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PREFACE
A COURSE ON NONLINEAR FRACTURE MECHANICS

The notes contained within were prepared in conjunction with a
set of lectures delivered during the fall of 1978 at The Solid
Mechanics Department of the Technical University of Denmark
under the auspices of the Danish Center for Applied Mathematics
and Mechanics. Starting more or less from scratch in the sub-
Ject, but assuming at least a limited knowledge of plasticity,
I have tried to bring the reader right up to some of the topics
of current interest, from both engineering and research points
of view. The section headings are listed on the next page.

John W. Hutchinson
January 5, 1979
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LINEAR ELASTIC FRACTURE MECHANICS
1. SOLUTIONS TO LINEAR ELASTIC CRACK PROBLEMS
References: P. Paris and G. Sih, ASTM STP 381, 1965

H. Tada, P. Paris and G. Irwin, The Stress Analysis
of Cracks Handbook, 1973.

H. Liebowitz (editor), Fracture, Academic Press
(7 vols.), 1971.

Isotropic, homogeneous elastic materials are assumed with E
as Young's modulus, Vv as Poisson's ratio. Let «k = 3-4v in
plane strain and «k = (3-v)/(l1+v) in plane stress. The
shear modulus is G = E/[2(1+ v)] .

Common to all solutions of plane problems is the
dominant singularity at the crack tip.

(i) Symmetric fields with respect to crack tip in plane
stress or plane strain (Mode I)

K
_ I .I
Yap = Toz ap®) (1.1)
X
o] I/ ~I
CQ. = CQ. + aMIO qm GQAmlnv (1.2)

where QNNAmu 0) 21 . The QOAmv and u(8) are given in
almost all texts on fracture. Note that ahead of the crack

05, = NH\\Naﬁ (1.3)



K is called the stress intensity factor (in Mode I).

Uiy = 0 in plane stress. O35 = ¢Aoww+,owwv in plane strain.

{ii) Anti-symmetric fields with respect to crack tip in plane

stress and plane strain (Mode II)

K
o, = —L 51 (1.4)
ok yzmr o8
u_ = (1.5)
o
LIT _ - -
where onAmn 0) =1 AQHH =0, F 0, 6 =20) .
{(iii) Anti-plane shear (Mode III)
K
Gy, = 2= T (8) , (1.6)
o v2nr
NHHH r (1.7
uy = NlAWI T sin(6/2) .

where mw = -sin(8/2) and mm = cos(68/2) .

In general, in any plane problem the crack tip singulari-

ty fields are a linear superposition of Mode I and Mode II.
For a 3 dimensional problem, the singular stress fields, at
any point along the crack edge, will be a linear superposition

of Modes I and II (plane strain) and Mode III.

A large catalogue of stress intensity factors is now
available. Most basic (and some not so basic) elastic crack
problems seem to have been solved, either analytically or
numerically. Perhaps the most complete source is the Stress

Analysis of Cracks Handbook. Some examples are listed below.

Finite crack in infinite plane in tension

Ky = " vra {(1.8)

oLt

K, = 1 /78 (1.9)

Finite crack in infinite body and edge crack in half space in
Mode III

*x
HAH“_”H = 1 /ra {1.10)



Edge crack in half plane in tension

Line of cracks in tension (also Mode III)

K

= 1.122 ¢ v/7a

I

P e

Cracks in finite width strips in Mode III
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(1.11)

(1.12)

(1.13)

2a

e

Standard ASTM compact tension specimen

P = load/unit thickness

(h=.6b , h,=.275b , D=.25b , c= .25b , thickness = b/2)

1
K; = (P/b)Ya F, (a/b) {1.14)

n

18
Fy
h MO 16
I

1%

JUU - B see Tada, et ai.

Aﬁv 12 1973
b
10 1 1
. 04 0.5 a6 a’/b
yep
7
. L . M M
Edge crack in strip in bending ;A
a
M = moment/thickness
K; = Mb™ 2 £ (a/p)
(1.15)

(a/b - 1 , £ - 3, 95)

(a/b - 0 , K - 1.122 ov7wa)

Penny shaped crack. Near crack edge fields are identical to

Mode I plane strain



(1.16)

2. ENERGY RELEASE RATE, COMPLIANCE ANALYSIS, AND RELATION TO

STRESS INTENSITY FACTORS

References: Tada, et al. 1973.

First consider prescribed load problems

in Mode I. Let a be length of crack
and P be the load per unit thickness.
Let PE denote the potential energy of
the system (per unit thickness) and let
4 be the load-point displacement
through which P works. Denote by 6
the energy release rate per unit thick-

ness, i.e.

Now for prescribed P ,

PE = SE - PA = WMD - PA =

o
i
[N

Qr

&l
—
o
=3
-

P. &

{4

(2.1)

(2.2)

-dPE = Gda

Define compliance C of body
C = A/P (2.3)

where C depends only on geometry, E and v .

8] _pdc | o _ 1,24
Mwﬂuwnwmml =3P & (2.4)
Next consider a cracked body loaded

under compliant conditions (see figure)

in Mode I. Let oz be the compliance Cm

of a spring (eg. testing machine) in h
series with the body. Let >a be the P. 8
total displacement which will be

regarded as prescribed.

De = A+ nzv = A + AOZ\OV> (2.5)

Now the potential energy is

= 1 =1 i
PE = SE + 3C P° = 5C 72" + ¢ (s

and the energy release rate is



! where K(a+ Aa) 1is the final value of K .
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Thus the energy release rate does not depend on the nature of

n:mwommwbmmzmnms.zowmwvmn oz lsoonhmmvo:mmdo&mmmwomm~
i.e. the previous case, and nz = 0 corresponds to prescribed
displacement, i.e. a rigid loading system. Egq. (2.6) is

freguently used in the experimental determination of 6 . The , Thus,

{before) vix. 0% - vix,07)

{after)

compliances of two specimens, identical except for a small

Aa
_1l+x ba-x
difference in crack length, are determined experimentally and 6ba = we Kla) xﬁm+,>mvg %

0

in this way dC/da can be estimated.

The relation between 6 and K in Mode I is now deriv- Hmmxxﬁwv K(a+ Aa)da

ed. Let the body be subject to prescribed displacements (it

has just been shown that G is independent of nature of load- , and therefore G = Aw¢,wiw\mm . Using the expressions for «
ing) . We will calculate the energy released during a small one finds

advance of the crack Aa . As depicted in the figure, before ,” 5

the crack is advanced the stress acting across the plane . G = WmeP.wm (plane strain) {2.8)
y = 0 1is omqu.ov and for Aa small (we will later let

ba - 0)

xm
T (plane stress) (2.9)

K(a)
2

0,5 %, 0) = 0<x<Aa (2.7

In a 3-D body with a crack edge subject to K

»

I xHH and

xHHH ; the energy release rate per unit length of crack edge
where K(a) denotes the stress intensity factor under the is
prescribed displacement at crack length a . The energy

release during the extension, GAa , is the negative of the 1- <N 2 1.2

|IM|!A~AW+WHHV + 5= K (2.10)
work done by the traction QNNAx.ov and this is

1 Aa + -
Gaa = M% qwuﬁx~ov~<hx~o ) - V(x,0 vw&x

0
where <Ax\o+v..<Ax~O|v is the separation of the crack faces

in the final position when the crack is at a+Aa . From (1.2)
{and any of the standard references) for Aa small

- Aa - X
Vix,0%) - V(x,07) = K(a+osa) LX) jhazx
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3. ENERGY METHODS FOR ESTIMATING G AND K

References: Tada, et al. 1973.

J.R. Rice in Fracture, vol. 2, 1971.

As a first example consider a double cantilever beam specimen
{DCB) .

P.A/2

ol
)l

H P. 4/2

Treat each arm of the specimen as a cantilever beam of length
a so that

mmw nmmu mwu

3EI 3 3

ol

Using (2.6) and (2.9) for plane stress gives

12p2%a?

Eb>

-3/2

G = and K = 2/3Pab (3.1)

As a second example consider a semi-infinite c¢rack in an
infinite strip held in rigid grips and subject to a prescribed
separation A .

»>\N
S S SN L

m wW.|.l|' ¢%

{ L
\\ﬁ\ P

a/2

The strip is clamped in the unloaded state so that

€., =0 as {x] » » . Let the crack extend by an amount da .

The stress and strain fields are unchanged if one shifts the

11
origin in the positive x-direction by an amount da . Denote
the strain energy density for x = + « by Ammovs and note
that the strain energy density vanishes for x = - « . The
strain energy per unit thickness released is Ammcvemvam
Thus, since dPE = 4SE ,

G = 2b(SED)" (3.2)
For example for plane stress as x -» = ,
2
[ =0, € = A/2b a = [B/(1- v A&/2b , © = Vg
xx gy = B/ ey = B/ )18/ ox = V9
and
o 1 _ 1 L2 2
(SED) = MAaxxmxx*.qmmmmwv = 5[EB/(1- %) 1(a/2b)
From (3.2} and (2.9),
2
1 E A _ 1
G 1 5 B and K = (3.3)

_E 1 EA
1-v oA -2 b
These are exact results. Note that the general expression (3.2)
applies for a nonlinear elastic solid as well.

As a final example consider stress relief due to many
cracks as shown in the figure. Assuming b/a << 1 and that
the cracks extend together, show that for plane stress

© 2 w
Eb(e_ ) E/b e
G = —X  apnd K = —— XY (3.4)

2
2(1-v7) Qﬁv..cwv

where = A/w 1is the strain far ahead of the cracks. Note

oo
€
Yy
that G 1is the energy release rate per crack tip and that it
is independent of crack length.
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4. THE CONCEPT OF SMALL SCALE YIELDING

Linear elastic fracture mechanics is based on the concept of
small scale yielding (s.s.y.). In words, s.s.y. holds when the
plastic zone at the crack tip is sufficiently small (compared
to the crack length and other relevant geometric length quanti-
ties) such that the elastic singularity fields of Section 1
still give a good approximation to the actual fields in an
annular region surrounding the tip. This is an asymptotic
condition which is increasingly violated as the load increases.
The condition is depicted in Figure (4.1).

plastic zone

- ~
o ~
VZ AN
- ~ N\
/ e \ \
/ /
\ |
\ \ / i
N~ /
N /
~
~ -

region in which K- field holds

Fig. (4.1).
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Under conditions of s.s.y. the stress intensity factor K

(for a given mode) provides a unique measure of the intensity
of the strain fields at the tip, independent of other aspects
of geometry and details of loading. Considerable effort, both
theoretical and experimental, has gone into the delineation of
s.s.y., and this will be one side product of our later study
of large scale yielding. Roughly speaking, in most instances
s.s.y. appears to be a reasonable assumption as long as the
applied load is below about one half of the load at which full
plastic yielding occurs (i.e., the limit load for an elastic-
perfectly plastic solid).

