e e
. (12) 
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Here xe , ye  and ze denote unit vectors in the x-, y-, and z-directions, while xn , yn , and zn  are the unit 

normal directions of the interface obtained using central differences. Then by computing the surface 

divergence of Eq. (12) the surface Laplacian of the curvature is given by 

 ( ) ( ) ( )2 x x y z y x y z z x y z
s x y z x y z x y z x y zA B C n n A n A n A n n B n B n B n n C n C n C∇ = + + − + + − + + − + + . (13) 

To calculate φ∇  in Eq. (9) we utilize a third-order Weighted Essentially Non-Oscillatory 

(WENO3) upwind method (see Appendix). Upwind schemes are entropy-satisfying and attempt to take 

information from behind the moving front [16]. The key idea is to choose the smoothest possible 

derivative to at least third order accuracy by weighing multiple possible stencils [5].  

Finally we discuss about the how to choose the form for the bilaplacian stabilization term in Eq. 

(9). The simplest form would be to use central differences to calculate all the directional derivatives, 

resulting in an stencil with anisotropic discretization error [13]. We have found that using this 

discretization is not optimal for two reasons. First, the anisotropic nature of the stencil can influence the 

motion of the interface, as the leading order error terms in the discritization depend on the underlying 

grid. Second, the resulting system of equations using this stencil is difficult to solve using iterative 

approaches due to the extremely diagonally weak system. Instead we utilize an isotropic stencil which 

aids in the stability of the simulation and allows for the use of iterative methods to solve the semi-implicit 

scheme. In particular we utilize the fourth second-order isotropic three-dimensional bilaplacian stencil 

given by Patra and Karttunen [13]. Here the stencil size remains at 5 5 5× × , but the points utilized and 

their weights are different from the standard second-order central difference scheme. The advantages of 

such a method include having isotropic discritization error and a system which is not as diagonally weak 

as the standard method. Using this stencil we set 4n∇ =  to determine the outer calculation tube. 

2.5 Mass Conservation 

One issue with the level set method is mass conservation. Theoretically the level set method is 

mass conserving. In practice numerical discretization can introduce large mass change during the course 

of a simulation, particularly during the reinitialization process. To counter this problem we have modified 

a global mass correction scheme [22] for the proposed level set method. Before the simulation begins we 

calculate the total mass of each body in the simulation using a mollified Heaviside function, 
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 ( )

0

1 sin
2 2

1

H

φ ψ

ψ φ πφφ φ ψ
ψ π ψ

φ ψ

< −⎧
⎪

⎛ ⎞+⎪= + ≤⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ >⎩

, (14) 

where ψ is a finite thickness on the order of the grid spacing. The mass of a body l is simply a summation 

over the points contained in and near the body, 

 ( )
, ,

l ijk ijk
i j k

M V H φ= −∑ , (15) 

where ijkV is the volume of the element containing the grid point ijkx  and  t
ijkφ  is the level set value at that 

point. After updating the level set for one time step we iterate over all the bodies in the system and 

perform a mass correction step. This procedure begins by defining a mass correction factor, 

( )cor 0 0
l l l lM M M Mτ= − , where 0

lM is the original mass of body l and lM τ  is mass of the same body at 

pseudo timeτ . We then solve the following pseudo-time differential equation for each body, 

 corl
lMφ

τ
∂

= −
∂

, (16) 

until a prescribed accuracy is achieved. The accuracy of mass conservation at pseudo-timeτ is 

measured by 0 0
l l lM M Mτ− . In the equation lφ denotes the level set grid points in and near body l. In 

practice the calculation domain of Eq. (16) is body l plus the grid points directly next to the interface but 

outside the body. We solve Eq. (16) with a variable time step xτ λΔ = Δ , where λ  is chosen through a 

standard line search to ensure that the mass error always decreases. The updated level set is given by 
1n n cor

l l lxMφ φ λ+ = − Δ . This algorithm typically converges to a tolerance of 610−  within 5 to 10 iterations. 

