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The objective of this short note is to trace back the major contributions that led to the mul-
tiplicative decomposition of the deformation gradient in finite plasticity, nonlinear thermoelasticity,
and growth mechanics. In the 1940s, Eckart in the US and Kondo in Japan, independently paved
the road to the formulation of a nonlinear theory capable of modeling anelastic phenomena. As
opposed to assuming, for a given body, the existence of a global stress-free configuration (the “prin-
ciple of relaxability-in-the-large” according to Eckart) that the body takes whenever it is completely
relaxed, Eckart [1948] suggested an alternative framework for anelasticity based on what he called
“relaxability-in-the-small”. He conceptually constructed a local stress-free “fragmented” state follow-
ing a local relaxation of the reference configuration by “cutting out” a “small bit of matter” around
every material point and letting it relax independently of the remainder of the body. He also asserted
that such a construction should be accompanied by an elastic deformation to ensure that the body
keeps its structural integrity. This is nothing but the decomposition of the deformation gradient into
an anelastic relaxation, leading to the so-called “intermediate” configuration, followed by the elastic
portion of the deformation gradient.

Independently of Eckart’s work, Kondo [1949] observed that due to plastic deformations, the re-
laxed state of a body has a non-trivial geometry that is not compatible with that of the Euclidean
space. This observation first led him to construct a stress-free configuration as a Riemannian manifold
in which a non-vanishing curvature is a measure of the incompatibility of the plastic deformation.
Inspired by the works of Cartan [1926, 1928] on non-trivial holonomy groups, Kondo [1950a,b, 1952]
extended his framework to consider the material body as a non-Riemannian space with a non-zero
torsion. He used this geometric framework in the context of crystals with geometrical imperfections,
e.g. dislocations, and introduced the idea of considering the stress-free state as “an amorphous aggre-
gation” of small pieces of relaxed perfect “crystalline pieces” that he modeled as a non-Riemannian
manifold. Further, he interpreted the torsion tensor as a measure of the density of dislocations and
initiated the development of a geometric theory of dislocation mechanics. Soon after, further contribu-
tions to the nonlinear theory of dislocation mechanics were introduced by Kröner [1955], Kröner and
Seeger [1959], and Bilby et al. [1955]. For a review of the interactions between the Japanese (led by
Kondo), the British (led by Bilby), and the German (led by Kröner) schools and their contributions,
see Kondo [1964]. It is worth mentioning that Sedov [1965] independently realized that a body in
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plastic deformation can be relaxed in a stress-free intermediate configuration, which he called “a new
starting position”, with a changing metric that is generally non-Euclidean.

Following the original idea of local relaxation inspired by the pioneering works cited above, the
first formal introduction of the multiplicative decomposition of the deformation gradient in finite
plasticity appeared in the late 1950s in the work of Bilby et al. [1957]. Bilby et al. [1957] called
the total deformation gradient F, the elastic deformation gradient Fe, and the plastic deformation
gradient Fp, “shape deformation, “lattice deformation”, and “dislocation deformation”, respectively.
The decomposition F = FeFp was explicitly written in [Bilby et al., 1957, Page 41, Eq. (12)]. The same
decomposition is seen in [Kröner, 1959, Page 286, Eq. (4)] as well. Almost a decade later, Lee and Liu
[1967] and Lee [1969] discussed the multiplicative decomposition in finite plasticity and received most
of the credit for it. In nonlinear thermoelasticity, the first formal introduction of the multiplicative
decomposition of the deformation gradient is due to Stojanović et al. [1964] and Stojanović [1969]. In
the biomechanics and growth mechanics literature, the introduction of the multiplicative decomposition
is usually attributed to Rodriguez et al. [1994]. However, it was first introduced about a decade earlier
independently in Russia by Kondaurov and Nikitin [1987] and in Japan by Takamizawa and Hayashi
[1987], Takamizawa and Matsuda [1990], and Takamizawa [1991].
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E. Kröner. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Archive for Rational
Mechanics and Analysis, 4(1):273–334, 1959.
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