Later we will be investigating the behavior in the
plastic zone under various conditions. Here we will record by
way of the accompanying figure the simplest approximate shape
and size of the plastic zone in s.s.y. for three Mode I condi-

tions. In plane strain it is essential that Hw << t , where
t is the thickness, and in plane stress n@ >> €
—
t r |
[ A—
|
[ S| H
plane strain plane stress plane stress
{ditfuse)} {Dugdaie)

Fig. (4.2).

With o, denoting the tensile yield stress the results

commonly used (see Tada, et al. pg. 1.17) are
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r, = (1/3m) :Qoovw plane strain (4.1)
r, = (/m (k/o_)%  plane stress (diffuse) (4.2)
wv = Aa\mVAx\aovw Dugdale model (4.3)

Thus if L is the smallest relevant length (eg. crack length

or uncracked ligament), s.s.y. requires ﬂv << L .

5. INITIATION OF CRACK GROWTH IN S.S.Y.

References: J.F. Knott, Fundamentals of Fracture Mechanics,
chp. 5, Butterworths, (1973).
D. Broek, Elementary Engineering Fracture
Mechanics, chp. 6, Noordhoff, (1974).
J. Carlsson, Brottmekanik, Stockholm, (1976).

Griffith's energy criterion

Consider a "perfectly brittle™ material which requires a
surface energy T (energy per unit area) for the creation of
new surface. A necessary condition for crack propagation (in
Mode I, for example) is G > 2T . Griffith proposed that
fracture would occur when G attains the value G_ = 2T .

c
Thus the criterion for fracture initiation (and for continued

guasi-static propagation for a perfectly brittle material) can

be written as
G =6 (5.1)

where G is regarded as being applied and therefore a func-
tion of geometry and load. On the other hand, mo is regarded
as & material parameter. Using either (2.8) or (2.9) we can

rewrite this as
K = K (5.2)

where xn = ﬁmmo\ch <Nvuw under plane strain conditions and

!
b
;
l

ot s % o <o

15

xon Hmoouw Humwm:mmﬁﬁmmm.

Orowan and Irwin later argued that (5.1) will still
apply in the presence of plastic yielding at the crack tip
under s.s.y. conditions if Qn is reinterpreted as the
combined energy/unit area of crack advance going into the
formation of new surface area, the fracture processes and the
plastic deformation. For most metals Qo interpreted this way
is several orders of magnitude larger than 2T , except under
extremely brittle conditions such as at very low temperatures.
As of yet it has not been possible to calculate Qo as a

basic material property using data such as T , E , Qo .

initial void spacing, etc. Orowan and Irwin proposed that Qo
be an experimentally determined guantity obtained using (5.1)
in conjunction with the observed load at which the crack
starts to grow in some test specimen.

Largely due to Irwin, the interpretation of the fracture
initiation criterion shifted from the energy based condition
(5.1) to one based on stress intensity (5.2). Mathematically
the two approaches are entirely equivalent in s.s.y. However
it is the stress intensity approach which to date has been
most successfully extended to large scale yielding {(nonlinear)
fracture mechanics, as will later be discussed.

For the purpose of discussion suppose the compact ten-
sion specimen (1.14) is used with a/b = 1/2 so that
Fq = 13.5 and

X~ 7.25 p/vVa {5.3)

where P is the load/unit thickness. Assume further that the
plastic zone size Hﬁ satisfies s.s.y., i.e. ﬂv << a , which
will be discussed further below. Next, for a given thickness

t suppose the load wo is measured associated with the onset
of crack growth. Let wo be that value of K from (5.3) at

P = mo . A plot of wo as a function of +t , with all tests
conducted at the same temperature, is depicted in the figure
(see the books by Broek, Carlsson and Knott for more details
concerning experimental details, fracture surfaces, identifi-

cation of initiation, etc.).
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: is usually sufficient. For example, for the compact tension
w specimen (5.3) the limit load for a specimen of elastic-
K. , perfectly plastic material is P. = o_a/6 . If the specimen
plane stress : L o
" ¢ is sized such that P, = 1/2P then from (5.3) one obtains
transition ; C L
| 2
constant V a = 2.7 QAO\QOV (5.6)
temperature ¢
thin foil w The fracture toughness of many metals is a strong func-
. ———— K :
ptane strain 1c ) tion of temperature T . A schematic plot of K;. versus T
is shown.
i “upper shelf”
; Kie
With the possible exception of some very thin foils, the
lowest value of K., at any given temperature is found for
thick specimens. Then plane strain conditions prevail along b
most of the crack edge in the interior of the specimen. For . m%ﬂwﬂﬁﬂ Jﬁom«?ws
rittie (¢] ucCtite
sufficiently large thicknesses xo is found to approach an '
asymptotic value which is denoted by Kic and is called the ;
fracture toughness. The fracture toughness is a material pro- : T
perty which characterizes the initiation of fracture at a :
sharp crack (sharpened by fatigue cracking at a low K-level) M
Extensive data for K i avail .
under Mode I, plane strain conditions. More important details € Ic s nmow available. A large
; com i f fr t and i £ i
of the "standard Ky, test” are described in ASTM publica- i pendium o acture toughness (and fatigue) references is
; iv by Hudson and Seward, Int. J. of Fract 14
tions (ASTM Standards 31, 1969, pp. 1099-1114 and The Standard given by Hudson and Seward, Int. J Fracture 14, August
1978. A few materials are also documented in Table XIX of
K.~ test, ASTM STP 463, 1970, pp. 249-269, and Fracture : . € nted in Table
i Formelsamling i H3llfasthetslira. Representati data for
toughness testing methods, ASTM STP 381, 1965). ; d P rve
] i . ¥ several metals is given in the table below where r is com-
Recalling the size of the plastic zone r (4.1), plane ) P
. L. . P : puted from (4.1). Also included is the crack length L = 2a
strain conditions require t >> r_ . The ASTM standards for i
] . . p . . ! corresponding to fracture initiation for a finite length crack
xH testing require (validated by extensive testing) ;
¢ : in an infinite body (1.8) where the applied stress is one half
K @«
{ the yield stress, i.e. o = 1/2a¢ . That is, from (1.8)
t > 2.5 (K /o )? (5.4) : o ’ /29
Z c’ o ! 2
, g8 K1e
) . L = === = 24r (5.7)
It is also required that a >> Hv for s.s.y.; : mo, P
a > w.mAan\oovm (5.5) . Note that L 1is essentially the same as the crack length (5.5)

needed to ensure a valid an test using the compact tension

o

ana~iman
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Material ernv o] AZZ\ENV K AZZ\Su\NV r_(mm) L (mm)
O Ic B
6061-T651 (AL) 20 269 33 5 120
7075-T651 (AL) 20 620 36 .35 8.4
AISI 4340 0 1500 33 .05 1.2
A 533-B 93 620 200 11 260

TABLE (5.1)
(intended for illustrative purposes only)

The combination of high toughness and low yield stress leads

to relatively large values of the plastic zone size at fracture
and also relatively long cracks necessary to lead to initia-
tion of growth at a given stress level which is some fraction
of the general yield stress. It must also be remenbered that

xo for plane stress conditions is often much higher than xHo.

s

19

6. CRACK GROWTH AND STABILITY IN S.S.Y.

In a perfectly brittle material we expect the condition for

the initiation of crack growth and for continuation of growth
to be K = xo where xo remains constant. This is depicted

in Figure (6.la) where the X needed to propagate the crack

is plotted against the crack advance Aa . To a first approxi-
mation such behavior is typical of high strength, low toughness

metals under plane strain conditions. By proper selection of

XmuXﬂ

Aa Aa

Fig. 6.1la. Fig. 6.1b.

specimen configuration it is possible to measure experimental-
ly behavior such as that in Fig. (6.la). For example, a finite
crack in an infinite plane

loaded by concentrated loads as

shown has a stress intensity

factor which decreases with in- P
creasing a when P is held -
fixed: P

K = P/Vwa (6.1)

(Tada, et al., pg. 5.4).
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Thus, K = xo implies that P must increase with

crack advance according to

P = xn\:Amo+.bmv = mO\H¢.>NNWO (6.2)

where a, is the initial crack length and mn is the initia-
tion load.

The behavior sketched in Fig. (6.lb) is more representa-
tive of intermediate and low strength metals under plane
stress or plane strain conditions. It can also be seen in some
of the high strength metals under plane stress conditions.
Here crack advance takes place under increasing applied K .
In s.s.y., assuming also that Aa is small compared to
relevant geometric lengths, wwﬁ>wv is a curve which
characterizes the material under a given set of conditions,
€g. temperature, plane stress or plane strain, etc. It is
called the resistance curve or R-curve ("The R-curve", A.S.T.M.
5.T.P. - 527, 1974). (A note on notation. I will use K_ , and

[+

later uo , to denote initiation. Some authors use xo to

denote the instability value of X . It is also commonplace

to use G = R(Aa) to describe the resistance curve. I will
use K = wzﬁbmv ). The value of K needed to give continued,
steady-state crack propagation, xmm , is often many times
xn - For low and intermediate strength steels small crack

R which
are twice an under plane strain conditions, as will be
discussed further later in the notes.

advances of, say, 1 or 2 mm can lead to values of K

The condition for continued crack advance, given that

the current crack length is mo;.>m , is

K = wmAbmv (6.3)

where K on the left hand side of (6.3) is regarded as the
"applied” K . The condition for stability of crack advance is

dK
dK R
Tmr < d%a (6.4)

21

and instability becomes possible when
wm “mewm Am.wv

3a L d Aa

where the partial derivatives of K with respect a are to
be taken with the prescribed loading conditions held fixed.
Eg. (6.4) insures that a small accidential advance of the
crack under the prescribed lcading conditions does not give
rise to an applied K which exceeds xw , i.e. that exceeds
the resistance of the material. The transitition from stable
to unstable behavior is depected in the "R-curve analysis" in
the accompanying figure. There xﬁhw~ a) denotes K as a
function of a at fixed values of the loading condition Ly
AhHA BNA HwA bAv . This could be a prescribed load condition
or a prescribed displacement condition. The value of K at

7 x:.b.o_

Kplaal

o]

instability, K , depends on the loading conditions as well

as the R-curve. In the figure the value of the load at insta-
bility is that associated with ﬁp .