This mass correction method solves an issue of the global correction schemes, where a body may receive 

incidental correction when mass change actually happens in another body. The mass correction step 

adjusts the interface location to ensure mass conservation of the enclosed body. The flat region of an 

interface which does not move (where 0nv = ) may change its location slightly as a result of this process. 

If the mass correction step is taken frequently, the induced movement will be small and not affect the 

physics. In our simulations the mass correction was performed in each time step of the interface motion. 
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2.6 The Algorithm 

The algorithm described in previous sections is shown here in the complete form. 

Step 0. Initialize the level set function 0φ to the signed distance function and calculate the initial 

mass of each body. 

Step 1. Mark all grid points within β  grid spacing of the interface and find extraction 

information. 

Step 2. Iterate over the number of bodies in the system. 

a. Extract the current body using the independent grid points associated with the body. 

b. Reinitialize all grid points within a distance of β  grid spacing of the extracted interface 

to a signed distance function, φ . The level set function at grid points directly next to the 

interface is calculated explicitly as discussed in section 2.3. 

c. Set 0κ = everywhere. 

d. Calculate κ at grid points next to the extracted interface using Eq. (10) or (11). 

e. Extend κ from the interface by at least 2 grid points using an extension algorithm (See 

Appendix C). 

f. Set 0nv = everywhere. 

g. Calculate ( )( )2
n sv γ κ= ∇ x  at grid points next to the extracted body using Eq. (12) and 

(13).   

h. Extend nv to αΛ  and βΛ . Save nv at independent grid points in αΛ  for use in Step 3. 

i. Calculate ntv φΔ ∇  using upwind WENO3 in αΛ  and βΛ . 

j. Solve Eq. (9) using BI-CGSTAB and an isotropic Bilaplcian discretiztaion for 1nδφ + . Use 

βΛ  as boundary conditions for αΛ . 
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k. At independent grid points in αΛ  set 1 1n nδφ δφ+ += . 

Step 3. Extend nv  from independent grid points in αΛ  to dependent grid points in αΛ  and the 

grid points in βΛ . 

Step 4. At βΛ  and dependent grid points in αΛ  calculate 1n n
ntvδφ φ+ = −Δ ∇  using a WENO3 

upwind scheme. 

Step 5. Update αΛ  and βΛ  with 1 1n n nφ φ δφ+ += + . 

Step 6. Correct for any mass gain or loss by solving corl
lMφ

τ
∂

= −
∂

.  

Step 7. One time step has been completed. Return to Step 1 and repeat. 

 

3 Results 

In this section we present results of interface motion using the algorithm described above. All 

results were computed on square or cube grids with uniform grid spacing. We set 4α =  and 8β =  to 

define the computation tubes. Following Ref. [17] the stabilization coefficient was chosen to be 0.5η = . 

With these parameters the BI-CGSTAB method solves the semi-implicit Eq. (9) within 40 iterations to a 

2-norm tolerance of 810− . Mass correction was performed in each time step to an accuracy of 610− . We 

start by considering a representative shape evolution problem and demonstrate convergence of the 

proposed method. Then we look into a series of two- and three-dimensional simulations. 

Consider the interface motion and shape evolution of an ellipse, as shown in Fig. 4. The grid size 

is 64 64×  with grid spacing of 0.05xΔ =  and time step of 0.0001tΔ = . The large curvature at the tips of 

the ellipse drives the surface there to move inward and eventually the body evolves into a circular shape. 

In this simulation we have 4( ) 16t xΔ Δ = , a large improvement over the explicit scheme where 

4( ) 0.25t xΔ Δ ≈ [3]. In fact, we can further increase the time step by using a larger α and β  (the width of 

the computation tubes). Here the constraint is not the stability of the algorithms, but the width of the 
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calculation tube since we need to ensure that the interface does not leave αΛ  in a time step. In the 

extreme case, when the tube is the whole domain, we expect to achieve time step as large as the global  

semi-implicit scheme where 4 3( ) 10t xΔ Δ ≈  [17]. However, wider calculation tubes increase the amount 

of computation in each time step. Thus there is optimized choice of the calculation tube from 

computational point of view. From physical point of view, in many cases we do not need extremely large 

time step due to the requirement of time resolution. Computational optimization should be considered 

together with the physical problem to determine whether choosing a larger calculation tube and time step, 

or smaller calculation tube and time step. 

