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Abstract: 

Using the concept of surface stress, we developed a model that is able to predict the 

Young’s modulus of nanowires as a function of nanowire diameters from the calculated 

properties of their surface and bulk materials. We took both equilibrium strain effect and 

surface stress effect into consideration to account for the geometric size influence on the 

elastic properties of nanowires. In this work, we combined first-principles density 

functional theory calculations of material properties with linear elasticity theory of 

clamped-end three-point bending. Furthermore, we applied this computation approach to 

Ag, Au, and ZnO nanowires. For both Ag and Au nanowires, our theoretical predictions 

agree well with the experimental data in the literature. For ZnO nanowires, our 

predictions are qualitatively consistent with some of experimental data for ZnO 

nanostructures. Consequently, we found that surface stress plays a very important role in 

determining the Young’s modulus of nanowires. Our finding suggests that the elastic 

properties of nanowires could be possibly engineered by altering the surface stress of 

their lateral surfaces. 
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I. INTRODUCTION 

Currently, many powerful electromechanical devices can be designed and fabricated 

at the micro level such as microelectromechanical systems (MEMS). It is a highly active 

research forefront to develop future electromechanical devices with size in the nano 

scale, for instance, nanoelectromechanical systems (NEMS). 1 For example, a 

nanogenerator, which uses ZnO nanowires to convert mechanical energy to electrical 

energy, has been successfully fabicated.2 NEMS employs one-dimensional (1D) 

nanomaterials (nanowires, nanobelts, and/or nanotubes) as its active components to 

generate, transmit, and convert powers and motions. Hence, the dependence of the 

mechanical properties on the geometric size of 1D nanomaterials is a very important 

factor in affecting the performance of those 1D nanomaterials in the NEMS devices. So 

far, several different fashions of the size dependence of the elastic properties of 

nanomaterials have been revealed: (1) Young’s modulus increases with the decreasing 

size, for example, in Ag and Pd nanowires; 3,4 (2) Young’s modulus decreases with the 

decreasing size, for example, in Cr and Si nanocantilevers; 5,6 and (3) Young’s modulus 

shows little dependence of the size of the nanomaterials such as Au nanowires.7 

Moreover, for a same nanomaterial, different research groups could observe and report 

the opposite size-dependence of its elastic properties. For the case of 1D ZnO 

nanomaterials, some measurements 8-13 indicated that their Young’s modulus should be 

lower than the bulk modulus. In contrast, some investigations 14,15 declared the 

observation of the exact opposite trend.  

Despite of its significance, the mechanism for how the Young’s modulus of 1D 

nanomaterials depends on their size and surface conditions is barely understood. 
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Generally speaking, the surface of the nanomaterials will exert great influence on its 

overall mechanical properties. Consequently, the Young’s modulus of a 1D nanomaterial 

is believed to be determined by both bulk elastic modulus and surface elastic 

modulus.16,17 In other words, the elastic response of a 1D nanomaterial depends strongly 

on its surface elastic constant.18 The relative increase or decrease of the elastic properties 

of nanomaterials may be the results of surface bonding 19 and bulk nonlinear 

phenomena.20 Therefore, it is of great interest to quantitatively investigate how to predict  

the elastic properties of 1D nanomaterials from the properties of the surface and bulk 

materials. In this paper, we will present a model developed for that purpose.    

Our model mainly focuses on the role of surface stress effect in determining the 

Young’s modulus of 1D nanomaterials. Surface stress is defined as the reversible work 

per unit area required to elastically stretch a surface.21 The experimental data and analysis 

in Ref. 3 showed that a positive (tensile) surface stress will lead to an increase in Young’s 

modulus as the diameter decreases. Our previous theoretical study pointed out that a 

negative (compressive) surface stress is the reason for the observed decrease in Young’s 

modulus with decreasing diameter of the ZnO nanowires. 22 Recently, it was proposed 

that the surface stress effect are also responsible for the reduction in the resonant 

frequencies of fixed/fixed Si nanowires 23 and the asymmetric yield strength of Al 

nanowires. 24 Here, we further elucidate how the surface stress affects the Young’s 

modulus of nanowires.  

This paper is structured as follows: in Sec. II, we present our model that predicts the 

Young’s modulus of the nanowire with a given diameter based on surface stress effect; in 

Sec. III, we give the required properties of bulk and surface materials calculated using 
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first-principles density functional theory (DFT) method and then evaluate the Young’s 

modulus of the nanowires using our developed model. Our model predictions are 

compared with the available experimental data in this section; at last, final conclusions 

are drawn in Sec. IV.     