Consider the specimen (or cracked component) loaded in a
compliant machine shown on pg. 7. Again, let C{a) denote the
compliance of the specimen and let ox denote the compliance
of the loading device. The total displacement pe is taken to

be prescribed where
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DH N>+ OZ% u ﬁoAmv¢.03wv

Here and in section 2 the compliance nz = >Z\w is also
defined in terms of the force/unit specimen thickness P . If
Cy is the total compliance of the loading device and t is

the specimen thickness, then

Cy = mz.n (6.6)

The stress intensity factor can aways be written as
K = f(a)P (6.7)

where f(a) is assumed known and the dependence on unchanging
parameters is left implicit. For analysing stability we need
Amx\wmvb . Noting

T

dK = fdP + f'Pda

and
aba = A0¢.nzvav + C'Pda = 0 ,
we obtain
3K _ _ PfcC'
wwwb = pf' Ty (6.8)
T M

Thus, while K itself and the condition for continued growth
does not depend on the compliance of the loading device,
stability of growth is often strongly dependent on the

compliance. For dead loading Anz ~+~ « and P is constant),
(6.8} becomes

(3K (
e Y (6.9)
sa A da P
T
while for prescribed displacement of the specimen (i.e. a
rigid loading device with Cy =0

23
) [3K) _ opp. L BECT _ po(£)] :
TL> TLD = Pf e = wiﬂ, (6.10)
T
Note that, generally, wa\wva < wa\wwvm , 4s expected,
since usually C' > 0 .
As an example, consider the D.C.B. specimen of pg. 10
where
Cla) = B(a/b)>/E and £(a) = 2v3 ab /2
Using (6.8) one finds
oK - ~3/2 _ 3 B
TL = 2V/3 Pb W T+ Q\w {6.11)
>e M

Note that the ratio 02\0 determines whether K increases or
decreases with increasing a under prescribed De . The two

HHEwﬁm~ nz -+ « and OZ -+ 0 , give, respectively,

2/3 b 3/2 = x/a (6.12a)

it

AwW\mmvw

-3/2

4

(3/3a), =-4/3 Pb - 2K/a {6.12b)
Under prescribed displacement crack growth in the D.C.B.
specimen will always be stable assuming that the resistance
curve does not have a negative slope. It is also assumed here
that the crack advances in its plane, which is not always the
case. Under dead load the crack becomes unstable, from (6.5)
and (6.12a), when K = mww where xw is the local slope of
the R-curve. For a brittle material such as that in Fig. (6.1b),
xw = 0 and instability occurs at initiation in dead loading.

For the standard compact tension specimen it is possible
to calculate wa\wwv>e using numerical information from
Tada, et al. pg. 2.20. In nondimensional form Eg. (6.8) can be
written as

= g,(a/b) - 1+ /0 tg, (asb) (6.13)
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where a and b are defined in the figure on page 5. C is

the compliance (based on a unit specimen thickness) which was
approximated from Tada, et al. pPg. 2.20 as

C = v,(a/b)/E
where E = E for plane stress and E = E/(1 - CNV for plane
strain. Values of 9, and 9, are given in the Table below,
(I am indebted to Mr. H.L. Toftegaard for performing these
calculations). Since 9,-9; is negative for the range of
a/b  considered, a specimen of perfectly brittle material in
4 rigid machine AOZ = 0) will not display instability. On
the other hand for values of the compliance ratio greater than
Anz\ov* given in the Table, such a specimen will be unstable
at initiation. With mz as the total machine compliance and
noting {(6.6), one finds

03\0 = Et OZ\<NAm\UV

The larger the specimen (assuming t scales with a ), for a
given machine, the larger is 03\0 and therefore the more
likely initiation will be unstable.

a/b 9, _ 9, ‘ AOZ\OV*
.30 6.0 | 16.6 1.76
.4 | 11.6 | 21.6 .86
.5 | 20.2 | 33.7 .66
.6 | 41.7 | 60.2 .44
27 193, 132, | .am

Table (6.1).

Next consider a finite crack of length 2a in an in-
i3

finite body subject to stress o far from the crack; this is

the prototype crack problem in many applications. From (1.8),
© N )
via . When the crack is small compared to the size of

5= J

the body, there is no distinction between prescribed stress or
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prescribed displacement. (More precisely, for a very large
body compared to the crack size, C'/C is small and the
second term can be neglected in (6.8)). The relevant deriva-
tive for the instability analysis is

3K _o ¥ _1K ,
Mmmg T 32VvaT2a te.14)

Thus the condition for stability, once the crack has grown an
amount Aa with K = xw ; 1s

K/2a < xw (6.15)
At initiation, it follows from (6.15) that stability is ensured
if

2a > wO\wav (6.16)
c

For many relative brittle materials (6.16) will be violated at
typical crack lengths; (6.16) will be violated at all crack
lengths if Awmvo = 0 . Note that the right hand side of (6.16)
depends only on material properties. If Axwvo >0 , (6.16)
implies that long cracks are stable at initiation and small
cracks are unstable assuming s.s.y. holds over the entire
range of lengths. Of course, since K = o Vra , & long crack
starts growing at a lower applied stress than a short crack.
For an R-curve such as that of Fig. (6.1b) 2 = XO\AmWV is

c
the crack advance at which K, = 2K_ , estimated using the

initial slope of the mIOCHcm.wesmnmmonm. according to (6.16),
initial crack growth will be stable of the total crack length
2a 1is greater than the material-based length & . For a
brittle material £ will be very long but for an intermediate
strength metal above the brittle-ductile temperature £ will
usually be less than a centimeter {(additional data will be
given later). For such metals initial crack growth will there-
fore generally be stable at least when s.s.y. applies.

Eg. (6.8) brings out the importance of compliance on

stability. We end this section by displaying a decomposition



©f the compliance of a typical finite body with a crack of
length a , which is sometimes very useful. Let ¢ denote
the ¢ it

ompliance of the body without a crack, i.e. with a=9
With C{a)

as the total compliance in the presence of the
crack, define the contribution due to the crack as

OOHAWV = C(a) =- Che (6.17)

To illustrate the decomposition consider a beam of width b
and length I  subject to a moment M per unit thickness. As

illustrated in the figure let 6 be the load-point rotation

and let c:n be the rotation with a = 0 . Thus,
Ype = ML/EL and C__ = L/EI (6.18)
M., 8B/2 M, 872
4
,, ~ [k
Q
\

L

e - w3 : =

where I = b /12 , E = E in plane stress and E = E/(1- cmv
in plane strain. For L/b greater than about 2 or 3
monﬁmv in (6.17) is essentially independent of L . That is,
for L »> b

2

6
c., =< =L tiam
- 6.
- (6.19)

The function f(a/b) involves the solution to the crack
problem and is given in Tada, et al. pg. 2.14. For a deeply-

cracked specimen with ¢ ¥ b - a << b the result for ¢ is
cr

c._ = 16/ (Ec?) (6.20)

depending only on the uncracked ligament ¢ . Thus we can use
(6.17), together with (6.18) and {6.19), to obtain the total
compliance of a specimen of any length, as long as L is not
less than, say, 3b . Tabulated results for mnH for various
geometries are given in Tada, et al.

7. OTHER APPLICATIONS OF LINEAR ELASTIC FRACTURE MECHANICS

The stress intensity factor from linear elastic crack problems
is used in correlating data on fatigue crack growth, creep
crack growth and corrosion cracking. It is essential that
s.s.y. holds in some appropriate form which guarantees that
the K-fields of the elastic solution still give a good
approximation to the actual fields in some region surrounding
the crack tip. We will give a very brief discussion of fatigue
crack growth as an illustration, leaving a more detailed
treatment of this topic to a later chapter of the notes.
Consider Mode I, plane strain crack growth in s.s.y.
where the crack tip experiences a stress intensity history of
cyclic loading with K 1in the range 0 <K< AK as depicted
in the figure. If the rate of crack growth per cycle, da/dN ,
is measured over a range of AK from just below K to a

Ic

small fraction of K , data such as that shown in the figure

is obtained. The Emwwmnmam:nm are all made at the same
temperature and it is understood that da/dN represents the
rate after the growth has reached steady state. (Data of this
kind is available for many metals over a range of temperatures
- see, for example, the compendium of Hudson and Seward, cf.
pg. 17 of notes. For a recent paper on the subject see for
example R. Ritchie, J. Eng. Mat. Tech. (ASME) 1977, 99, 194).
At values of AK approaching Kie the growth rate is high.
At sufficiently low values of AK , usually less than about
xHO\Ho , the growth rate in some materials is observed to be
exceeding low and a threshold level >xo can be identified.
In a middle range between on and an the data often can

be fit by a relation of the form (Paris's Law)
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da/dN = c(ax)™® (7.1)

where m is typically between 2 and 4 .
The argument for the relevance of the stress intensity
factor X in correlating fatigue growth data in 5.5.y. is
similar to that made in the case of monotonic loading. Given
plane strain, Mode I, for example, the history of deformation
at the crack tip depends on the external geometry and the
loading history only through the history of X . Since the
plastic zone size Hﬁ is proportional to Ax\aovm , the small
scale yielding assumption is usually met without difficulty
at low growth rates where AK is well below xHo B
The stress intensity factor is also used to correlate
growth-rates under nonsteady loading cycles. The effects of
overloads and nonzero minimum K in the cycle have been
extensive studied and will be discussed later. In applications
of fracture mechanics it is commonplace to use fatigue growth
vate data to predict the length of crack as a function of load
¢ycles. This information is used in conjunction with the
fracture conditions under static (monotonic) loading, using
larger static load levels for example, to estimate the life~
time of a component with some assumed initial crack size.
Alternatively, inspection methods are used to determine cracks
Over a certain minimum size and the combined fracture
mechanics approach is used to estimate the remaining lifetime
of the cracked component.

da/dN {mm/cycle)

AK. tan AK '

R

et e
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NONLINEAR FRACTURE MECHANICS

This section deals with plasticity aspects of fracture
mechanics for the case of monotonic loads. The s.s.y. restric—
tion places rather severe limitations on the applicability of
linear fracture mechanics, effectively excluding its applica-
bility to low and intermediate strength metals. Ways for
extending the validity of linear elastic fracture mechanics
were sought very early in the development of the subject,
particularly in the analysis of plane stress crack growth
where the intensity levels are higher, with associated larger
plastic zone sizes, than in plane strain. In large scale
yielding (l.s.y.) it is no longer possible to use solutions

to linear elastic crack problems; elastic-plastic solutions
must be used in their place. In the following sections of the
notes several aspects of nonlinear fracture mechanics are
developed. Crack tip fields in the plastic zone are determined
under small and large scale yielding. The J-integral is
introduced and used to extend fracture mechanics into the
large scale yielding range. Limitations of the approach are
discussed. Stable crack growth is shown to be a conseguence

of crack tip plasticity. Conditions under which it is possible
to use a J-resistance curve to analyse the stability of
limited amounts of crack growth will be discussed. The current

status of nonlinear fracture mechanics will be reviewed.