Figure 5 demonstrates the temporal and spatial convergence of the proposed local semi-implicit 

method. We calculated the case in Fig. 4 with various time step and grid spacing to t=0.005. The time 

convergence appears to be very quick compared to the global semi-implicit scheme. Note that the time 

steps shown in Fig. 5a represent a wide range of 4( )t xΔ Δ  conditions from 0.016~16, indicating the 

accuracy and stability of the proposed method. We have also compared the local semi-implicit scheme to 

a fully explicit method without mass correction. The local semi-implicit scheme matches well with the 

explicit approach. Figure 5b shows quick spatial convergence. 

The method can handle bodies with large positive and negative curvatures very well. Figure 6 

shows the evolution of a star-like shape to a circle. The motion shows the expected behavior. We have let 

this simulation run up to a time of t = 0.5 with no change in the resulting circle. Similarly, we have 

evolved a split-annulus type shape shown in Fig. 7. Here an annulus is bisected along a diagonal and the 

ends are rounded, with the interfaces separated by only 1.5 grid spacing. Due to the use of our local semi-

implicit scheme, we do not see any attraction between the ends of the shapes. Both shapes evolve into the 

expected circles. We have run the simulation till a long time (up to t = 1.0) and did not observe any 

change in the equilibrium shapes. 

A major advantage of the proposed method is to accurately capture interface coalescence. To demonstrate this, consider a system 

containing an ellipse and a circle, as shown in Fig.. The expected motion is for the ellipse to evolve towards an equilibrium 

circular shape as that in  

Fig.. The circle is expected to maintain its shape until the ellipse impedes on the boundary of the 

circle. In the global semi-implicit method, spurious movement of the circle’s interface was observed 

during the simulation [17]. This effect was attributed to the use of the FFT to solve the semi-implicit 

evolution equation. In contrast, the proposed local semi-implicit scheme does not have this spurious 

motion. The two shapes are able to be in very close proximity without any incorrect interfacial movement. 
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The computation accurately shows that it is not until the ellipse impedes on the circle do the two coalesce 

into a single body. 

The method scales up well in three-dimensions. The evolution of an irregular star shape is shown 

in Fig. 9. The resulting shape is a sphere which is energetically favorable. The simulation captures the 

effect of curvature on the evolution dynamics. Figure 10 shows the pinching off of a dumbbell-like shape. 

Here the largest curvature exists at the connection between the center tubular part and the spherical ends. 

Diffusion causes the tubular part to narrow and finally break. This simulation demonstrates the 

importance of kinetics. The system evolves into a state of two equal spheres rather than a single larger 

sphere, although the latter would have smaller surface area. Energy alone cannot determine the 

equilibrium structure. 

Finally we present the evolution of a highly irregular body with little symmetry, as shown in Fig. 

11. After some time of evolution small openings begin to close off. Figure 11b shows a hollow eight-

sided shape. This shape then splits into two separate parts as shown in Fig. 11c and d. Due to the non-

symmetry of the initial configuration these two parts are not equal in mass or shape. They both evolve 

toward spheres. During the evolution they come into contact and eventually merge into a single sphere. 

 

4 Summary 

In this paper we have introduced a novel local semi-implicit level set method for surface diffusion 

and interface motion. This method reduces the computational work by only performing calculations in a 

small tube around the interface and allowing large time step due to the application of a semi-implicit 

scheme. By integrating the scheme with the Gradients Stabilized Method and bilaplacian stencil with 

isotropic discretization error, we are able to use an iterative approach to solve the resulting set of 

equations. The use of an extraction/insertion approach during evolution allows us to accurately capture 

complicated interface motion such as coalescence and separation, eliminating spurious interfacial 

movements seen in the global semi-implicit scheme. Numerical results demonstrate that we can use time 

steps several orders larger than those in explicit methods. In future work we plan to include multiple 

energetic driving forces and parallelize the algorithm to allow for simulations of very large systems. 
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Appendix 

This section will outline some of the basic algorithms needed for this work. 