II. MODELS 

In this work, we derived the quantitative relation between the Young’s modulus of a 

nanowire (with a circular cross-section) and its material properties assuming clamped-end 

three-point bending loading condition.  

The total energy of such nanowire is expressed as the sum of the energy contributions 

from bulk and surface materials. We assumed the external surface of nanowires is a 

surface layer with a thickness of t. 

 )()(
4

)2( 2

εγπεπ DLLtDU +Ω
−

=                                                                             (1) 

where, )(εΩ is the bulk energy density in the nanowire core, )(εγ  is the surface energy 

of the nanowire surfaces, D is the diameter of the nanowire, and L is the length of the 

nanowire. 

A. Effect of equilibrium strain 

The equilibrium bulk material has the lowest energy at the zero-strain state of the 

crystal lattices. However, the lowest-energy configuration of the surface layers does not 

necessary have the same lattice parameters as the zero-strain state of the bulk materials. 

This is because the arrangement and separation of atoms are different in the surface and 
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in the bulk crystal. Hence, the bulk energy density )(εΩ  and the surface energy )(εγ can 

be written in the following forms. 

2
min 2
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Where, bK  is the bulk elastic modulus, sK  is related to the elastic modulus of infinitely 

large extended surface, and S
0ε  is the strain at which the surface energy reaches its 

minimum. minΩ and minγ are the minimal bulk energy density and the minimal surface 

energy, respectively. 

Thus, we could determine the equilibrium strain (ε*) in the nanowire 

through 0)( * =
∂
∂ ε
ε
U by considering Eqs. (1) and (2).  
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The existence of this equilibrium strain in the nanowires has already been revealed in 

previous molecular dynamics simulations. 25,26 The equilibrium strain would affect the 

elastic modulus of  the core (bulk) region of the nanowires.  

 If a nanowire is deformed by a strain δ from its equilibrium state (with an 

equilibrium strain ε*) under a load, then ( )*1 ε
εδ
+

=  (note: ε is the strain with respect to 

the equilibrium crystal lattice). 

Hence, the Young’s modulus contributed from the nanowire’s core should be: 
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B. Effect of surface stress 

Surface stress (
ε
γγ
∂
∂

+=g ) is the reversible work per unit area required to elastically stretch 

a surface. 21 When a circular nanowire is subject to a deformation, its total surface area will 

change by LD Δ− )1( νπ (ν is the Poisson’s ratio). Consequently, the energy change 

associated with the surface deformation of the nanowire is LgDU S Δ−=Δ )1( νπ . It is 

noted that the change of nanowire length ( LΔ ) is dependent upon the loading conditions: 

for axial tensile loading, LΔ  is linearly proportional to the strain; in contrast, LΔ  is 

proportional to the square of the deflection under clamped-end three-point bending. 

Clamped-end three-point bending test is most often used to measure the Young’s 

modulus of nanostructures. 4,7,11 In this work, we derive our model just for this loading 

condition. When a concentrated load P acts at the middle point of a nanowire with a 

length of L and fixed on both ends, the elastic deflection curve of the nanowire would be 

as follows. 27 
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For the nanowire with a circular cross-section, moment of inertia 
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The elongation of the nanowire under bending is given by 
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Consequently, the resistant force to the bending due to surface stress in the nanowire is 
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Hence, the Young’s modulus contributed from the nanowire’s surface should be: 
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Similar derivation has been done previously by Cuenot et al. 3 Note that Esurface in Eq. 

(8) is the Young’s modulus of the curved circular nanowire surface, different from Ks in 

Eqs. (2b) and (3) referring to the elastic modulus of the flat extended surface along a 

specific crystalline direction.   

C. Young’s modulus of nanowire 

Combining Eq. (4) and Eq. (8), we express the Young’s modulus of nanowires, which 

have circular cross-sections and are subject to clamped-end three-point bending, as the 

following function. 

 ( ) 3

2
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5
81

D
LgEE bnanowire νε −++=                                                                        (9) 

With the increase of the diameter (D) of the nanowires, the equilibrium strain ε* would 

approach to zero according to Eq. (3). Therefore, Enanowire in Eq. (9) would be equal to 

bulk Young’s modulus Eb when D reaches the limit of bulk materials. 

