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a b s t r a c t

Lipid bilayers are the fundamental constituents of the walls of most living cells and lipid vesicles, giving
them shape and compartment. The formation and growing of pores in a lipid bilayer have attracted
considerable attention from an energetic point of view in recent years. Such pores permit targeted
delivery of drugs and genes to the cell, and regulate the concentration of various molecules within the
cell. The formation of such pores is caused by various reasons such as changes in cell environment,
mechanical stress or thermal fluctuations. Understanding the energy and elastic behaviour of a lipid-
bilayer edge is crucial for controlling the formation and growth of such pores. In the present work, the
interactions in the molecular level are used to obtain the free energy of the edge of an open lipid bilayer.
The resulted free-energy density includes terms associated with flexural and torsional energies of the
edge, in addition to a line-tension contribution. The line tension, elastic moduli, and spontaneous normal
and geodesic curvatures of the edge are obtained as functions of molecular distribution, molecular
dimensions, cutoff distance, and the interaction strength. These parameters are further analyzed by
implementing a soft-core interaction potential in the microphysical model. The dependence of the
elastic free-energy of the edge to the size of the pore is reinvestigated through an illustrative example,
and the results are found to be in agreement with the previous observations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A phospholipid molecule consists of a hydrophilic head and two
hydrophobic fatty-acid tails [1]. When suspended in an aqueous
solution at sufficient concentrations, phospholipid molecules self-
assemble into structures such as lipid bilayers, in order to shield the
tail groups from the solvent [2,3]. Lipid bilayers are the main
constituents of cell membrane in most living organisms, as well as
model membranes such as liposomes [4]. They provide the cell and its
substructures with compartment and shape, and further, function as
barriers for water-soluble molecules such as water, ions, and proteins
[5,6]. Lipid bilayers are composed of two adjacent leaflets of phos-
pholipid molecules oriented transversely and set tail-to-tail.

Forming of open edges in lipid membranes results in the
exposure of the tail groups at the edge to water [4], which is
energetically unfavourable. As a result, phospholipid molecules
rapidly rearrange around the exposed edge, forming a semicylind-
rical rim along it. This rearrangement is the source of a line energy
at the edge. In order to eliminate this edge energy, lipid bilayers
commonly tend to form closed structures such as spheroids [7].
Nevertheless, they can transiently open due to various stimuli such

as mechanical stresses and thermal instabilities. The formation of
these transient pores is essential for regulation of PH, transmem-
brane electrochemical potential, and concentrations of different
molecules in the cell [5]. Additionally, transient open membranes
are formed during electro-formation [8]. More recently, stabilizing
pores and control over their size have been pursued by means of
electric fields [9], sonication [10], and use of edge-active chemical
agents [11]. The rapid progress in these techniques has attracted
increasing attention to the study of the open lipid bilayers,
including molecular dynamic simulations, as well as continuum
mechanical treatment and numerical investigations of the equili-
brium configurations [12,13].

Theoretical studies of the equilibrium and stability of pored
membranes have mainly relied on constitutive assumptions for
the edge, which neglect its flexural and torsional elasticity. For
instance, Boal and Rao [14], Capovilla et al. [15], and Tu and Ou-
Yang [16,17] considered the edge energy of an open lipid bilayer as
a given constant. Tu and Ou-Yang [18] considered dependence of
the edge energy on its geometry, namely geodesic and normal
curvatures. Nevertheless, their assumptions on the form of the line
energy have not been precisely justified.

May [19] obtained the line energy of a lipid bilayer edge
through optimization of the lipid packing at the vicinity of the
edge. He modeled the edge as a semicylindrical micelle, and took
the free energy per molecule to depend upon the chain length of
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the molecules, their cross-sectional area, and the strength of the
interactions of the molecules with each other and with the
surrounding solution. Although successful in obtaining the line
tension that framework did not capture the bending and torsional
energetics of the edge. The gap in the literature to successfully
relate the macro-scale edge energy to its microstructure has
motivated the current study.

The interactions between the constituent molecules of a material
may be used to obtain the free-energy density function of that
material. For instance, Keller and Merchant [20] have employed such
a microphysical approach to extract the internal energy, surface
tension, and bending energy of a liquid surface and to relate its
bending rigidity to the molecular density and interaction potential. In
a recent application of the work of Keller and Merchant [20], the
Canham–Helfrich free-energy density for a lipid vesicle was derived
based on microphysical considerations [21]. Using the same approach,
a model for the elastic free-energy of wormlike micelles was derived
[22]. In doing so, the surfactant molecules comprising the wormlike
micelle were assumed to have constant length, and thus, were
modeled by one-dimensional rigid rods. The resulted expression for
the free energy was found to be quadratic in the curvature and torsion
of the centerline of the micelle [22].

The current study adopts the microphysical approach of Keller and
Merchant [20] to investigate the elastic behaviour of the edge of a lipid
bilayer. Following May [19] and motivated by previous studies [23–
26], the edge is modeled as a semicylindrical surface. In addition, the
phospholipid molecules comprising the edge are modeled as one-
dimensional rigid rods of constant length, oriented perpendicular to
the centerline of the edge. The applied framework enables us to
extract the form of the free energy and the flexural and torsional
moduli of the edge, based on the intermolecular energetic interaction
between phospholipid molecules.

To find the free-energy density of the edge at a position x, we
account for the interactions between all phospholipid molecules on
the edge within a cutoff distance δ from the molecules at x. We
assume that the phospholipid molecules are perpendicular to the
centerline of the edge. Our derivation relies on Taylor series expansions
with respect to a dimensionless parameter ϱ≔δ=ℓ⪡1, where ℓ is a
characteristic size parameter of the edge, such as its length. For ℓ taken
as the length of the edge (or equivalently, the perimeter of a pore), it
can be related to the thickness or the length of the constituent
molecules, if the density of the molecules along the edge and their
aspect ratios are provided. The net free-energy of the edge results from
integrating the free-energy density ϕ over the centerline of the edge.