A. Upwind Derivatives 

Upwind schemes were first introduced by Osher and Sethian to investigate Hamilton-Jacobi type 

equations, of which the level set evolution equation is one example [12]. The concept is to use the 

direction of information flow (e.g. the interface velocity) to decide the form of the spatial derivative. The 

method utilized in this work is also known as Godunov’s method and can be written as 

 ( ) ( )max ,0 min ,0n n nv v vφ + −∇ = ∇ + ∇ , (17) 

where 

( ) ( ) ( ) ( ) ( ) ( )
1/ 22 2 2 2 2 2

max ,0 min ,0 max ,0 min ,0 max ,0 min ,0x x y y z zφ φ φ φ φ φ+ − + − + − +⎡ ⎤∇ = + + + + +⎢ ⎥⎣ ⎦
(18) 

and 

( ) ( ) ( ) ( ) ( ) ( )
1/ 22 2 2 2 2 2

max ,0 min ,0 max ,0 min ,0 max ,0 min ,0x x y y z zφ φ φ φ φ φ− + − + − + −⎡ ⎤∇ = + + + + +⎢ ⎥⎣ ⎦
.(19) 

Here xφ
−  denotes a backward difference approximation to the spatial derivative in the x-direction and xφ

+  

is the forward difference approximation.  

 

B. Reinitialization Algorithm 

Reinitialization of the level set is needed whenever we extract a body to the temporary level set 

function. We achieve reinitialization by propagating the distance information off of the interface. Imagine 

a particle moving normal to the interface with a constant speed of 1. The travel time of the particle is 

equal to its distance from the closest interface point. Mathematically, this can be modeled by solving a 

differential equation in the form of [20] 
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 ( )( )0sgn 1 0φ φ φ
τ
∂

+ − ∇ =
∂

, (20) 

where 0φ  is the original value of the level set function which defines the interface, φ  is the updated level 

set function, and ( )sgn x  is that standard sign function. Here τ  is a pseudo-time. If this equation is 

solved to the steady-state, the domain of interest is reinitialized to be a signed distance function.  

To solve Eq. (20) we utilize the upwind derivatives in Appendix A and a WENO3 approximation 

[5]. While the details of WENO3 spatial approximations are beyond the scope of this article, it is 

sufficient to say that the scheme chooses a one-sided derivative based on the smoothest possible choice 

among multiple stencils. To integrate Eq. (20) in time we utilize the optimal third-order, four step strong-

stability-preserving method [18], with a time step of xτΔ = Δ  where xΔ is the grid spacing. 

 

C. Extension Algorithm 

To evolve the level set it is necessary to extend quantities which are only defined on the interface 

to nearby regions. We achieve this by the solving the following hyperbolic equation, [14] 

 ( )sgn 0S Sφφ
τ φ
∂ ∇

+ ⋅∇ =
∂ ∇

, (21) 

for a predetermined amount of time, where S is the quantity to be extended. Here τ  is a pseudo-time and 

( )sgn φ  is the standard sign function. 

This particular form of extension is a specific case of a general Hamilton-Jacobi equation and 

thus we can utilize upwind schemes to solve the extension equation. In general, numerical accuracy is not 

an overriding factor, as long as S remains unchanged at the zero level-set and is extended off the interface 

in a sensible and controlled manner. Thus we utilize a first-order upwind scheme with a discrete forward 

Euler time step [17]. 