III. RESULTS 
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In order to examine the reliability of Eq. (9), we performed first-principles 

calculations on example materials Ag, Au, and ZnO, predicted their size-dependent 

Young’s modulus based on Eq. (9) using the calculated theoretical data, and further 

compared our predictions with experimental measurements. Our first-principles 

calculations for the three materials were performed using the VASP code. 28,29 We used 

the projector augmented wave method 30 and the generalized gradient approximation of 

Perdew and Wang 31 for exchange and correlation. We chose a kinetic energy cutoff of 

600 eV to expand the electronic wave functions in the plane wave basis. The energy 

convergence for all geometry optimization was set to be 1×10-5 eV. 

A. Bulk materials 

For Ag, Au, and ZnO in their bulk states, we computed the equilibrium lattice 

constants and the corresponding elastic constants using first-principles calculations. The 

results are given in Tables I and II. The equilibrium Ag and Au crystals have faced-

centered cubic (fcc) structures, while equilibrium ZnO has a wurtzite crystal structure. 

Through calculations, we are able to determine the lattice constants that lead to the 

minimal energy of the respective crystal structures. Using 16×16×16 k-point grid for k-

space integration, we determined the elastic constants of the crystals following the 

procedure given in Ref. 32 (for fcc Ag and Au) and Ref. 33 (for wurtzite ZnO). As shown 

in Tables I and II, our theoretical predictions agree well with the corresponding 

experimental data. Furthermore, we calculated the averaged bulk Young’s modulus and 

Poisson’s ratio from our theoretical results of the elastic constants. These two elastic 

properties of bulk materials are needed in Eq. (9) to predict the Young’s modulus of 

nanowires.        
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B. Surface materials 

For fcc Ag and Au, the (111) surface has the lowest surface energy and thus is the 

most probable external surfaces of their nanostructures. For ZnO nanowires grown along 

[0001] direction, ( 0110 ) and ( 0211 ) surfaces are their lateral facets. Consequently, we 

conducted the DFT relaxation calculations for the (111) surface slab of fcc Ag (and Au) 

and ( 0110 ) and ( 0211 ) surface slabs of wurtzite ZnO. In our surface calculations, we 

used a surface slab (with two surfaces) having Ns layers of atoms in a periodic supercell 

which contains Nb atomic layers in the direction normal to the surface. To simulate the 

(111) surface of fcc Ag and Au, we used a supercell spanned with three orthogonal 

directions ([111], [ 211 ] and [ 011 ]). In the supercell (Nb=12), there are seven layer of 

atoms (Ns=7, about 2t=14.4 Å thick of the Ag (111) slab and 2t=14.5 Å thick of the Au 

(111) slab) and five layers of vacuum. For the (111) surface calculations, we used 

8×12×2 k-point grid for k-space integration. For ( 0110 ) surfaces, we used a supercell 

(Nb=16) containing eight atom layers (Ns=8, about 2t=9.5 Å thick) and eight layers of 

vacuum. For ( 0211 ) surface, we used a supercell (Nb=12) containing six atom layers 

(Ns=6, about 2t=8.2 Å thick) and six layers of vacuum. For k-space integration, we used a 

10×6×2 k-point grid for ( 0110 ) surface and a 6×6×2 k-point grid for ( 0211 ) surface.    

Using slabs to simulate surfaces, we need conciliate two requirements: (a) the slab 

should be thin enough to represent two-dimensional surfaces and (b) the two surfaces of 

the slab should be separated far enough to minimize their interactions. In this work, we 

made our above choice of the thickness of the slabs by examining the separation of the 

layers in the slab after relaxation. For seven-layer Ag and Au (111) slab, the separation of 

the central layers differs by less than 0.2 % from the corresponding bulk value. For eight-



 10

layer ZnO ( 0110 ) slab, the separation of the central layers differs by 5 % from the 

corresponding bulk value in contrast the separation of the outermost surface layers differs 

by 49.8 % from the corresponding bulk value. For six-layer ZnO ( 0211 ) slab, the 

separation of the central layers differs by 3 % from the corresponding bulk value while 

the separation of the outermost surface layers differs by 18.1 % from the corresponding 

bulk value. In this way, we attained a slab model whose central region is very close to the 

bulk materials and surface regions are subjected to the relaxation in vacuum.  