The paper is structured as follows. In Section 2, required
mathematical definitions are presented. Modeling assumptions
for the edge of an open lipid bilayer are synopsized in Section 3.
Section 4 is concerned with the derivation of the free-energy
density of such an edge. In Section 5, the consequences of choosing
a spheroidal-particle potential (Berne and Pechukas [27] and Gay
and Berne [28]) are considered to obtain the material parameters
present in the derived model. As an illustrative example, a
simplified model for a pore on a lipid bilayer is given in Section
6, and the parameters obtained in Section 5 are used to find the
free-energy of the pore as a function of its size. Finally, the key
findings of the study are summarized and discussed in Section 7.
Details of the various derivations are provided in the Appendix.

2. Differential geometry of the bounding curve of a surface

Consider a smooth, orientable, open surface S representing the
open lipid bilayer, with boundary C¼ ∂S, as depicted schematically
in Fig. 1. Let

C¼ fx : x¼ xðsÞ;0rsrLg; ð1Þ

denote the arclength parametrization of the closed boundary
curve C. On denoting the differentiation with respect to the
arclength s by a superposed dot, it follows that j _x j ¼ 1, and thus,

_x � €x ¼ 0 and j _x � €x j ¼ j €x j : ð2Þ
The unit tangent of C is introduced, in terms of the arclength
parametrization x, by

t≔ _x: ð3Þ
Since the unit tangent t has a constant length, its arclength
derivative _t ¼ dt=ds is perpendicular to it, and thus, perpendicular
to the curve C. The orientation of _t is called the unit normal of C,
and is denoted by N. The curvature vector κ at any point of C is
then defined by the arclength derivative of the unit tangent t as

κ≔_t ¼ κN; ð4Þ
where κ denotes the magnitude of the curvature of C at that point,
which is given in terms of the arclength parametrization x by

κ ¼ j _x � €x j ¼ j €x j : ð5Þ
For an arbitrary point on curve C at which κa0, the unit binormal
vector is defined by B¼ t�N. The unit tangent t, unit normal N,
and unit binormal B at each point of C, form the Frenet frame
ft;N;Bg at that point.

The torsion τ of C is defined by _B ¼ �τN, and is expressed in
terms of the arclength parametrization x as

τ¼ _x � ð €x � x
…Þ

j €xj2 : ð6Þ

The torsion τ of C describes the tendency of the curve C to move
out of its osculating plane at a given point, or, equivalently, it
measures the turnaround of the unit binormal B of C at a given
point. In general, a space curve is determined up to a rigid
translation, by its two locally invariant quantities: the curvature
κ and torsion τ, both in terms of the arclength parameter s.

On the boundary curve C of the surface S, the unit normal to
the surface is denoted by n. Also, since _x is a unimodular vector, its
arclength derivative €x is perpendicular to _x, and thus, can be
considered as a linear combination

€x ¼ κnnþκgn� _x; ð7Þ

Fig. 1. Mathematical identification of an open lipid bilayer as an open surface S
with boundary C¼ ∂S on which a Darboux frame has been shown. Also the
schematic arrangements of phospholipid molecules in an interior point on S and
at the vicinity of the edge C are depicted at a point.
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of the unit normal n, and the product n� _x. Notice that the unit
normal n to the surface S is different from the unit normal N of the
curve C. Further, let p denote the unit vector in the tangent plane
of S perpendicular to the unit tangent t while pointing outward.
We call p the unit tangent-normal. The set of unit normal n to the
surface S at C, unit tangent-normal p, and the unit tangent t,
which is t ¼ n� p, form the oriented basis ft;n;pg on C, known as
the Darboux frame (Fig. 1). Considering that the normal N and
binormal B of the Frenet frame of C are also perpendicular to t,
they both lie in the plane spanned by the normal n and tangent-
normal p of the Darboux frame. Therefore, they are related to n
and p by

N¼ ð cosψ Þn�ð sinψ Þp;
B¼ ð sinψ Þnþð cosψ Þp;

)
ð8Þ

where ψ denotes the angle between the unit normal N of the curve
C and the unit normal n to the surface S. Following the proof
provided in Appendix A, derivatives of t, n, and p with respect to
the arclength s along C are expressed as

_t
_n
_p

2
64

3
75¼

0 κ cosψ �κ sinψ
�κ cosψ 0 τþ _ψ
κ sinψ �τ� _ψ 0

2
64

3
75

t
n
p

2
64

3
75: ð9Þ

The quantity

τg ¼ τþ _ψ ; ð10Þ
is called geodesic torsion of the curve C on S. This quantity
describes the rate of the rotation of the tangent plane of the
surface S about the unit tangent to the curve C with respect to the
arc length s [29]. Also, τg can be expressed alternatively as

τg ¼ _x � ðn� _nÞ: ð11Þ
Further, the curvature vector κ of the curve C on the surface S is
the sum of the normal curvature vector κn, and the tangential (or
geodesic) curvature vector κg , i.e.