8. THE J-INTEGRAL

References: J.R. Rice in Fracture Vol. 2, 1971.
B. Budiansky and J. Rice, J. Appl. Mech., 1973,
pg. 201.

The J-integral found by Rice plays an important role in non-
linear fracture mechanics. It is introduced in this section.
We consider homogeneous bodies characterized by a deformation

theory of plasticity (i.e., a small strain, nonlinear elastic
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solid}) with a strain energy density function zAmHuv such
that

g,. = wZ\meA

i3 ; (8.1)

Consider the cracked body in Fig. (8.1) in series with
a nonlinear elastic spring where the load quantity P (per

unit thickness of specimen) in the spring is given by
- L) 1 =
P=uU ADKV » )z oal v\apz (8.2)

where bz is the elongation quantity of the spring through
which P works and U is the strain energy in the spring
per unit specimen thickness. Let the total displacement

Ap =8 + Ay (8.3)

be prescribed. The nonlinear elastic system of Fig. (8.1) has
the potential energy

PE = SE(A, a) + GADZV (8.4)

where SE 1is the strain energy per unit thickness in the body
given in terms of the generalized load and displacement by

>
mmEi& u% Ew.mv& 8.3
0

For crack advance in the plane of the crack (i.e. in the
anmwnmonwo:v define J as the energy release rate per unit
thickness according to

(8.6)

From (8.4), (8.2) and (8.5),

O e -

'y

PR

e
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Fig. (8.1).
3SE 9SE '
dPE = HAMH da + |gﬂu dA + U QDZ
A a
= 135E| 3.4 4 p(an+an) unmmg da
da A M da A

where the last equality holds for ddy = 0 . Thus, from (8.6)
and using (8.5),

A
SE|  _ H 3P~ 5 8.7)

uu-ml = - 224, @ai (8.
vmpb owm

It is important to note that J is independent of the

characteristics of the spring M and therefore it follows

that (8.7) holds in the limiting cases of dead load and pre-
scribed A . For a linear elastic body with C = A/P one can
readily verify that J reduces to 6 given by (2.6).

An alternative expression to (8.7) can be obtained by
directly considering the body under dead load P . Now regard
A as a function of P and a and integrate (B.5) by parts

to get
P -
SE(P, a) = PA |% A(P, a)dP
0

Since now PE = SE - PA ,

P - ~
PE = |% A(P , a)dP (8.8)
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and
- N P .
= - j8=E] o 45 P
J = _wm J %c wmAm. a) dp (8.9)

Graphical interpretations of J in (8.7) and (8.9) are given
in the two figures below.

Jda

a+da

The above expressions for J are in terms of overall
load-displacement quantities. We now obtain the J-integral
expression involving details of the stresses and displacement
gradients in the cracked body. (The derivation given below is
similar to that of Budiansky and Rice, 1973. See Eshelby
(Solid State Physics, Vol. I1I, eds. Seitz and Turnbull,
Academic Press, 1956) for a different derivation within the
context of finite strain, nonlinear elasticity).

First we show the
important path-independence of
a certain line integral. We <*

consider plane strain, plane !

(b=}

stress or anti-plane shear with

stress and strain related by

(8.1). Let Qwu mwu and ug -
be any solution to the field r

’

equations involving no singula-
rities within or on T . Define

the line integral around T by

S S

e e e
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= - n.u, 8.10)
Hﬁ %ﬂAzsx quusucH‘xvmm {
where n is the unit outward normal to I . Using the
divergence theorem, equilibrium and (8.1), one finds
da = [ G, .E dA
% zsxam = R z.x = gb wuvuu.x
r r r
= . = ﬁ o..n.u, _ds (8.11)
% (05591,%) 598 JpoidiiTix
A r
T
Thus Hﬁ = 0 where vﬂ is any simply connected region con-
taining no singularities.
40\\m
Afe) d s e~
! ) <
s 2
||J_ == n \
L J
b \u , = i, }
- TE =
a da 5 P Y
~
— —Jﬁ

IR

,_.O

Next consider solutions to the problem shown in the
figure where the region Af{a) 1is a function of a due to

translation in the x-direction of the blunt-ended notch shown.

. o . .
The notch is traction free, while T is prescribed on ma
and u° is prescribed on m: . The potential energy of the

system at a given a is

PE (a) = W(e)da - %m awswam

%»Amv -

where u(x, a) and ¢(x, a) are the equilibrium displacement
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and strain fields. Under the prescribed conditions L , with

) = G)/sa),

PE = - %ﬁ S:xam + % Waa - %

emm.am
0 A s 1

T

But from manipulations similar to those in (8.11),

[

Wda = _ (3W/3c..)¢. .dA = % 0. .n.u = 4
yy A / i S pu:ucumm S ewcwam

1 1]
T

(This can also be noted immediately from the principle of
virtual work). Thus,

PE = - Wn_ds = ~- -
Hﬂ n ds g Atsx qwu:u:»~xvmm (8.12)
0 To

where the second part of the last integrand vanishes on T
Aawu:u = 0) . Now use the line integral (8.10) where
T = ww + ﬂm + ﬂo - ﬂo + noting that the integrand of (8.10)

vanishes identically along ﬁw and ﬁw . Thus, since Hﬁ =90,

0

PE = - -
%ﬂ Az:x Qwu:ucw.xvmm (8.13)
c

Thus the "energy release rate" for the family of blunt-ended
notches is given by the line

integral about any contour ﬂo

which circles the notch as shown -

in the figure. We now argue d \
{heuristically) that, by choosing 'lor

et
a4 contour ﬁo remote from the HHMHHHMU / /

end of the notch and by going to \ /r

the limit of a crack (b - 0) -

'

the result (8.13) gives the
desired energy release rate for
the crack, i.e.

}ds (8.14)
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While this expression has been derived for a given set of pre-
scribed loading conditions, we have previously shown that the
same expression must hold for loads applied under compliant
conditions.

In s.s.y. the contour ﬂo can be chosen to fall within
the annular region in which the K-fields hold (see Fig. (4.1)).
Then the integrand in (8.13) can be evaluated in terms of (1.1)
and (1.2) of the K-fields. A direct calculation of this kind

verifies (2.8) and (2.9), i.e. in Mode I

7 =6 =kKE {8.15)

9. THE DUGDALE - BARENBLATT MODEL

References: D.S. Dugdale, J. Mech. Phys. Solids 8, 1960, pg.
100.
G.I. Barenblatt, Adv. in Appl. Mech. 7, 1962.

J.R. Rice in Fracture, Section IV, C, 1968.

Dugdale observed that the plastic zone ahead of a crack tip in
a thin sheet of mild steel involved primarily cross-slip on
planes at 45° to the plane of the sheet as indicated in Fig.
(9.1).

WL& A-A
Sl o
A
I+fi¥QLF|

Fig. (9.1).
Assuming the length of the plastic zone s is long compared
to the thickness of the sheet t , the plastic zone can be
visualized as a narrow strip of height in the plane of the
sheet which is approximately t . Regard the material as being

elastic-perfectly plastic and take the stress in the

o
vy
strip (i.e. along the x-axis in the yielded strip) to be the
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in-plane, plane strain tensile yield stress Oy - As shown in
Fig. (9.2) the problem is modelled by a elastic plane stress
problem where the length of the plastic zone s is not yet

determined. The crack is of length 2a ; the sheet is infinite;

awﬁxb,

IERRN -Tx e L
o %

Fig. (9.2).

@

and the applied stress far from the crack is o<< = d . Only
the upper half of the sheet is shown in Fig. (9.2). The

boundary conditions along y = 0 are : ox% =0 all x ,
Oy = 0 mOH_ x| < a, 9yy = 9 for a < |x| <L, and
= (0 for {x| > L where v is the y-displacement.

v

The solution to this problem can be obtained using
complex variable methods - see Muskhelishvili's book. For
arbitrary values of s there will be unbounded values of
Q%KAx~ 0) as x| » L from outside the strip. Only for one
value of s will the stresses be bounded as |x| » L . That
choice is
2= waswﬁw I!u or

g
L [+]

- o7}
: = mmomm S w 1 (9.1)

0

it

and this leads to a stress distribution ahead of the crack~tip
as shown on the right in Fig. (9.2). With this choice the

c¢rack-tip opening displacement (COD or sometimes CTOD) is

- * -y - 8 1071
an zvia,0) -v(a,0) = 7 o mpbmmmn% w_ (9.2)

where £y = oo\m is essentially the yield strain. See Fig.
(9.3) for aw - Next we evaluate J using the line integral

S )

e R

-
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expression (8.14), where ﬁo is any contour such as that

shown in Fig. (9.3). Using the path-independence of J shrink

ﬁo to ﬁm running just along top and bottom of strip zone

from a < x <L . 8ince sx = 0 along wm and QwunucH~x =
Qo<~x:< , we find
L N _
= - E -— e Q
J % qo<~xswmm 9, % Hc.xﬁx. 0 ) <.xﬁw~ 0 ) jdx
T! a
c
+ - _—
=o,lvia, 0) ~v(a, 0] = Ggdy (9.3)
or
J u.mo £ ain|sec |4 mw 1 {9.4)
7070 204/

Eq. (9.4) applies only to the finite crack in the in-
finite plane but (9.3), i.e.