For all the grid points that we wish to extend to we define a mollified sign function in place of the 

exact form,  
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 ( )

1

1sgn sin

1

φ ψ

φ πφφ φ ψ
ψ π ψ

φ ψ

− < −⎧
⎪

⎛ ⎞⎪= + ≤⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ >⎩

, (22) 

where ψ is a finite thickness on the order of the grid spacing. Values of φ φ∇ ∇  are calculated using 

standard center differences while those for S∇ are calculated with first-order upwind derivatives. 
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Figure captions 

 

Fig. 1. A schematic of the level set representation. The body is defined by negative values of the function 

φ while the interface is the zero level set of the function. 

 

Fig. 2. (a) When two interfaces are close to each other, their calculation tubes can overlap. (b) Illustration 

of crosstalk between two interfaces before they physically contact due to the sharing of some grid point 

values. Grid points are marked with icons of different shapes to indicate their distance to the interface. 

circle: within one grid; square: within two grids; diamond: within three grids. Grid points with dark 

shading are associated with the upper interface, which means that the calculation of the interface 

quantities involves these points. Grid points with light shading are associated with the lower interface. 

Note that the black points are involved in the calculation of both interface quantities such as curvature. 

Thus the two physically separated interfaces sense each other and crosstalk emerges. 

 

Fig. 3. Illustration of the extraction/insertion approach. The top figure is the original level set function at 

time t. The two figures in the middle show the extracted bodies to calculate separately the updated 

interface locations. In the bottom figure the updated locations are inserted back into the original level set 

function at time t t+ Δ . 

 

Fig.4. Shape evolution of an ellipse via surface diffusion. Computation with grid size 64 64× , grid 

spacing 0.05xΔ =  and time step 0.0001tΔ = . Results shown for time (a) 0 (b) 0.0012 (c) 0.005 (d) 0.03 

 

Fig. 5. Convergence check. (a) Temporal convergence. Computation with grid size 64 64× , grid spacing 

0.05xΔ = . The time step of the local semi-implicit method varies from 71 10t −Δ = ×  to 41 10t −Δ = × . The 

results are also compared to an explicit surface-diffusion simulation for a time step of 71 10t −Δ = × . (b) 
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Spatial convergence. Results shown for a time step of 71 10t −Δ = × . Grid spacing and associated grid size 

are: 0.0125xΔ =  ( )256 256× , 0.025xΔ =  ( )128 128× , 0.05xΔ =  ( )64 64× , and 0.1xΔ =  ( )32 32× . 

 

Fig. 6. Evolution of a shape with highly positive and negative curvatures. Computation with grid size 

128 128× , grid spacing 0.05xΔ =  and time step 0.0001tΔ = . Results shown for time (a) 0 (b) 0.005 (c) 

0.0075 (d) 0.015. 

 

Fig. 7. Evolution of an annulus bisected along a diagonal, with the interfaces separated by only 1.5 grid 

spacing at the beginning. Our local semi-implicit scheme accurately captures the motion without any 

spurious attraction between the ends of the two shapes. Both shapes evolve into the expected circles. 

Computation with grid size 128 128× , grid spacing 0.025xΔ =  and time step 65 10t −Δ = × . Results shown 

for time (a) 0 (b) 0.001 (c) 0.0025 (d) 0.01. 

 

Fig. 8. The proposed method accurately captures the coalescence of two bodies. Computation with grid 

size 128 128× , grid spacing 0.05xΔ = , and time step 0.0001tΔ = . Results shown for time (a) 0 (b) 0.01 

(c) 0.04 (d) 0.085 (e) 0.09 (f) 0.5. 

 

Fig. 9. Evolution of a star shape in three dimensions. Computation with grid size 64 64 64× × , grid 

spacing 0.025xΔ =  and time step 55 10t −Δ = × . Results shown for time (a) 0 (b) 0.005 (c) 0.01 (d) 0.015. 

 

Fig. 10. Pinching off of a dumbbell-like shape in three dimensions. Computation with grid size 

64 64 64× × , grid spacing 0.05xΔ =  and time step 0.0001tΔ = . Results shown for time (a) 0 (b) 0.001 (c) 

0.0016 (d) 0.01. 