κ¼ κnþκg : ð12Þ
The normal curvature vector κn is the projection of the curvature
vector κ along the normal n of the surface S. The geodesic
curvature κg is perpendicular to the unit normal n to the surface,
and, thus, lies in the tangent plane of the surface S. Hence,
κn ¼ ðκ � nÞn and κg ¼ n� ðκ � nÞ: ð13Þ
According to (4), the curvature vector κ of C is κ¼ κN. Since ψ
denotes the angle between N and n, the magnitude κn of the
normal curvature κn is

κn ¼ κ � n¼ κN � n¼ κ cosψ : ð14Þ
The magnitude κg of the tangential (or geodesic) curvature vector
κg is a bending invariant and is given by

κg ¼ �p � _t ¼ �κp � N¼ ðn� tÞ � _t : ð15Þ
According to _t ¼ κN, and

n¼ ð cosψ ÞNþð sinψ ÞB; ð16Þ
the right-hand side of (15) results

κg ¼ κgðn� tÞ where κg ¼ κ sinψ : ð17Þ
As mentioned earlier, the geodesic curvature vector κg at any point
of the curve C on the surface S is the vectorial projection of the
curvature vector κ of the curve C into the tangent plane of the
surface S at that point. This quantity is an intrinsic property of the
surface, which reflects the deviation of the curve C from a geodesic
on the surface S [30]. In general, for a geodesic, the geodesic
curvature κg at any point is zero. Further, for a geodesic, the unit
normal N of the curve C coincides with the unit normal n of the

surface S, or, equivalently, the osculating plane of C at each point is
perpendicular to the tangent plane of the surface S at that point
[29]. This means that the Darboux frame and the Frenet frame for
a geodesic are the same at any point.

According to (10), and the right-hand sides of (14) and (17), the
arclength derivatives of ft;n;pg in (9) take the form

_t ¼ κnn�κgp;
_n ¼ �κntþτgp;
_p ¼ κgt�τgn:

9>=
>; ð18Þ

3. Modeling assumptions

The phospholipid molecules comprising the edge are allocated in a
way that their hydrophilic parts lie on a thin semicylindrical surface as
shown in Fig. 2 to form a core shielding the hydrophobic tails from the
surrounding solution. The centerline of the edge is denoted by a
boundary curve C. The following assumptions, which are based on the
previously reported observations [23,24,26,31,32], are considered to
model the edge of an open lipid bilayer:

ðiÞ The phospholipid molecules comprising the edge are modeled
as one-dimensional rigid rods of the same length a.

ðiiÞ The lipid molecules are assumed to be perpendicular to the
centerline C, residing in the plane spanned by the unit normal
n and the unit tangent-normal p, as depicted in Fig. 2. This
assumption is valid as long as the concentration of the lipid
molecules on the edge C is sufficiently high.

ðiiiÞ The phospholipid molecules at any cross-section of the edge
have uniform angular distribution.

ðivÞ The distribution of the phospholipid molecules at any point
along C is denoted by the molecular density function Π40. In
contrast to the angular distribution, which is assumed to be
uniform because of symmetry considerations, the molecular
distribution along C may be non-uniform as a result of
localized curvature.

Consider a lipid molecule at the position corresponding to s on
C with orientation θ measured counterclockwise from the corre-
sponding tangent-normal pðsÞ, as depicted schematically in Fig. 2b.
Let the director dðs;θÞ denote the orientation of this molecule. By
the second assumption, such a director can be expressed as a
linear combination

dðs;θÞ ¼ ð cosθÞpðsÞþð sin θÞnðsÞ; ð19Þ

Fig. 2. (a) The schematic of a section of the edge of an open bilayer, (b) cross-
sections of the edge at positions xðsÞ and xðtÞ with Darboux frame ft;n;pg at those
positions.
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where pðsÞ and nðsÞ denote the tangent-normal and the unit
normal (to S) at the position corresponding to s.

4. Derivation of the free-energy density

In this section, the free-energy density of the edge of an open
lipid bilayer is derived by taking into account the interactions
between the molecules comprising the edge. To do so, a micro-
physical approach is applied, guided by the work of Keller and
Merchant [20].

Consider two molecules, with directors d and d0, located
respectively at positions x and x0 interior to C. Let the interaction
energy (encompassing steric, electrostatic, and other relevant
effects) between the molecules under consideration be denoted by

Ωðx; x0;d;d0Þ: ð20Þ

Following Keller and Merchant [20], we assume that the interac-
tion energy between two molecules separated by more than a
fixed cutoff distance δ vanishes, in which case

Ωðx; x0;d;d0Þ ¼ 0 if jx�x0 j4δ: ð21Þ

In the present setting, the cutoff distance δ is required to be small
relative to the characteristic length ℓ of the edge, so that a
dimensionless measure ϱ of cutoff distance obeys

ϱ≔
δ
ℓ
⪡1: ð22Þ

Hereafter, we restrict attention to interaction energies Ω that are
of the form (20) but are also frame indifferent [33]. It then follows
that Ωðx; x0;d;d0Þ may depend on the positions x and x0 and the
directors d and d0 only through the length jx�x0 j of the vector
between x and x0, the dot products ðx�x0Þ � d and ðx�x0Þ � d0

formed by the directors and that vector, and the dot product d �
d0 formed by the directors. Like Keller and Merchant [20], we
assume that the dependence of the interaction energy on the
length of the relative position vector is scaled by the ratio ϱ
defined in (22) and, thus, that

Ωðx; x0;d;d0Þ ¼ 2 ~Ωðϱ�2r � r; r � d; r � d0;d � d0Þ; ð23Þ

with r¼ x�x0. The factor of two on the right-hand side of (23) is
for simplifying later calculations. Notice that Ω depends explicitly
on δ, whereas ~Ω does not. Consequently, (21)–(23) yield

~Ωðs2;ρ1;ρ2;ρ3Þ ¼ 0 if s4ℓ; ð24Þ

where

ρ1 ¼ sϱr̂ � d; ρ2 ¼ sϱr̂ � d0; ρ3 ¼ sϱd � d0; ð25Þ

with r̂ being the unit vector corresponding to the intermolecular
vector r.