J = 0.8, (9.5)
holds for all configurations for the Dugdale-Barenblatt model.

The energy release rate J for the elastic material outside

the strip of yielding balances the work-rate of the cohesive

stresses Aowm = qov applied along the strip.
In s.s.y. when qs\qo << 1, (9.1), (9.2) and (9.3) give
20 =2 oy 2
s .1’fs - - o)
z = Aﬂﬁmww P J = 08, = mogeqa o5 ) (9.6)

Recalling KX = J/racs  in s.s.y. these can also be written as
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. 2 _ 2 W
s A:\mvﬁx\oov , J = QOQn = K°/E (9.7)
-
which gives results listed earlier.
Denoting the value of J in (9.6) by Auvm s , wWe w
can write the l.s.y. result as S m
1
J = mwmmbwwnuﬁmmomm mmww (9.8) W
A.uvm.m.%. ﬂm o 2 % ’ -
20 ©2
_ 1|0
= H+|N|MMMIW + ... (9.9)
]
Thus for g \oo = 1/2 the s.s.y. result underestimates .J
*
(and mnv by about 10%. Note that the ratio (9.7) becomes un-
bounded as o - ag -
One approximate way which has been used for extending
S5.8.y. results to intermediate scale yielding is based on the ]

concept of an increased effective crack length to account for

the plastic zone. The idea is to use the elastic results with

i
i
i
i

a replaced by ag - The s.s.y. relations are used to define

m m:m i i
o xm in terms of J , i.e.

2 ©
J = xm\m and xm = \dmma B (9.10)

From (9.9) it follows that

2 o o
xm = 7a{o vmﬁw+ aNAQ \Qovw\mp+ ...w

Thus from the definition of a_ in (9.10) we find that to

lowest order of correction w
a_ = all~+ ﬁNA 8\ VN =
o o Qo /24+ ... = a+s/3 + ... (9.11)

where s is given by the s.s.y. result (9.6) or (9.7). This
approach will be discussed again at a later point in the notes;
here we simply remark that the correction s/3 in (9.11),
which is asymptotically correct for the problem under conside-
ration, is somewhat less than the s/2 usually recommended
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for plane stress problems.
With (9.2) and (9.4) in hand, we can now discuss

a possible extension of the analysis of fracture initiation

into the l.s.y. range, at least within the context of the
Dugdale model. First note from (9.5) than any criterion based
on a critical value of J will necessarily be eguivalent to
one based on a critical value of aﬁ . The COD , an , is a
measure of the opening or stretch deep in the plastic zone at
the crack tip. The most obvious criterion for initiation which

would be independent of whether or not s.s.y. holds is

{(9.12)

c
t
of temperature) using some appropriate test specimen. By (9.5),

where § is to be experimentally determined {(as a function

a mathematically equivalent criterion is

J =J where J_ = 0.6 {9.13)

c c 0t

Under s.s.y. conditions the above can be written in terms of

K , using (9.7}, as

K = wn where xn z Qommﬁ = «muo {(9.14)

Or, conversely, if K is known from a s.s.y. test, then the

second equation in Amepv can be used to define mm for use
in (9.12) or (9.13).
Using (9.4), with J = Qo , the stress at initiation
o0
9% must satisfy
8. | i QM 1 Je
7 m.d_.mmﬁyw mmw._ = MMM(OI«M {(8.15)

while using just the s.s.y. formulation (9.14) gives
(0%/0,0% = 3 /(0 e ) (9.16)
T QO Go = < o«o .

The difference between the predictions (9.15) and (9.16) are
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o

mmm:ManSmmxmnOSOm ao vs. 1/a in Fig. (9.4) where

QC\Aoomov should be regarded as a material constant.

[’}

o
I

o

s.s.y. {9.16}

l.s.y. {8.15)

1 ,_n
%o

1
a
Fig. (9.4).

Dugdale was primarily concerned with estimating the size
of the plastic zone in sheets of mild steel. He obtained
excellent agreement between the l.s.y. results for s in (9.1)
and his experimental observations for applied stress levels
approaching the yield stress.

e

i e e

-
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10. CRACK TIP FIELDS

References: J.R. Rice in Fracture, Vol. 2, Section v, 1971.
J. Hutchinson, J. Mech. Phys. Solids, 16, 13, 337,
1968.
Rice & Rosengren, J. Mech. Phys. Solids, 16, 1,

1968.

Within the context of the small strain deformation theory of
plasticity introduced in Section 8 we now investigate the
stress and strain fields at the
tip of a line crack within the
plastic zone. For definiteness
consider uwlmmmOHSmnHo: theory
where

2 _ 45 .3
o, = wwm = waumwu (10.1)
where s is the stress
deviator and the effective Fig. (10.1).

stress reduces to the uniaxial

stress in pure tension. Let ¢ be an effective tensile yield

0
stress (or a reference stress) and let £y = Qo\m be the as-
sociated tensile strain. In tension assume that for ¢ >»> €5
there is a power-law relation of the form
e/ ale/o )" {10.2)
€ 0 .

where o is a constant. If desired this can be thought of as
the plastic part of the strains. Using uwlammoﬁswnwo: theory
the above generalizes to

m..\mo ~ Wanm\oovSle‘A\o

13 137% (10.3)

Using the line integral expression (8.14) for J , take
ﬁo to be a circle of radius r centered at the tip as shown
in Fig. (10.1) so that
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J x quusucH\xvnmm (10.4)
Since J is independent of the path, r can be chosen to be

as small as desired. If J in (10.4) is to have a finite non-

zero value as r-0 it is necessary that

lim (Wn_ - o,.n.u, Yr = £(9)
F a0 X i3 iviLx
or
Wn_=-o,.n.u, ~ £(8) as r-0 (10.5)
X ij7j71i,x r

Note that the left hand side of (10.5) is homogeneous of
degree (n+1)/n in the displacement gradients from (10.2).

This suggests that for r-0

1 1
Wt u~ae™t , o~ aer M
The separated form of the dominant singular solution suggested
by the above argument has been verified for the power law
material by Hutchinson and by Rice and Rosengren. Numerical
results for the 6-variations have been obtained and will be
displayed below.

The singularity fields can be written as

1
_ Thtl .. -
wawu. amu =0,k T ﬁa»uA®~ n) ., Qmam~ n) ]
B
_ n n+l -
mu..u = aey xa«. m&g , n) (10.6)
1
o _ n_n+l ~
uy :Mtﬂmoxqw cu..:w\nv

Here the plastic intensity factor K is defined such that

g
xw+w has dimensions of length and its magnitude is specified
by normalizing mm to have a maximum value of unity on the
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range |6| <7 . The dimensionless fields mwu . mwu and G
depend on whether Mode I or 1I pertains, on n , and, most

importantly, on whether plane stress or plane strain holds in
the plastic zone. The 6-variations of the stress and strain
fields for Mode I are shown in Figs. (10.2) and (10.3) for
plane stress and in Figs. (10.4) and (10.5) for plane strain.
Included are the limiting slip line solutions and associated
stress distributions for the perfectly plastic limit n-= .
Implications of these fields will be discussed in later sec-
tions. Here we just take note of the fact that triaxial ten-
sion, .Woxx , is highly elevated ahead of the crack in plane
strain. For the perfectly plastic limits in Figs. (10.3) and
(10.5) one has for & =0

o = \wqo in plane stress {10.7)

kk

o YI(1+ km)o, in plane strain (10.8)

kk
If (10.6) is substituted into the expression (10.4) for

J one obtains

n+l

J = a0, moxo Hs Awo.wv

where

n
_ n sn+l
1= M Wﬂﬂ G ~* QOm

-7

The complete expression for Hn along with its numerical
values are given in Hutchinson, 1968, and also in C.F. Shih,
ASTM STP 560, pg. 187, 1974. (For plane stress H: decreases
monotonically from about 5 for n=1 to about 3 for

n-® , while in plane strain it decreases from about 6 to 43 .
Using (10.9) we can rewrite (10.6) in a form which emphasises
the role of J as a measure of the intensity of the singular

crack tip fields:
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1
n+
fo . 0.1 = o Q!m;oxmﬂf L (6,508, m) , o.(8,n)] .
(10.10)
R
i3 T chToc muoH: L mwuﬂm » 1)
The analogous fields in Mode III can be obtained analytically *

and will appear later in the notes.

We note in passing that the fields (10.10) also hold at
the tip of a crack in a material undergoing steady power-law
creep. If the ¢ - quantities in (10.2) and (10.3) are identified
with the creep strain-rate, as in Norton's law, and if W and
v in {10.4) are the strain-rate potential and velocity,
respectively, then the analysis leading to (10.10) applies
rigorously to steady-state creep conditions in which the
stresses are unchanging with time. Begley and Landes (ASTM STP
590, pg. 128, 1976) denote the integral (10.4) by J* (it now
has dimensions of stress x length/time) and have used it to
correlate creep crack growth data.

We introduced J as an energy-release rate and now
find, by virtue of (10.9) or (10.10), that it can also be
considered a measure of the intensity of the singular crack
tip fields. This is exactly analogous to our earlier reinter-
pretation of G wvia its connection with K in linear elasti~
city. Note that (10.10) reduces to the square root singularity
encountered previously for n = 1 , (The normalization of K
in (10.6) for n = 1 is different from the way K is ’
normalized in linear elasticity; but (10.10) does reduce to
the analogous linear elastic expressions for v = %
corresponding to incompressibility assumed in (10.3)). The
local analysis leading to the above crack tip fields (10.10)
has not involved any assumption with regard to the extent of
plastic yielding and is certainly not confined to s.s.y. In
principle, assuming deformation theory supplies an adequate
plasticity description under monotonic loading, J provides

a4 unique intensity measure for characterizing fracture initia-
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tion at the crack tip under small or large scale yielding
conditions. We will discuss the adequacy of deformation theory
at a later point of the notes. Here it can simply be noted
that the singularity fields themselves under increasing J
correspond to proportional loading and therefore the fields
(10.10) are also exact solutions to um flow (incremental)
theory specialized to the tensile relation (10.2).