Surface relaxation is quite insignificant for the (111) surfaces of Ag and Au. After 

geometry optimization, the outermost surface layer is found to move inward by 0.3 % of 

its bulk layer separation for Ag. This is close to the experimental measurement of about 

0.0% relaxation of Ag(111) surface. 41 For Au, we found that the outermost surface layer 

moves outward by 1.2 % of its bulk layer separation. Prior DFT calculations also 

predicted an outward motion of the outermost layer of Au (111) surface. 42  

However, significant relaxation in both ( 0110 ) and ( 0211 ) surfaces of ZnO have 

been observed from our calculations. In bulk terminated ( 0110 ) and ( 0211 ) surfaces, 

Zn-O dimers lay in parallel to the surface. In contrast, the Zn-O dimers would tilt relative 

to the surface after relaxation. We found in our calculations that: in the outermost layer of 

( 0110 ) surface, Zn cations move inward by ⊥Δd (Zn)= -0.34 Å and move laterally 

toward O by ||dΔ (Zn)= 0.16 Å, O anions move inward by ⊥Δd (O)= -0.002 Å, and the 

resultant tilt angle of Zn-O dimers to be ω= 10.6 °. Our results for the ( 0110 ) surface are 

in good agreement with the experimental data43 ( ⊥Δd (Zn)= -0.45±0.1 Å, ||dΔ (Zn)= 

0.1±0.2 Å, ⊥Δd (O)= -0.05±0.1 Å, and ω=12°±5°). We also found in the outermost layer 
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of ( 0211 ) surface the tilt angle for Zn-O dimers to be 7.7 ° and a 6.1 % reduction of the 

Zn-O bond length, consistent with previous DFT results. 44 

Furthermore, we calculated the surface energy (γ) and surface stress tensor (g) for the 

relaxed Ag, Au, and ZnO surfaces using Eq. (10) as suggested in Ref. 45.  

])/([
2
1

bbss ENNE
A

−=γ                                                                                       (10a) 

])/([
2
1 b
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A
g αβαβαβ σσ −=                                                                         (10b) 

where, A is the area on one side of the surface slab, Es, V, and s
αβσ  are the energy, 

volume, and stress tensor for the supercell containing the relaxed surface slab, Eb, Vb, and 

b
αβσ  are the energy, volume, and stress tensor of the equilibrium bulk materials in the 

supercell.  

To examine strain effect, we deformed the surfaces by a strain of ε, relaxed the 

surface slabs at each given strain, and calculated the corresponding surface energy and 

surface stress using Eq. (10). In Figure 1, we plot the calculated surface energies and 

surface stresses as a function of strain ε for Ag, Au, and ZnO.  For Ag and Au, we 

deformed the (111) surfaces along both [ 211 ] and [ 011 ] directions. For ZnO, we 

expanded the ( 0110 ) and ( 0211 ) surfaces along the [0001] direction.  

 Figure 1(a) shows that the surface energy of Ag (111) varies with the strain in a 

quadratic function form. The surface energy will have its minimum value at a strain of 

0.3 % along [ 211 ] direction and a strain of -0.6 % along [ 011 ] direction. Based on Eq. 

(3), the equilibrium strain in the Ag nanowires would be larger than -0.6 %. The surface 

stress exhibits a linear function of strain and is always positive when the strain in the 
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surface is larger than -0.7 %. Hence, surface stress will enhance (or stiffen) the Young’s 

modulus of Ag nanowires according to Eq. (9). It is noticeable in the lower panel of Fig. 

1 that the calculated surface stresses along [ 211 ] and [ 011 ] directions are not equal to 

each other at the zero strain state of Ag (111) surface. This result is quite puzzling, 

because the surface stress should be isotropic for the undeformed (111) surface of fcc 

crystals owning to its three-fold rotational symmetry. 25 In some further tests, we found 

that a non-negligible discrepancy in the calculated surface stress along the two directions 

still exists even after we increase the k-points for integration, vary the number of surface 

layers in our model, and/or switch to ultra-soft pseudopotential. Consequently, it appears 

that there is some numerical error in determining surface stresses using DFT method.  

However, our results (Fig. 3) will show that such errors in the values of calculated 

surface stress do not have much effect on our model prediction of Young’s modulus of 

Ag nanowires.    