As a consequence of the foregoing discussion, the net free-
energy ϕnet of the edge can be expressed as

ϕnet ¼
Z L

0

1
2

Z π=2

�π=2
ωðs;θÞ dθ

 !
ΠðsÞ ds; ð26Þ

where

ωðs;θÞ ¼
Z L

0

Z π=2

�π=2
Ω xðsÞ; xðtÞ;dðs;θÞ;dðt;ηÞ� �

ΠðtÞ dη dt ð27Þ

is the free energy due to the interactions between the molecule
with director dðs;θÞ at xðsÞ with all other molecules and where a
factor of one-half compensates for the double counting of inter-
actions arising from integrating over both s and t from 0 to L. From

(26), the free-energy density ϕ at position xðsÞ on C is simply

ϕ¼ 1
2

Z π=2

�π=2
ωðs;θÞ dθ

 !
ΠðsÞ: ð28Þ

The function Π denotes the density of the lipid molecules at any
point of the curve C. Following the proof which relies on the
Taylor series expansion of the integrand of (28) with respect to
ϱ up to the second derivative term, provided in Appendix B, (28)
becomes

ϕ¼ k○þk1κ2gþk2κ2nþk3κgþk4κnþk5κnκgþk6τ2g ; ð29Þ

which includes a quadratic expression in terms of κg , κn, and τg. Also,
k○ and the coefficients ki in (29) are provided in Appendix B. Notice
that k○ is the standard line energy of the edge—the part which is
independent of edge geometry—while the coefficients ki, i¼ 1;2;5;6
represent the flexural and torsional rigidities of the edge. Up to the
second derivative term of the Taylor expansion considered here, the
derived model (29) contains the linear terms of the normal curvature
κn and the geodesic curvature κg of the boundary curve C, while it
does not incorporate the linear term of the geodesic torsion τg of C.
Considering a simplification of (29) in the form

ϕ¼ k
�
○þk1ðκg�κg○Þ2þk2ðκn�κn○Þ2þk5κnκgþk6τ2g ; ð30Þ

where

κg○ ¼ � k3
2k1

; κn○ ¼ � k4
2k2

; and k
�
O ¼ kO � k23

4k1
� k24

4k2
; ð31Þ

it can be inferred that the remaining coefficients k3 and k4 are related
to the spontaneous geodesic and normal curvatures κg○ and κn○ of C.
This transpires that our model captures the spontaneous normal and
geodesic curvatures κn○ and κg○ of the edge, while a spontaneous
geodesic torsion is absent from the free energy. Further, (29) and (30)
include the coupling of the normal curvature κn and the geodesic
curvature κg via the term κnκg . However, the couplings of the geodesic
torsion τg with the normal and geodesic curvatures κn and κg are
absent. Our calculations show that the latter terms only appear by
including higher order terms in the Taylor expansion, and hence, are
of less significance. In addition, if the molecules have non-uniform
angular distribution, i.e. the molecular distribution function Π is
allowed to depend upon θ or η, the model would also include a
linear term in geodesic torsion τg that would lead to the presence of a
spontaneous geodesic torsion.

The first term k○ on the right-hand side of (30) is insensitive to
the shape of the boundary. Since the molecular distribution on the
boundary has implicit dependence upon the ambient temperature
and concentration, these effects may be encompassed in k○ and in
the moduli k1–k6. The line tension k○ has been obtained through
experiments and molecular dynamic simulations for various types
of lipid bilayers (see [23] for a comparison of different measure-
ments). However, there is not enough literature on measurement
of the remaining coefficients. By fitting our model to existing
measurements of the line tension, the controlling parameters of
the interaction potential can be evaluated, and further used to
obtain the remaining coefficients in (29).

The derived model (29) can be simplified into the previously
presented models for the free-energy of the edge. In particular, the
general form (29) provides a development to the theoretical
investigations of open lipid bilayers presented by Tu and Ou-
Yang [12] and Guven et al. [31].

4.1. Total free-energy of the edge

The net free-energy ϕnet associated with the elasticity of the
edge of the open lipid bilayer is simply obtained by integrating the
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free-energy density ϕ in (30) over the centerline C of the edge by

ϕnet ¼
Z L

0
ϕ ds: ð32Þ

5. Applying a concrete interaction potential

The interaction potential in the model developed in the pre-
vious section was assumed to be a general function of four frame-
indifferent arguments in terms of the intermolecular vector and
the orientation of phospholipid molecules. There are numerous
concrete models for such interaction potentials between axisym-
metric particles, which are vastly employed for numerical simula-
tions of liquid crystals and other similar systems. Our derivation
gives rise to integral representations for elastic moduli k○–k6 of the
edge. Substituting the general form ~Ω in (B.1) with an available
interaction potential yields the material parameters k○–k6 appear-
ing in (29).