The above interpretation of J as an intensity measure,
as opposed to the energy release rate of a crack in a fictiti-
ous deformation theory solid, provides the theoretical basis
for its central role in nonlinear fracture mechanics. Later
sections of the notes will discuss experimentation in l.s.y.
based on J . Limitations of the approach will also be discus-
sed. The main limitation concerns the size of region over
which the singularity fields (10.10) dominate (i.e. accurately
predict) the true behavior. It is essential that the region of
dominance be large compared to the region in which the micro-
scopic fracture processes are occuring {(the fracture process
zone) and/or large compared to the region in which the small
strain plasticity approximation breaks down. This issue is
currently under intensive investigation. It is already
possible in this section to give some hint as to how the

limitation arise.

mwu and 55 in (10.10)
are unique for finite n . Thus for sufficiently small J

The normalized € - variations

does provide a unique measure of the crack tip fields within

the context of the small strain deformation theory. For

n » » the stress fields & approach the stress fields of

ij
the perfectly plastic slip line solutions shown in Figures
(10.3) and (10.5). On the other hand, starting from these

stress fields for perfect plasticity one can show that the

8 - variations of the singular strain fields are not unigue
but depend on the solution to the entire boundary value
problem. {(This is a consequence of the fact that the field
equations of perfect plasticity are hyperbolic while those for
n finite are elliptic).

The singularity of the strains is like 1/r , as implied
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by (10.10) for n - « » but the 0 - variations cannot be

determined from a local analysis (see, egq., Rice, 1971, pg.

In fact even
state at the crack tip is not unique under l.s.y.
in perfect plasticity, as will be discussed in more detail
later. Under fully yielded conditions the stress and strains
tields at the crack tip in a perfectly plastic (Hencky)
material are a strong function of the external geometry,
barticularly in plane Strain, in addition to J

267, for a discussion of S.s.y. plane strain).
the stress

as emphasised
by Mc Clintock (in Fracture, Vol. 3, pyg. 48, 1971). Thus to

argue that J (or any other parameter) is a unique, configura-

tion-independent, measure of crack tip deformation we must
appeal to some strain hardening. At the same time, the present
discussion indicates that even with strain hardening the size
Of the zone of dominance is of some importance and may severe-
ly limit range of applicability of J

1l. ELASTIC-PLASTIC SOLUTIONS IN S$.S.Y.

References: J.A. Hult and F.A. Mc Clintock, in Proc. 9th Int.
Cong. Appl. Mech., Brussels, 8, pg. 51, 1956.
J. Rice in Fracture, Vol. 2, pg. 246, 1971.
C.F. Shih, ASTM STp 590, pg. 3, 1976.

We digress from our objective of developing l.s.y. fracture
mechanics to wﬁmwm:w in this section some additional details
of elastic-plastic solutions in s.s.y. To start we give the
solution of Hult and Mc Clintock for a Mode III crack in an
elastic-perfectly plastic material.

The solution is exceptionally simple. As sketched in
Fig. (11.1) the plastic zone is circular in shape, perched
directly at the tip of the crack. Outside the elastic~plastic
boundary the solution is just the K-field of the elastic solu-
tion but centered at r = 0 not r = 0 . Inside the boundary
the strains vary everywhere like 1/r . A quick derivation of

the solution will now be given. We will assume deformation

i gy 2 i

R RIS TR

.

w
1

43

ship lines

Fig. (11.1).

theory (Hencky theory). but we will show that the solution also
satisfies the corresponding flow theory equations.
With K as the Mode III stress intensity factor, the

elastic crack-tip fields are (centered at f = 0 )

K ; = -
— =) = — —) = , 5
AaH. a¢v 0A<ﬂ‘ «mv \m:mAmw:mm coskb)
(11.1)
_K for . .«
w o= m«\.:H sink6
where am H qMN ’ a@ = QmN , etc.

Inside the plastic zone the following equations must be
satisfied (now using a planar polar coordinate system centered
at r =0 ):

n-pﬁmanv,m + nupﬂo,m =0 (equilibrium) (11.2)
aw + Hw = Hm (Mises or Tresca yield condition) (11.3)
(g ¥9 = m-pﬁaa~ Ty) (elastic strains) (11.4)
A<W. «MV = »@AAH~ Hov (plastic strains) (11.5)
A<H~ <mv = yAHH. amv i A= O'H + AP (total strains) (11.6)
A<Hs <mv = Az.H~ H|H£~mv (strain~displacement) (11.7)
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Look for solution of form

T.0=0 , 1, = Ty o Yp = 0, Yg T Ar, 8)t (11.8)

0
which satisfies (11.2), (11.3) and (11.6). (This special solu-
tion corresponds to the fan of straight slip lines shown on
the right in Fig. (11.1)). Now look for displacement field
wir , d) consistent with (11.8).

Y, = 0 = w =0 = w = F(8) (11.9)
Yo =T W = AT, = A = m.ﬁmv\AAOHv (11.10)

We now show that we can pick F(8) such that the two

solutions match on the elastic-plastic boundary r = R . On

r=R, 06 = 29 ; transform (11.1) to (r, 6) axes with result
(on ¥ = R) that (11.1) becomes

(P ® Y. =0 L Gy, =Ty = K/VZTR , w = kG 1V/3R/T sind (11.11)
Traction (and stresses) will be continuous across r = R if
2
S T, or R= WLWV (11.12)
Y2uR 0

Continuity of w (and strains) across r = R requires

F(8) = KG L/ZR/7 sind = 2R Y, sind (11.13)
where Yy F ﬂo\m . With K increasing monotonically the
plastic strains increase proportionally at each point (in fact,
4% = 0 ) and thus the solution also exactly satisfies the in-

cremental plasticity formulation based on elastic-perfectly

plastic flow theory.
The strains (total) in the plastic zone are

e w<o R cosé

N L= g - K1 /2R =
y.o= 0, Yy = FF (9) = SV cos8 =

S1
Noting that 2Rcos6 = I'(8) , as in Fig. (11.1),
Yo = Yo T(8) r 1
8 0 (11.14)
and this displays the 1/r variation expected from the
singularity analysis of section 10. The C.0.D., w(0, ny -
w(0 , -1y , is
§_ = F(n/2) - F(-1/2) = -z, (k)7
‘ (-1/2) = wao =SV T {11.15)

since all the finite stretching occurs within the plastic zone
(i.e., [|8] < 7m/2) . Since J = xw\mm in s.s.y. Mode III,
(11.12) and (11.15) can be reexpressed as

R = Q\A:4o<ov and aﬁ = Ah\avu\ﬂo {11.16)
Next consider the effect of hardening. With
T = Hw+aw and <n<<w+<w~

assume,

Y/ vy = /7, for 1 < L
(11.17)
/Yy = Aa\aovn for 1 > 1,
where Tgp = GYy - The deformation theory relation is
<Q\<o =1,/ for 1 < T, (a=1,2 or r,8))
(11.18)

Yo/ Yo = Aaxaovsnwa /T

>
o’ To for 1t T

0 J

The s.s.y. problem can again be solved in closed form (see
Rice, 1971, pg. 255). It is again found that the plastic zone
is circular with precisely the same radius R given before in

(11.12) . Now the zone completely engulfs the tip (see Fig.
(11.2)) with
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Fig. (11.2).

As in the elastic-perfectly plastic case the dominant
singularity is the full solution everywhere within the plastic
zone. (This appears to be peculiar to Mode III s.s.y. It is
definitely not the case in plane stress or in plane strain or
even in s.s.y. Mode III with other stress-strain curves). The

singularity field can be written as

1 n
- +1 -
T, = Hoﬁaw\ﬂv:+wapawv g = Tle/m M e al.20) _
where
meA@V , wmﬁmvu = T(8) [-sing , cos¢]
(i, (8) 4 7,(8)] = ©°(8) [-siny , cos¢]
1
n+1l
= _ in+l sin2¢ o= -
t(8) = mwm, mwsmg (note: T(0) 1)
and
2¢ = 0 + mw.omw:‘lmn.wmp:& .
(n+l

e}
ot

Sketches of the stress and strain directly ahead of the crack
(6 = 0) are shown in Fig. (11.2). From {11.20) they are given
by
i N
¥ aoﬂﬁﬂ\mv:+w N %oﬁhw\wv:+w (11.21)
For n =1 and n -« (11.20) and (11.21) reduce to the pre-
viously obtained limit of elasticity and perfect plasticity,
respectively. The fields (11.20) in the plastic zone display
proportional loading so the above solution is again an exact
solution to the corresponding incremental field equations.
Closed form solutions for the stresses and strains
everywhere in the plastic zone have not been obtained for
Mcde I or 1II situations. As already mentioned, the dominant
singularity fields are not the full solutions everywhere in
the zone. Many finite element studies of the $.5.y. problem in
plane strain Mode I have been made. It is generally agreed that
the difference between, say, the predictions of uw deforma-
tion thecry and uw flow theory are of little consequence.
For example, evaluation of the J integral on many different
paths using umamwoz theory solutions reveals very little path
dependence, implying that the deformations satisfy nearly pro-
portional loading.
Boundaries of the plastic zone in s.s.y. plane strain
are shown in Fig. (11.3). This figure is taken from Shih,
1976; it includes four cases ranging from Mode I AZm = 1} to
Mode 11 (M = 0} where the measure of the combination of
mixed modes is
M€ = Aw\avnmznp_xH\wHHw
A piecewise power-hardening law was used to represent the
material in Fig. (11.3) along with QN deformation theory, i.e.,

e =0/E , o < oy i m\mo = Aa\qov: g >0 (11.22)

0

In s.s.y. the size of the plastic zone is proportional to



Ar\covm and thus the plots of Fig. (11.3) are independent of
K in s.s.y.

In piane stress Mode 1 the plastic zone shapes and sizes
are similar to those in Mode III, as seen in Fig. (4.2) and in

egquation (4.2).

M®: )
n=13
nz3
nei
o 5 _xat
(K +Kg)

ME3

yo

(Ky+Kg)
1Ry net M3 na13

Elastic-plastic boundaries for small-scale yielding in plane strain.

Fig. (11.3).
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12. ANALYSIS OF L.S.Y.

In this section we discuss three aspects of large scale yleld-
ing analysis: (1) a special, simple expression for J for
deeply-cracked bend specimens, {2) plastically adjusted crack
lengths for extending s.s.y. results, and {(3) estimation
procedures using fully plastic power—law solutions. Finilte

element studies will be discussed later in the notes.