Figure 1(b) for Au (111) surface indicates that the minimum of its surface energy will 

be at a strain of -2.1 % along [ 211 ] direction and a strain of -1.8 % along [ 011 ] 

direction. The surface stress would change from negative to positive at the strain of -2.9 

% along the [ 211 ] direction and the strain of -2.1 % along the [ 011 ] direction. 

Conceivably, surface stress will enhance the Young’s modulus for Au nanowires. 

In stark contrast to the results of Ag and Au, it is seen in Fig. 1(c) for the two surfaces 

of wurzite ZnO that the surface energies decrease with the expansion strain up to about 

2.5 %, while the surface stresses (along [0001] direction) increase with the strain and 

change signs (from negative to positive) at the strain about 1.25 %. Thus, our results in 

Fig. 1(c) qualitatively point out that along [0001] direction the non-polar surfaces with a 
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strain below 1.25 % would facilitate elastic deformation and decrease (or soften) the 

elastic modulus of 1D ZnO nanomaterials.  

C. Model predictions 

Figures 1 (b) and (c) show clearly that the surfaces do not always have their minimum 

energy configuration at the state with a zero strain, where the bulk materials would reach 

their minimum energy. Thus, the surfaces will exert a contraction (for Au) or expansion 

(for ZnO) force on the whole nanowires. As a result, it is expected that the equilibrium 

Au nanowires are shorter than their bulk material counterparts and the equilibrium ZnO 

nanowires are longer than their bulk material counterparts. To quantify this equilibrium 

strain, we calculated the energy variations with the strains for bulk materials using DFT 

method. Then, we employed Eq. (3) to find the equilibrium strain (ε*) for the nanowires 

with different diameters. We plotted the calculated equilibrium strain compared to the 

bulk lattice parameters in Fig. 2 for Ag, Au, and ZnO.  Using the surface energies of 

( 0110 )/[0001] and ( 0211 )/[0001] in Fig. 1(c), we predict an appreciable elongation 

(positive equilibrium strain) in the equilibrium ZnO nanowires; using the surface energies 

of (111)/[ 211 ] and (111)/[ 011 ] in Fig. 1(b), we predict an appreciable contraction 

(negative equilibrium strain) in the equilibrium Au nanowires. However, we found in the 

equilibrium Ag nanowires a small positive strain using the surface energies of 

(111)/[ 211 ] (Fig. 1(a)) but a small negative strain using the surface energies of 

(111)/[ 011 ] (Fig. 1(a)). 

Through first-principles calculations, we have determined the value of bulk Young’s 

modulus (Eb), Poisson’s ratio (ν), equilibrium strain (ε*), and surface stress (g) as a 
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function of strain. In this work, we assume L=1000 nm, which is the typical suspended 

length of the nanowires in atomic force microscopy three-point bending tests. Inputting 

all those calculated material-dependent parameters into Eq. (9), we predict the Young’s 

modulus of the nanowires for Ag (Fig. 3), Au (Fig. 4), and ZnO (Fig. 5) as a function of 

their diameters.         

In Fig. 3, we predict that the Young’s modulus of Ag nanowire increases when its 

diameter decreases. This is because Ag (111) surfaces have a positive surface stress and 

thus enhance the Young’s modulus of the nanowires. Moreover, our theoretical 

predictions (lines) agree excellently with experimental measurement data (circles) in Fig. 

3. Moreover, our model predicts in Fig. 4 that the Young’s modulus of Au nanowire 

would also increase when its diameter decreases due to its positive surface stress.  

Although it was believed that the Young’s modulus of Au nanowires is “independent” of 

diameter in Ref. 7, Fig. 4 shows that the same experimental data (especially the data for 

the Au nanowires with diameters around 50 nm) are actually consistent with our model of 

enhancing Young’s modulus for Au nanowires.  

It is worth mentioning that the increase of the Young’s modulus with the decreasing 

diameter of Au nanowires is quite slow when the nanowire diameters are larger than 75 

nm. The calculated Young’s modulus of the Au nanowire with a diameter of 75 nm is 

only about 9 % higher than the bulk Young’s modulus of Au. This apparent 

“independency” is a result of two effects: (1) a compressive (negative) equilibrium strain 

in the nanowire core leads to a decrease of the Young’s modulus of the nanowires, and 

(2) a positive surface stress in the nanowire surface leads to an increase of the Young’s 

modulus of the nanowires. When the diameter of Au nanowires are small (less than 75 
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nm), surface stress effect becomes dominant and is responsible for the sharp increase of 

the Young’s modulus as shown in Fig. 4. 