One of the standard examples among such pair interaction
potentials is the spheroidal-particle model proposed by Berne and
Pechukas [27] and Gay and Berne [28], in which the molecules are
approximated by ellipsoids of revolution, or spheroids (see Fig. 3).
According to such model, the interaction potential between two
molecules with the intermolecular vector r and the directors d and
e possesses the multiplicative decomposition

~Ωðr;d; eÞ ¼ ξðr̂ ;d; eÞζðr;d; eÞ; ð33Þ
where ξðr̂ ;d; eÞ and ζðr;d; eÞ denote the strength and distance
parameters respectively. The strength parameter ξðr̂ ;d; eÞ depends
upon the orientation of the molecules and that of the intermole-
cular vector r through [28]

ξðr̂ ;d; eÞ ¼ 4ξ○
ð1�χ2ðd � eÞ2Þν=2

1�χ 0

2
ðr̂ � dþ r̂ � eÞ2
1þχ 0d � e þðr̂ � d� r̂ � eÞ2

1�χ 0d � e

 !" #μ
; ð34Þ

with ν, μ, and ξ○ being the fitting parameters to be chosen. More
specifically, ν depends upon the arrangement type of the mole-
cules (e.g. side-to-side or end-to-end), whereas ξ○ is a constant
that specifies the kind of molecules under consideration. The
parameter χ in (34) is the shape anisotropy parameter, given in
terms of the ratio of the length σe to the breadth σs of the
molecules by

χ ¼ ðσe=σsÞ2�1
ðσe=σsÞ2þ1

: ð35Þ

Also, the parameter χ 0 in (34) is given by

χ 0 ¼ ðεe=εsÞ1=μ�1

ðεe=εsÞ1=μþ1
; ð36Þ

where εe and εs denote the strength parameters for end-to-end
and side-to-side arrangement of the molecules respectively. The

distance parameter ζðr;d; eÞ in (33) is given by [27]

ζðr;d; eÞ ¼ exp
�j rj 2

ς2ðr̂ ;d; eÞ

� �
; ð37Þ

where ςðr̂ ;d; eÞ is called the range parameter, and is given as a
function of the orientation of the molecules and that of the
intermolecular vector r by

ςðr̂ ;d; eÞ ¼ σ○ 1�χ
2

ðr̂ � dþ r̂ � eÞ2
1þχd � e þðr̂ � d� r̂ � eÞ2

1�χd � e

 !" #�1=2

: ð38Þ

In (38), σ○ is related to the breadth of the molecules, σs, via
σ○ ¼

ffiffiffi
2

p
σs. Following Whitehead et al. [34], the parameters μ and

ν are chosen as

ν¼ �1 and μ¼ 2: ð39Þ

By applying the interaction potential (33) in (B.7), and assum-
ing a constant molecular density Π along the boundary C, the
coefficients ki in (29) are obtained as

k○
Π2ξ○σ○

¼ ffiffiffiffi
π

p
erfðxÞI○;

k1
Π2ξ○σ3

○
¼ k2
Π2ξ○σ3

○
¼

ffiffiffiffi
π

p

128
erfðxÞ χ2Jþðχ2þ2ÞI� �

þxe� x2

192
χ2ðJþ IÞð2x2�3Þ�2Ið2x2þ3Þ� �

;

k3 ¼ k4 ¼ k5 ¼ k6 ¼ 0; ð40Þ

where x is a dimensionless parameter defined as the ratio of the
cut-off distance δ to σ○ as

x¼ δ
σ○

; ð41Þ

and I○, I and J are integral representations shown in Appendix C.
Hence, the free-energy density ϕ in (29) specializes to

ϕ¼ k○þk1ðκ2nþκ2nÞ ¼ k○þk1κ2: ð42Þ

A single phospholipid molecule can be envisioned as a mole-
cule in which a water-soluble spherical head is attached to a pair
of water-insoluble tails. Here, we rely on the dimensions of a
specific kind of phospholipid molecule (DPPC/Water system)
reported by Mashaghi et al. [35]. According to their estimation,
the length of the aforementioned phospholipid molecule from the
center of the head-group to the tail is � 22.5–30 Å, and the
diameter of the head-group is � 7–10 Å. The total volume of that
molecule is thus the sum of the volume of the spherical head and
that of a cylindrical tail-group. Based on the equality of the
volumes of the phospholipid molecule and that of the spheroidal
replacement, the aspect ratio σe=σs of the spheroid in Fig. 3 is
obtained between 3 and 4. Hence, the schematic of the constant
line energy k○ and that of the flexural rigidity k1 are depicted in
terms of the dimensionless cutoff distance δ=σ○ in Fig. 4, for the
molecular aspect ratio σe=σs between 1 and 5. According to Fig. 4,
the change in the constant line energy k○ and flexural rigidity k1
are negligible after some value of the dimensionless cutoff
distance δ=σ○. Therefore, a rather conservative choice for the
cut-off distance, which guarantees inclusion of all significant
molecular interactions, is

δn ¼ 3σ○: ð43Þ

This result has been used to obtain the constant part of the line
energy k○ and flexural rigidity k1 of the edge in terms of the
molecular aspect ratio, as depicted in Fig. 5.

Fig. 3. The schematic of a phospholipid molecule modeled as an ellipsoidal
particle.
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6. Illustrative example: dependence of free-energy on the pore
size

In order to estimate the change of energy of a pore with its size,
consider the simple case of a spherical lipid bilayer with radius R,
with a pore of radius r at a distance h from its center, as depicted in
Fig. 6. For such a pore, the total curvature of the boundary curve C
is 1=r, and the geodesic torsion τg vanishes. Also, the normal and
geodesic curvatures find the forms

κn ¼
1
R

and κg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2�κ2n

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�r2

p
rR

: ð44Þ

As a result, the free-energy density (30) specializes to

ϕ¼ k○þk1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�r2

p
rR

�κg○

 !2

þk2
1
R
�κn○

� �2

þk5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�r2

p
rR2

 !
;

ð45Þ
which with (32), yields a representation for the net free-energy
ϕnet of the pore as

ϕnet

2πr
¼ k○þk1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�r2

p
rR

�κg○

 !2

þk2
1
R
�κn○

� �2

þk5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�r2

p
rR2

 !
:

ð46Þ
It was demonstrated in the previous section that when the

spheroidal interaction potential [27] is employed in the micro-
physical model, the spontaneous curvatures κg○ and κn○, and the
coefficient k5 vanish, while the bending moduli k1 and k2 find the
same value. Using those results in (46) yields