J for deeply-cracked bend specimens

Consider the configuration in Fig. (12.1} where M 1is
the moment/unit thickness applied to the specimen. As on page

26 of the notes, let @sn denote the load point rotation with

a =0 and @0H the contribution due to the presence of the

crack such that the total rotation is given by

&

I
==
+

ne ¢OH (12.1)

Defined in this way @0& is independent of L , assuming L

is sufficiently large compared to b , and thus, in general,

[
r
2

o

. [} 0 .

cr bR N etes
0,

NN’

Here, F 1is dimensionless, 94 is some appropriately defined

yield stress, and F may be a function of additional non-

dimensional groups of material characterizing parameters.

M, G/2 M. 8/2

N I {

\

gl
Y
L

Fig. (12.1).
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For cracks which are sufficiently deep, i.e. c¢/b << 1 , F
will be independent of c¢/b . For example in the linear
elastic range, from (6.20),
2
)

0. = 16M/(Ec

cr as ¢/b - 0 (12.3)

in the fully yielded range plasticity will be confined to the
area of the uncracked ligament as depicted in Fig. (12.1) and
then it is clear that b does not enter in (12.2).

Next, convert the general expression for J in (8.9) to
the present case noting 236/3a = mmnn\wm

ﬁZ@GOH R -
J = \O Sa AZ~ a)dm AHM-AV
From (12.2),
(36 a8
L cri _ cr M 1
= - L= 2F - F ,= (12.5)
| 3a pz E Laoow ,2b

where the commas denote the obvious partial derivatives. Next
note that

- 1
M, c " Foap (12.6)

Now substitute (12.6) into (12.4) noting that Awmnﬂ\wxvmaz =
aaon (with a held fixed) with the result

Z. Hﬁz
.u um%ozmmnw |¢liom~m.wz (12.7)

When the specimen is deeply cracked F 2 ® 0, as already
discussed, and (12.7) reduces to '

AZ
Jo=g Mae (12.8)

Ol
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This is the expression of Rice,
Paris and Merkle (ASTM STP 536, M
1973). It has the simple inter-
pretation of (2/c) times the

area under the M vs. mnH

curve. This relation can be

measured experimentally in any

test, and thus (12.8) permits
J to be determined directly
from the experimental record,
as long as there is no appreci- Fig. (12.2).
able crack growth. The derivation given above leading to (12.7)
is due to P.C. Paris (unpublished) and includes the general
form of the correction term to account for finite values of
¢/b . It is felt, that (12.8) provides a reasonably good ap-
proximation as long as ¢/b < 1/2 , although more work is
needed to tie this down.

Similar reductions of J are possible for other deeply-
cracked configurations as can be found in the paper by Rice,
Paris and Merkle.

Plastically adjusted crack lengths

In connection with the Dugdale model in Section 9 it was
seen that it is possible to extend the range of $.85.Y. some-
what by using the idea of a plastically adjusted crack length
a, in the s.s.y. (i.e. elastic) formulas. The standard
proposal {(see, for example, Tada, Paris and Irwin, 1973, PY.

1.17) is that a_ = a + r where (cf. pyg. 14 of notes)

e y
r = WH = (1/27) (K/o VN in plane stress {12.9)
y  2'p 0 P :

=3r = (1/6m (k0.2 in p1 trai (12.10)
H.% 2 p 0 in Piane strain .

For the Dugdale model we have seen that the asymptotically
correct adjustment is n< = an , at least for the finite
crack in the infinite sheet. Edmunds and Willis (J.M.P.S. 1976,
24, 205 and 225, and 1977, 25, 423) have shown that
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2
= 1/3r = (w/24) (K/o,) (12.11)
r, / . / /94
provides an asymptotic correction for all configurations for
the Dugdale model.

For Mode I1I crack problems where the material satisfies
(11.17) and (11.18) Edmunds and Willis have shown that the
asymptotic correction should be (see Fig. (11.2))

n-1

= = L
Fy T R = 2m

v P (12.12)

?ibw
n+1lj Ho_

as suggested by the analysis of Section 11. For Mode I plane
strain Edmunds and Willis find that the universal correction
for elastic-perfectly plastic materials satisfying the Mises

yield condition is

Jn .DG:QQOVN :N.ﬁ:
and this is about 1/3 the commonly used value (12.10). The
corresponding calculation for plane stress has not been per-
formed but, judging from Mode III, (12.9) should not be far
off.

Edmunds and Willis show how the asymptotic expansion can
be continued to higher order terms. The corrections beyond the
plastic adjustment inherently involve details of the overall
geometry and loading beyond that supplied by the elastic K .

To summarize, if K = f(a)P denotes the stress intensi-
ty factor tor a crack of length a from the elastic solution.
Then, with a_ = a + r_, the adjusted value of K 1s K_ =

e Y e
mﬂmmvm and the J wvalue from the s.s.y. formula is

g = xwxm (12.14)

The extension of the range acheived by this approach is not
necessarily very large. For the Dugdale problem considered in
Section 9 (see Edmunds and Willis, 1977, pg. 436, figure 4) J
is yiven to within 10% for oe\oo up to about .7 as opposed

Lo .5 without the correction. It is possible that the plane

e = < e o o« s e i e

o i e e

RS
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strain correction (12.10) gives a better approximation than
(12.13) over a more extended range even though {12.13) is

asymptotically correct. This is an open question.

Fully plastic solutions and l.s.y. estimates

First we consider a class of small strain fully plastic
crack problems in which the "elastic" strains are neglected
and the tensile behavior is governed by

n

m\mo = Qﬁo\oov (12.15)
. . ) 2 _
Using um deformation theory with o, = Au\wvmwumwu
- n-1
m»u\mo = Aw\vaﬁcm\oov mnu\oo (12.16)

As noted by Ilyushin many years ago, a solution to a boundary
value problem involving a single load or displacement
parameter which is increased monotonically has two important
properties. If P is a load parameter then stresses increase
in direct proportion to P while strains increase as P .
Since the stressing is proportional at every point the solu-
tion based on (12.16) is also an exact solution to correspond-
ing flow theory problem. It should also be noted that with
mwu identified with the strain-rate the solution will alsc
be a solution for steady power law creep.

Because of the pure-power behavior the load dependence
of the solution factors out trivially. For example, J is

necessarily proportional to m:+w

. To illustrate the simple
form the solutions take consider the strip of Fig. (12.1) in

bending in either plane strain or plane stress. Defining &

cxr
as in (12.1) and assuming L is sufficiently long such that
the dependence of mon on L is negligible, we can write
n+1l
J Q.oo €5 € ﬁwa\v , n) E\Zov (12.17)
- n
mnﬁ ae, UuAm\U. :VAZ\SOV (12.18)
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where My 1s a reference moment/unit thickness guantity. The

Eomncc:<m:Hm:n030H0mmOH Zo HmﬂsmwME»dBOEmSﬁOmmvmﬁu
fectly plastic (n-») material. Assuming that a is not too

small, this c¢hoice is

2
My = AggcC (12.19)
where A = .3b4 1in plane strain and A = .268 in plane
stress. For given values of a/b and n , Uw and rw can

be calculated once and for all using finite element methods.
Solutions to a number of fully plastic problems are now avail-
able. A list of references is given by Hutchinson, Needleman
and Shih (1978, Harvard University Report Mech-6 to be pub-
lished 1n O.N.R. Symposium on Fracture Mechanics, Washington,
D.C.). For the strip in bending numerical results from

Hutchinson, et al. for a/b = 1/2 are given in the Table.

$1.49 1 1.33 11.21 |1.04 .906 . 742
plane straing

. 2.68 12,51 | 2.26 |1.82 11.51 |1.20

1.10 .97 -85 .72 .65 .55

I
plane wﬁnmmmﬁh
W, h 1 2.75 {2.36 ] 2.03 _w.mw 1.37 11.12

L

Next, we consider using the fully plastic solutions,
together with the elastic solutions, to interpolate over the
range from s.s.y. to l.s.y. To be specific suppose the tensile
behavior of the material is characterized by a Ramberg-Osgood

relation of the form
n
r\ro = c\co + QAQ\QOV (12.20)

where 9y = mmo . In addition, consider the edge-cracked

strip in bending. In the s.s.y. range we expect J and mon

to be given by the elastic results. With K = mwﬁmvz , these
are denoted by

e -

S SO

[ —

i o e, et el e s ool et~ < o i i s A

JE

61

5= kB = 2mn/E | o = £ (am (12.21)
where mw and mu are known functions from, for example,
Tada, et al. In the l.s.y. range we expect J and mon to
approach the values given by (12.17) and (12.18) for the fully
plastic solution as M increases.

To interpolate over the entire range Shih and Hutchinson

(J. Eng. Mat. and Tech., 98, 1976, pg. 289) have proposed

2 2 = N n+1
J = mHAmmvz /E + aoy roﬁu:HAm\v. :vAZ\ZOU (12.22)
_ n
mnH = mwhmwvz + aeg :uhm\w~ nVAZ\Zov {12.23)
Here a, =a + H< where for plane stress, from (12.9) (and
(12.12)),
1in-1 2
Yy T 2w :¢.~gAx\oov M o< M,
(12.24)
= M > M
An<vzu‘z 0

where in (12.24) K 1is given by the elastic formula, i.e.
K = mwamvz . It is clear that som plastic adjustment of the
elastic part in (12.22) is needed since without it J would
be given by the purely elastic result for M XMy for the
elastic-perfectly plastic limit n + = .,
Comparisons between the predictions of (12.22) and
(12.23) and full finite element calculations are shown in Fig.
(12.3) taken from Shih and Hutchinson. These results are for
plane stress with a/b = 1/2 and a = 3/7 ; the values of 3w
and hy are from the Table. The solid line curves are obtain-
ed from (12.22) and (12.23), while the dashed line curves are
the finite element results. The curves for the elastic case,
n = 1 , are obtained from the s.s.y. formulas, i.e. (12,22)
and (12.23) with a, = a and a = 0 . The limit for the
elastic-perfectly plastic case n -+ « is the same as the
estimate of Bucci, et al. (ASTM STP 514, 1972, pg. 40) using

results from limit analysis. Equallv good comparisons to those
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13. J-INTEGRAL TESTING

References: P.C. Paris, ASTM STP 631, pg. 3, 1977.
Various papers in ASTM STP 590, 1976.
C. S8hih, H. de Lorenzi and W. Andrews, "Studies on
Crack Initiation and Stable Crack Growth" to be
published in an ASTM STP 1978.