Plotted in Fig. 5 for ZnO nanowires with D>20 nm, our model predicts a decrease in 

their Young’s modulus when reducing their diameters. This is due to the negative surface 

stress of ZnO surfaces (see Fig. 1(c)). At this moment, there are no available (three-point 

bending) experimental data of the Young’s modulus of ZnO nanowires for us to directly 

compare our theoretical predictions with. However, there is much experimental evidence 

that ZnO nanostructures have a lower elastic modulus than ZnO bulk materials. 8-13 Thus, 

our model prediction in Fig. 5 is qualitatively consistent with those measurements. We 

also notice that some studies report that ZnO nanowires have higher Young’s modulus 

that increases with the decreasing size. 14,15 Here, we postulate an explanation to this 

discrepancy in the literature. Our results in Figs. 1(c) and 5 are obtained from the fully-

relaxed ZnO surfaces, which are quite different from the corresponding bulk terminated 

surfaces (see details in Sec. III.B). We found from our calculations for ZnO that the 

surface stresses are negative for the fully-relaxed surfaces but positive for the un-relaxed 

bulk terminated surfaces. This suggests that the value (positive or negative) of surface 

stress may strongly depend on the extent of the surface relaxation process. Surface 

relaxation process can be changed by surface contamination or surface charges, 46 which 

can be introduced during sample preparation and measurement process. Thus, the 

Young’s modulus of ZnO nanowires with a same diameter might exhibit different values 

due to the surface stress effect for various surface conditions of the experimental samples.     

Although our model (Eq. (9)) leads to satisfactory agreement between the theoretical 

and experimental data for nanowires with a diameter larger than 20 nm, some further 
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improvement is required to accurately predict the Young’s modulus of small nanowires 

with a diameter below 20 nm. For example, we express the total energy of nanowires as a 

linear combination of its bulk and surface contribution in Eq. (1). When the nanowires 

have very small diameters, some non-linear term must be included to that equation. In 

addition, we currently use a flat, extended surface slab to model the nanowire surfaces. 

For small nanowires, their surfaces are highly curved and hence have a significant 

transverse stress (strain) component. Thus, the curvature effect must also be properly 

addressed in an elaborated model for small nanowires.                           

IV. CONCLUSIONS 

In this work, we first developed a model to predict the Young’s modulus of 

nanowires from the properties of the corresponding bulk and surface materials. We 

included two effects (equilibrium strain and surface stress) in our model to account for 

the geometric size influence on the elastic properties of nanowires. To accurately 

describe the surface stress effect, we must know the exact deformation process of 

nanowires. This is because different loading conditions (for example, axial tensile test 

and three-point bending test) would lead to different values of the changes in the length 

and surface area of the nanowires during the elastic deformation. For a direct comparison 

to experimental data, we focus on studying the clamped-end three-point bending loading 

condition.     

Furthermore, we calculated the bulk and surface properties of the materials using 

first-principles DFT method. The calculated properties include Young’s modulus, 

Poisson’s ratio, surface energy, and surface stress. Taking those theoretical data as inputs, 

we predicted the Young’s modulus of Ag, Au, and ZnO nanowires as a function of 
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nanowire diameter. To validate our model and approach, we compared our theoretical 

results with the experiment measurement results. It is found that our model predictions 

for Ag and Au nanowires agree excellently with those experimental data. For ZnO 

nanowires with D>20 nm, our predictions also agree qualitatively with a series of 

experimental results. We believe that the agreement between our model and experimental 

data is remarkable since we did not introduce any empirical data modifications in our 

theoretical approach. 

Our model reveals two major effects that the surface exerts on the elastic deformation 

process of nanomaterials. First, the surface may have different minimum-energy lattice 

parameters than the bulk lattice parameters of the material and thus result an equilibrium 

strain in the nanowire core region. Second, the surface may have tensile or compressive 

surface stress that is the energy required to elastically deform the surface. A tensile 

surface stress would lead to an increase in Young’s modulus with the decreasing size of 

nanowires, while a compressive surface stress would lead to a decrease in Young’s 

modulus with the decreasing size of nanowires.  