ϕnet

2π
¼ k○rþ

k1
r
; ð47Þ

whereby the energy of the pore does not depend on the size of the
lipid bilayer, nor on the placing of the pore on it. For the cut-off
distance δn ¼ 3σ○ and the molecular aspect ratios σe=σs ¼ 3 and
σe=σs ¼ 4, the dependence of the net free-energy to pore size has
been demonstrated in Fig. 7. The second term on the right-hand
side of (47) leads to a minimum point for the free energy for
roσ○, which does not fall in the physically relevant ranges of the
pore size. For reasonable values of r=σ○, the first term on the right

Fig. 4. (a) Schematic of the constant line energy k○=Π
2ξ○σ○ in terms of the

dimensionless cut-off distance δ=σ○ . (b) Schematic of the flexural rigidity
k1=Π

2ξ○σ3
○ in terms of the dimensionless cut-off distance δ=σ○ . As is evident from

the plots, the change in k○=Π
2ξ○σ○ and k1=Π

2ξ○σ3
○ is negligible after δ¼ 3σ○ .

Consequently, the effective cut-off distance after which the potential decays rapidly
can be reasonably approximated by δ¼ 3σ○ (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. (a) Schematic of the constant line energy k○=Π2ξ○σ○ in terms of the aspect
ratio σe=σs for a cut-off distance δ=σ○ ¼ 3. (b) Schematic of the flexural rigidity
k1=Π2ξ○σ○ in terms of the aspect ratio σe=σs for the cut-off distance δ¼ 3σ○ .

Fig. 6. Schematic of a pore on a spheroidal lipid bilayer.
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of (47) is dominant and the dependence of the net energy on the
pore size is effectively linear.

7. Discussion and summary

An expression for the free-energy density of the edge of an
open lipid bilayer was derived taking into account the interaction
between the constituent molecules. The resulting expression
contains quadratic terms in geodesic curvature, normal curvature,
and geodesic torsion of the boundary curve and a term including
the multiplication of geodesic and normal curvatures. The derived
free-energy of the edge is the evidence of an excess energy due to
the specific arrangement of the phospholipid molecules in the
vicinity of the boundary of an open bilayer, in accord with the
results of the existing molecular dynamic simulations [23–26].
Further, our study supplements the previous molecular dynamic
simulations [23–26] and theories [19] in which the free energy
was obtained as a constant, by providing the contribution due to
bending and torsional energies. For certain classes of lipid bilayers,
the bending free-energy, which can be captured by our frame-
work, is of more importance in contrast to the line energy [36,37].
In addition, our microphysical model justifies the constitutive
assumptions that appear in continuum mechanical theories for
open lipid bilayers [12,38,31].

Our derivation gives rise to integral representations for the
material parameters present in the model. Specifically, the mole-
cular origins of the spontaneous curvatures of the edge of a lipid
bilayer have been investigated. A concrete soft-core interaction
potential for axisymmetric rod-like molecules was applied on the
derived model to obtain those material parameters. Hence, a
special form of the interaction potential suggested by Berne and
Pechukas [27] was employed to further explore the developed
microphysical model. Assuming that the molecules are uniformly
distributed along the edge (i.e. Π ¼ constant), the spontaneous
curvatures and the torsional contribution to the energy vanish,
resulting in (42), which includes only a constant part k○, which can
be interpreted as a line tension, and a contribution due to bending
with flexural rigidity k1 ¼ k2. The dependence of the parameters k○
and k1 on the aspect ratio σe=σs and the dimensionless cutoff
distance δ=σ○, for various aspect ratios common for phospholipid
molecules comprising lipid membranes, was investigated. It was
concluded that increasing the cut-off distance after a value
δn ¼ 3σ○ does not affect those parameters. This result and the
definition σ○ ¼

ffiffiffi
2

p
σs reveals that each molecule on the edge

interacts with less than 6 molecules in its vicinity along the edge.
In view of this observation, the cut-off distance was set to δn to
study the dependence of the line tension k○ and flexural rigidity k1

on the molecular aspect ratio σe=σs. It is evident from Fig. 4 that
the line tension k○ is not as sensitive as the flexural rigidity k1 to
the molecular aspect ratio σe=σs. This difference can be quantified
by considering the relative change of those quantities associated
with the same increment of the molecular aspect ratio σe=σs.
Further, with an increase in the aspect ratio, the line tension
decreases while the flexural rigidity increases. These signals that
for molecules with greater aspect ratios, inclusion of the bending
contribution to the free-energy is of more significance. Consider-
ing that a rod with a larger diameter shows more resistance to
bending, the observation that the flexural rigidity of the edge is
greater for larger molecular aspect ratios (longer molecules lead to
larger cross-sectional diameter of the edge) agrees with what
would be expected intuitively.

The energy functional obtained in (30) was used to explore
energy of the degenerate case of a circular pore on a spheroidal
lipid bilayer, resulting in the expression (47). The pore size needs
to be greater than the mean distance of molecules σ○. For such
sizes, the contribution of the flexural part to the energy given by
(47) is negligible, and effectively, the energy increases linearly
with the pore size. Inspired by earlier investigations on rupturing
of soap films [39], Litster [40] developed a continuum model for
the free-energy ϕ needed for opening-up of a pore in a lipid
membrane in the form

ϕ
2π

¼Γr�1
2
γsr

2; ð48Þ

with Γ being the line energy of the edge and γs the interfacial
surface tension. It can be inferred from (48) that transient pores
with sizes less than a critical radius rn ¼Γ=γs tend to reseal, while
those having the size exceeding this critical radius, might grow
indefinitely, leading to the rupture of the membrane [41]. In other
words, the energy to form a pore of radius r is determined by a
balance between two competitive contributions: the energy
required to create the edge of the pore, and the energy released
by the pore surface [42]. Nevertheless, it is a common knowledge
today (see for example the review by Jähnig [43]) that lipid
membranes possess zero surface tension, by which the second
term on the right hand side of (48) vanishes. This transpires the
agreement of the current result based on molecular interactions,
with that obtained previously on continuum grounds. The increas-
ing cost of generating a larger pore confirms the stability of a lipid
membrane with respect to the fluctuations that might bring about
transient pores. Furthermore, the growth of stable pores in
homogenous lipid bilayers is only possible in the presence of
external stimuli such as an electric field.