 

Fig. 11. The evolution of a complex, non-symmetric body. Computation with grid size 64 64 64× × , grid 

spacing 0.1xΔ =  and time step 0.0001tΔ = . Results shown for time (a) 0 (b) 0.01 (c) 0.05 (d) 0.2 (e) 0.5 

(f) 1.0. 
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Fig. 2. (a) When two interfaces are close to each other, their calculation tubes can overlap. (b) Illustration 

of crosstalk between two interfaces before they physically contact due to the sharing of some grid point 

values. Grid points are marked with icons of different shapes to indicate their distance to the interface. 

circle: within one grid; square: within two grids; diamond: within three grids. Grid points with dark 

shading are associated with the upper interface, which means that the calculation of the interface 

quantities involves these points. Grid points with light shading are associated with the lower interface. 

Note that the black points are involved in the calculation of both interface quantities such as curvature. 

Thus the two physically separated interfaces sense each other and crosstalk emerges. 
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time t. The two figures in the middle show the extracted bodies to calculate separately the updated 
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function at time t t+ Δ . 
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Fig.4. Shape evolution of an ellipse via surface diffusion. Computation with grid size 64 64× , grid 

spacing 0.05xΔ =  and time step 0.0001tΔ = . Results shown for time (a) 0 (b) 0.0012 (c) 0.005 (d) 0.03 
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Fig. 5. Convergence check. (a) Temporal convergence. Computation with grid size 64 64× , grid spacing 

0.05xΔ = . The time step of the local semi-implicit method varies from 71 10t −Δ = ×  to 41 10t −Δ = × . The 
results are also compared to an explicit surface-diffusion simulation for a time step of 71 10t −Δ = × . (b) 
Spatial convergence. Results shown for a time step of 71 10t −Δ = × . Grid spacing and associated grid size 
are: 0.0125xΔ =  ( )256 256× , 0.025xΔ =  ( )128 128× , 0.05xΔ =  ( )64 64× , and 0.1xΔ =  ( )32 32× . 
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Fig. 6. Evolution of a shape with highly positive and negative curvatures. Computation with grid size 
128 128× , grid spacing 0.05xΔ =  and time step 0.0001tΔ = . Results shown for time (a) 0 (b) 0.005 (c) 
0.0075 (d) 0.015. 
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Fig. 7. Evolution of an annulus bisected along a diagonal, with the interfaces separated by only 1.5 grid 

spacing at the beginning. Our local semi-implicit scheme accurately captures the motion without any 

spurious attraction between the ends of the two shapes. Both shapes evolve into the expected circles. 

Computation with grid size 128 128× , grid spacing 0.025xΔ =  and time step 65 10t −Δ = × . Results shown 

for time (a) 0 (b) 0.001 (c) 0.0025 (d) 0.01. 
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Fig. 8. The proposed method accurately captures the coalescence of two bodies. Computation with grid 

size 128 128× , grid spacing 0.05xΔ = , and time step 0.0001tΔ = . Results shown for time (a) 0 (b) 0.01 

(c) 0.04 (d) 0.085 (e) 0.09 (f) 0.5. 
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Fig. 9. Evolution of a star shape in three dimensions. Computation with grid size 64 64 64× × , grid 
spacing 0.025xΔ =  and time step 55 10t −Δ = × . Results shown for time (a) 0 (b) 0.005 (c) 0.01 (d) 0.015. 

(a) (b)

(c) (d)



Page 10 of 11 

 

 
 
 
 
 
Fig. 10. Pinching off of a dumbbell-like shape in three dimensions. Computation with grid size 
64 64 64× × , grid spacing 0.05xΔ =  and time step 0.0001tΔ = . Results shown for time (a) 0 (b) 0.001 (c) 
0.0016 (d) 0.01. 
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Fig. 11. The evolution of a complex, non-symmetric body. Computation with grid size 64 64 64× × , grid 

spacing 0.1xΔ =  and time step 0.0001tΔ = . Results shown for time (a) 0 (b) 0.01 (c) 0.05 (d) 0.2 (e) 0.5 

(f) 1.0. 
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