Our model indicates that the tensile (positive) surface stress is the reason for Ag and 

Au nanowires showing an enhanced Young’s modulus when reducing nanowire 

diameters. This viewpoint has been accepted owning to the support of myriads of 

experimental and simulation studies. 4,7,25 Our model also points out that the compressive 

(negative) surface stress in ZnO nanowires (with D> 20 nm) would lead to a softened 

Young’s modulus when reducing nanowire diameters. We notice that some other 

materials, such as Si, 6 GaN, 47-49 and ZnS, 50,51 exhibit the reduced Young’s modulus 

when decreasing the size of their nanomaterials. Hence, we proposed based on our results 
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that the compressive surface stress, which is an inherent material property, is responsible 

for the observed lower Young’s modulus of those nanomaterials compared to their bulk 

modulus.      

Since surface stress plays a very important role in determining the Young’s modulus 

of nanomaterials, it is reasonable to expect that the elastic properties of nanomaterials 

could be engineered by altering the surface stress through rational control of the 

adsorptions, charges, structure, and impurities in the surfaces. 
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Table: 

TABLE I. Calculated equilibrium lattice constants (a), elastic constants (C11, C12, and 

C44), Young’s modulus (E), and Poisson’s ratio (ν) of fcc Ag and Au using first-

principles DFT method. For comparison, the experimental values are also given.  

 Ag  Au 

 This work Exp.  This work Exp. 

a (Å) 4.159 4.09 a  4.174 4.08 a 

C11 (GPa) 117.7 124 b  165.9 186 b 

C12 (GPa) 90.3 93.4 b  142.2 157 b 

C44 (GPa) 38.0 46.1 b  26.7 42 b 

E (GPa) 77.5 c 79 e  59.5 c 80 e 

ν 0.370 d 0.38 e  0.434 d 0.42 e   

a Reference 34. 

b Reference 35. 

c 
( )( )

441211

1211441211

32
23

CCC
CCCCC

E
++

++−
=   

d 
( )

( ) 1
322

25

441211

1211 −
++

+
=

CCC
CC

ν  

e Reference 36. 
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TABLE II. Calculated equilibrium lattice constants (a and c), internal parameter (u), 

elastic constants (C11, C12, C13, C33, and C55), Young’s modulus (E), and Poisson’s ratio 

(ν) of wurtzite ZnO using first-principles DFT method. For comparison, the experimental 

values are also given.  

 This work Exp. 

a (Å) 3.282 3.2496 a 

c (Å) 5.292 5.2042 a 

u 0.380 0.3819 b 

C11 (GPa) 191.7 209.7 c 

C12 (GPa) 110.0 121.1 c 

C13 (GPa) 96.7 105.1 c 

C33 (GPa) 203.4 210.9 c 

C55 (GPa) 37.2 42.5 c 

E (GPa)  113.8 d 111.2 e 

ν 0.357 d - 

a Reference 37. 

b Reference 38. 

c Reference 39. 
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d ( )( )
HGF

GFHGFE
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here, 
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e Reference 40. 
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Figure Captions: 

Figure 1. Variation of the surface energies (γ) and the surface stresses (g) along (a) the 

[ 211 ] and [ 011 ] directions of Ag (111) surface, (b) the [ 211 ] and [ 011 ] 

directions of Au (111) surface, and (c) the [0001] direction of ZnO ( 0110 ) 

and ( 0211 ) surfaces. In the figures, the dashed lines in the upper panel are the 

quadratic function fitting of calculated surface energy data and the dashed 

lines in the lower panel are the linear fitting of calculated surface stress data. 

Figure 2.  Calculated equilibrium strains in the equilibrium Ag, Au, and ZnO nanowires 

as a function of nanowire diameter.  

Figure 3.  Size dependency of the Young’s modulus of Ag nanowires enclosed by (111) 

surfaces. The solid line and dashed line show the model predictions using the 

surface properties of (111)/[ 211 ] and (111)/[ 011 ], respectively. For 

comparison, the experimental data from Ref. 4 are plotted as circles.  

Figure 4. Size dependency of the Young’s modulus of Au nanowires enclosed by (111) 

surfaces. The two dashed lines (overlapped with each other) show the model 

predictions using the surface properties of (111)/[ 211 ] and (111)/ [ 011 ]. For 

comparison, the experimental data from Ref. 7 are plotted as circles.  

Figure 5. Predicted size dependency of the Young’s modulus of ZnO nanowires enclosed 

by ( 0110 ) surfaces (solid line) or ( 0211 ) surfaces (dashed line). 
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