The class of the interaction potentials (23) selected in the
present study and the integration (26) only accounts for the lipid
bilayers in which the physiochemical properties of the constituent
molecules are identical. An important corollary of our model
would follow from a generalization of the arguments of the
interaction potential (23) and the integration (26), to allow us
for the interactions between phospholipid molecules of different
physiochemical properties. Such a generalization permits model-
ing perforated mixed lipid bilayers, such as those reported by
Oglȩcka et al. [44] and Jiang and Kindt [36]. Further, our model
accounts for the elastic free-energy of the edge of open lipid
bilayers in which the lipid molecules are tilted only at the edge,
forming a semicylindrical rim along it. Another generalization of
the present work would include tilt fields of smaller gradient, such
as those considered by Hamm and Kozlov [45], Rangamani and
Steigmann [46], and Rangamani et al. [47]. In such an approach,
the gradual tilt at the vicinity of the edge changes the thickness of
the lipid bilayer and, thus, leads to the deviation of the conforma-
tion of the edge from a semicylindrical shape. These potential
generalizations remain to be investigated in future.

Fig. 7. Schematic of the net free-energy ϕnet=Π
2ξ○σ○ versus the scaled pore-size

r=σ○ for two values of the aspect ratio σe=σs and for the scaled cutoff distance
δ¼ 3σ○ .
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Appendix A. Detailed derivation of (18)

Let ψ denote the angle between the unit normal N to the curve
C and the unit normal n to the surface S. The Darboux frame
ft;n;pg at any point on C is obtained by rotating the Frenet frame
ft;N;Bg about the unit tangent t by that angle. Hence,

t
n
p

2
64

3
75¼

1 0 0
0 cosψ sinψ
0 � sinψ cosψ

2
64

3
75

t
N
B

2
64

3
75: ðA:1Þ

Let the array X¼ t n p½ �T denote the Darboux frame, and
Y¼ t N B½ �T denote the Frenet frame at a given point on C, where
T denotes the transpose. Also let

Q≔

1 0 0
0 cosψ sinψ
0 � sinψ cosψ

2
64

3
75 ðA:2Þ

denote the transformation between the two frames. Thus,

X¼QY or Y¼Q TX: ðA:3Þ
The derivative of the Frenet frame ft;N;Bg of C with respect to the
arclength s follows from the Frenet–Serret formulas [48]

_t
_N
_B

2
64

3
75¼

0 κ 0
�κ 0 τ
0 �τ 0

2
64

3
75

t
N
B

2
64

3
75: ðA:4Þ

Thus,

_Y ¼AY¼ AQ TX; ðA:5Þ
where

A¼
0 κ 0
�κ 0 τ
0 �τ 0

2
64

3
75: ðA:6Þ

Taking arclength derivative from both sides of (A.3)1 yields

_X ¼ _QYþQ _Y ; ðA:7Þ
where

_Q ¼
0 0 0
0 � _ψ sinψ _ψ cosψ
0 � _ψ cosψ � _ψ sinψ

2
64

3
75: ðA:8Þ

In view of (A.3)2 and the right-hand side of (A.5), (A.7) takes the
form

_X ¼ ð _QQ T þQAQ T ÞX; ðA:9Þ
or, equivalently,

_t
_n
_p

2
64

3
75¼

0 κ cosψ �κ sinψ
�κ cosψ 0 τþ _ψ
κ sinψ �τ� _ψ 0

2
64

3
75

t
n
p

2
64

3
75: ðA:10Þ

In view of κn ¼ κ cosψ , κg ¼ κ sinψ , and τg ¼ τþ _ψ , (A.10) simpli-
fies to (18).

Appendix B. Derivation of the free-energy density (29)

In this Appendix, the expansion of (28) and (29) is presented.
As mentioned earlier, only the molecules separated by a distance
less than δ may interact. Hence, the domain of the integral with
respect to t in (27) is replaced by ½�δ; δ�. Upon replacing ωðs;θÞ in
(28), and substituting Ω by its equivalent form (23), and applying
the change of variable t�t○ ¼ sϱ, (28) takes the form

ϕ¼ ϱ
Z ℓ

�ℓ

Z π=2

�π=2

Z π=2

�π=2

~Ω ϱ�2r � r; r � dðt○;θÞ;
�

r � dðt○þsϱ;ηÞ;dðt○;θÞ � dðt○þsϱ;ηÞ�
Πðt○ÞΠðt○þsϱÞ dη dθ ds: ðB:1Þ

It is necessary to expand the right-hand side of (B.1) in powers of ϱ
neglecting terms of oðϱ2Þ. Introducing the abbreviations

n≔nð0Þ; t≔tð0Þ; p≔pðt○Þ;
Π≔Πð0Þ; _Π≔ _Π ð0Þ; €Π≔ €Π ð0Þ;

)
ðB:2Þ

and applying the identities given in (18), the following expansions
up to ϱ2 are obtained:

xðsϱÞ ¼ xð0Þþϱstþ1
2
s2ϱ2κnn�

1
2
s2ϱ2κgpþoðϱ4Þ;

nðsϱÞ ¼ s2ϱ2

2
_κn�κgτg
� ��sϱκn

� �
tþ 1�s2ϱ2

2
κ2nþτ2g
� �� �

n

þ s2ϱ2

2
κnκgþ _τg
� �þsϱτg

� �
pþoðϱ2Þ;

pðsϱÞ ¼ s2ϱ2

2
κnκg� _τg
� ��sϱτg

� �
nþ ϱsκgþ

s2ϱ2

2
_κgþτgκn
� �� �

t

þ 1�s2ϱ2

2
τ2gþκ2g
� �� �

pþoðϱ2Þ: ðB:3Þ

Therefore, the arguments of the interaction potential ~Ω in the
right-hand side of (B.1) become

ϱ�2 jxðt○Þ�xðtϱÞj 2 ¼ s2þA1ϱ2s4þoðϱ2Þ;
xðt○Þ�xðtϱÞ
� � � dðt○;θÞ ¼ A2ϱ2s2þoðϱ2Þ;
xðt○Þ�xðtϱÞ
� � � dðtϱ;ηÞ ¼ A3ϱ2s2þoðϱ2Þ;
dðt○;θÞ � dðtϱ;ηÞ ¼ A4þA5ϱsþA6ϱ2s2þoðϱ2Þ; ðB:4Þ

where tϱ ¼ t○þsϱ, and

A1 ¼ �κ2

12
; A2 ¼

κg cosθ�κn sinθ
2

; A3 ¼
κn sinη�κg cosη

2
;

A4 ¼ cos ðθ�ηÞ; A5 ¼ �τg sin ðθ�ηÞ;

A6 ¼
κnκg
2

sin ðθþηÞ� _τg
2
sin ðθ�ηÞ�τ2g

2
cos ðθ�ηÞ

�κ2g
2
cosθ cos η�κ2n

2
sin θ sinη: ðB:5Þ

Expanding ~Ω up to ϱ2 and using

ΠðsϱÞ ¼Πþsϱ _Πþs2ϱ2

2
€Πþoðϱ2Þ; ðB:6Þ

result in the following energy-density for the edge:

ϕ¼
Z ℓ

�ℓ

Z π=2

�π=2

Z π=2

�π=2
ϱΩðs;θ;ηÞΠ2 dη dθ dsþ1

2
ϱ3Ωðs;θ;ηÞs2Π €Π

	 

dη dθ ds

þκ2g ϱ3
Z ℓ

�ℓ

Z π=2

�π=2

Z π=2

�π=2

�s2Π2

12
Ω1ðs;θ; ηÞs2þ6Ω4ðs;θ; ηÞ cos θ cos η
� �

dη dθ ds

( )

þκ2n ϱ3
Z ℓ

�ℓ

Z π=2

�π=2

Z π=2

�π=2

�s2Π2

12
Ω1ðs;θ;ηÞs2
�(

þ6Ω4ðs;θ;ηÞ sin θ sinη
�
dη dθ dsg
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þκg ϱ3
Z ℓ

�ℓ

Z π=2

�π=2

Z π=2

�π=2

s2Π2

2
Ω2ðs;θ;ηÞ cosθ�Ω3ðs;θ;ηÞ cosη
� �

dη dθ ds

( )

þκn ϱ3
Z ℓ

�ℓ

Z π=2

�π=2

Z π=2

�π=2

s2Π2

2
Ω3ðs;θ;ηÞ sinη�Ω2ðs;θ;ηÞ sin θ
� �

dη dθ ds

( )

þτ2g ϱ3
Z ℓ

�ℓ

Z π=2

�π=2

Z π=2

�π=2

s2Π2

2
Ω44ðs;θ;ηÞ sin 2ðθ�ηÞ
�(

�Ω4ðs;θ;ηÞ cos ðθ�ηÞ
�
dη dθ dsg

þκnκg ϱ3
Z ℓ

�ℓ

Z π=2

�π=2

Z π=2

�π=2

s2Π2

2
Ω4ðs;θ;ηÞ sin ðθþηÞ dη dθ ds

( )
;

ðB:7Þ
where

Ωðs;θ;ηÞ≔ ~Ωðs2;0;0; cos ðθ�ηÞÞ;
Ω iðs;θ;ηÞ≔ ~Ω ;iðs2;0;0; cos ðθ�ηÞÞ;
Ω iiðs;θ;ηÞ≔ ~Ω;iiðs2;0;0; cos ðθ�ηÞÞ;

9>>=
>>; iAf1;2;3;4g: ðB:8Þ

Note that Ω, Ω i and Ω ii vanish when s4ℓ. Thus, the final
expression for the free-energy density of the edge becomes

ϕ¼ k○þk1κ2gþk2κ2nþk3κgþk4κnþk5κnκgþk6τ2g ; ðB:9Þ
or, equivalently,

ϕ¼ k
�
○þk1ðκg�κg○Þ2þk2ðκn�κn○Þ2þk5κnκgþk6τ2g ; ðB:10Þ

where the parameters k○–k6 are given by the integral representa-
tions in (B.7).

Appendix C. Integral representations I○, I and J in (40)

I○ ¼
Z π=2

�π=2

Z π=2

�π=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�χ2 cos 2ðθ�ηÞ

q
dη dθ;

I ¼
Z π=2

�π=2

Z π=2

�π=2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�χ2 cos 2ðθ�ηÞ

p dη dθ;

J ¼
Z π=2

�π=2

Z π=2

�π=2

cos ð2θ�2ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�χ2 cos 2ðθ�ηÞ

p dη dθ: ðC:1Þ
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