Most attention to date has been directed to plane strain
testing. This section will be confined to plane strain condi-
tions; application to plane stress conditions is similar in
principle.

Test specimens are designed such that a simple formula
for J , based on the deeply-cracked assumption, can be used
to determine J as a function of load-point displacement
directly from the measured load-displacement curve. The
expression (12.8) for the strip in bending is one example;
with slight modification, this same expression applies to a

deeply-cracked compact tension specimen, i.e.

P

J = (2/c) gom.n;oﬂ (13.1)
where P 1is the load/unit thickness and ¢ is the uncracked
ligament. Corrections to (13.1) accounting for finite values
of the ratio of ¢ to specimen width have been proposed by
Merkle and Corten (J. Pressure Vessel Tech., 1974, pg. 286)
but their status is unclear when l.s.y. occurs. Often 4

cr
will be replaced by A in (13.1) since & can usually be

neglected in the compact tension mvmowamb.:n

The current practice is to use {13.1) to determine J
up to initiation and also for small amounts of crack growth;
the validity of doing this will be discussed later. At the
same time, the amount of crack growth fa is determined by
compliance measurements or other techniques. This data is then
presented as a cross-plot of J vs. 4Aa . Some data for a
compact tension specimen of AS533-B pressure vessel steel at

93°C are shown in Figures (13.1) through (13.5), taken from
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the report of Shih, ¢t ail. 1978. The specimen from which this
uata was taken had an initial uncracked ligament ¢ = 86 mm .
The steel has an intermediate yield stress of about 500 ZZ\BN
and a high toughness of about QHO = L2 ZQ\EM . The resistance
curve data of J wvs. Aa is obtained from a number of
specimens of the same type with varying ligament size. The

LHG value is cobtained by extrapolating the curve of J vs.
sa  back to da = 0 or, sometimes, back to the "blunting"
line J = NQObm , which accounts approximately for apparent
crack growth due to crack tip blunting.

Initiation in the A533B specimens takes place under
fully yielded conditions - see the table on pg. 18 of the
notes for an indication of the size requirements for a xHO
test. The data in Figs. (13.6) and (13.7) are for a Ni-Cr-Mo
steel with a higher yield stress (over 1000 ZZ\ENV and a lower
fracture toughness AQHO = .08 zm\amv . The tests (by J.H.
Underwood, Exp. Mech., Sept. 1978, pg. 350) range over bend-
type specimens which satisfy the valid xHo testing require-
ments to those which inveolve intermediate scale yielding. This
is brought out by the variation of an in Fig. (13.7) against
Hovm - recall eqg. (5.5). The
determination of K in the open points in this figure

I1c
employed the J-testing technique; K

the sizing parameter OQO\AM.m K

1c is calculated from

J by

Ic

K. . =VEJ (13.2)

IC IC

where E = E/{1- <mv

. The QHO measurements are consistent

with the fracture toughness measurements from valid NHO
tests which are denoted by solid points.

The thickness of the specimen must be sufficient to
ensure that plane strain conditions prevail everywhere in the
yielded zone through most of the thickness. Side groves are
sometimes used to reduce the shear tip effects at the lateral
surfaces as discussed by Shih, et al. It is also essential
that the specimen be sized such that all dimensions must be

large compared to the region of inherently nonlinear geometric

.
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behavior. This region is on the order of the crack tip opening
displacement, i.e. on the order of u\ao . As discussed by
Paris (1977), the requirement for bend-type specimens, which
appears to be adeqguate, is that the thickness and uncracked
ligament ¢ both satisfy

c > 253/9, (13.3)

For center-cracked specimens in tension (13.3) is not adeguate,
as will be discussed in the next section.

Other studies along these lines can be found in the
literature. The general conclusion is that the J-method does
give fracture toughness measurements which are in agreement
with those obtained from valid xHO tests. Most of the
studies have used bend-type specimens, compact tension
specimens being considered in this class. Begley and Landes
(see, for example, Int. J. of Fracture, 12, pg. 764, 1976)
used center-cracked tension specimens as well as bend-type

specimens. Their measured values of J using the extrapola-

tion method just described gave mwswwmwnnmmcwnm for the vari-
ous specimen types. On the other hand the slope of the
resistance curve (J vs. Aa) differed by almost a factor

of three. Furthermore, the crack in the tension specimens
advanced at »mo to the initial plane of the crack, while the
crack advanced in the plane in the bend-type specimens. Other
tests have found that J and &°

Ic t
cracked specimens in tension are as much as two times the

measurements using center-

values obtained from bend-type specimens even when (13.3) is
satisfied. The reason for this is taken up in the next section.
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14. CONFIGURATION DEPENDENCE IN L.S.Y. AND LIMITATIONS
OF SINGLE PARAMETER CRACK TIP CHARACTERIZATIONS

References: R.M. McMeeking, J. Mech. Phys. Solids 25, 357,
1977.
R.M. McMeeking and D.M. Parks, "On Criteria for
J-Dominance of Crack Tip Fields in L.S5.Y.", to be
published in ASTM-STP.
C.F. Shih and M.D. German, "Requirements for a One
Parameter Characterization of Crack Tip Fields by
the HRR Singularity" G.E. Technical Report, Oct.
1978 (tc be published).

On pages 47 and 46 of the notes we have already mentioned that
the idea of a dominant singularity uniquely tied to J or §
tor all configurations involves the assumption of strain
hardening. With strainhardening, it is also essential that

the size of the region dominated by the singular fields, as
determined from the small strain plasticity theory, be large
compared to the region of large strains governed by finite
strain plasticity. In relatively ductile metals the fracture
process zone 1s comparable in size to this zone of "large"
strains.

Slip line fields for three rigid-perfectly plastic plane
strain configurations are shown in Figs. (14.1)-(14.3). These
and others can be found in the article by McClinock in Fracture
vel. 3, 1971. (Also displayed there are pictures of actual
straining patterns in steel specimens obtained by etching).
The near-tip stress field of the edge-cracked strip in tension
in Fig. (14.1) is the same found for the limit of the
singularity fields as n = « which is shown in Fig. (10.5).
This Prandtl field is characterized by the high triaxial

stress, o ahead of the crack (10.8) as well as a high

kk '
nornal stress ahead of the crack. Small scale yielding finite

element solutions in plane strain for elastic-perfectly plastic
materials give strong support to the attainment of the Prandtl

field at the tip of the crack (e.g., D.M. Tracey, J. Engr. Mat.
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Fig. (14.1). Fig. (14.2). Fig. (14.3).

Tech., 98, pg. 146, 1976). For the bend specimen in Fig. (14.2),
the singular strains are concentrated along a lens shaped arc.
According to the rigid-perfectly plastic solution, the triaxial
and normal stresses ahead of the crack do not gquite attain the
high levels found in s.s.y. or in the edge-cracked strip. How-
ever, numerical solutions reported below for elastic~perfectly
plastic materials, as well as for strain hardening materials,
indicate very little difference near the crack tip between this
case and s.s.y. or the edge-cracked strip at corresponding
levels of J .

The near-tip behavior for the fully yielded, rigid-
perfectly plastic center-cracked strip in Fig. (14.3) is
entirely different from the other cases. Here intense shear
deformation is confined to slip planes eminating at 45°  from
the tensile direction. A state of plane strain tension exists
ahead of the crack in the 90° wedge where the normal and
triaxial stresses are given by

Ogy = (2/vV3)o, and O = V3o, (14.1)
Thus the stress levels near the crack tip in the rigid-plastic
fully yielded center-cracked strip are much below the levels in
the other cases. At the same value of J , the strain levels
will be correspondingly higher on planes of approximately

+ 45° to the tensile axis eminating from the tip. Thus, the
rigid-perfectly plastic solutions for fully yielded specimens



indicate that the crack tip fields are configuration-dependent
and cannot be characterized by a single parameter such as J

or ¢ . Strain hardening can substantially alter the rigid-
perfectly plastic fields. We now discuss some very recent

work, most of which i1s not yet published, which is directed to
determining the conditions for J-dominance of crack tip behavi-
or.

Work of McMeeking {(1977) and McMeeking and Parks (1978)
based on finite strain, finite element methods has shown that
finite strain effects are important over distances of about 2
or 3 times crack opening displacement. In plane strain s.s.y.
the crack tip opening displacement an is given by

an u &Aoo\m~ :vh\ao Awa.wv
where the coefficient d 1is a weak function of Qo\m and a
fairly strong function of n varying from about .6 for very
large n to about .3 for n = 3 . (Detailed results for d

will be given later). Beyond 2 or 3 times § the stress and

strain fields essentially coincide with the Mmmcwﬂm from a
small strain formulation. McMeeking also found that J was
essentially path-independent for all contours which fell out-
side a radius of uan (a finite strain, um flow theory was
used in the calculations).

McMeeking and Parks (1978) calculated the stresses and
strains near the crack tip in an edge-cracked bend specimen
and in a center-cracked strip in tension from s.s.y. to fully
plastic yielding. These they compared with the s.s.y.
distributions normalized in a proper way. If the fields are
J dominated, plots of stresses and strains near the tip
against H\Au\oov should be independent of J . This was
found to be the case for the bend specimen even with no strain
hardening. On the other hand, they found significant deviation
from the normalized s.s.y. distributions already in the inter-
mediate yielding range for the center-cracked strip. Their
results for the center-~cracked strip are sketched roughly in

Fig. {(14.4). Here, for a material with n = 10 and

P
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Pig. (14.4).

oo\m = 1/300 , the normal stress ahead of the crack is plotted
against x\ﬁu\aov . The solid line is the s.s.y. result. The
dashed lines correspond to various levels of intermediate
scale yielding as determined by u\AQooV where ¢ is the
uncracked ligament. The lowest dashed curve for GOO\Q = 64
corresponds to fully yielded conditions. Similar plots for
strains on 45° planes indicate an intensification above the
normalized s.s.y. results which becomes expecially pronounced
for nao\u < 200 . McMeeking and Parks tenatively proposed
that the size requirement for the center-cracked strip in ten-
sion (plane strain) should be

c > 200 Q\oo {14.3)

assuming the material does not have high strain hardening.
They find that the original proposed (13.3) for bend-type
configurations is adequate for essentially any level of strain
hardening.

Shih and German (1978) calculated stresses and strains
near the crack tip using a finite element method based on a
small strain formulation of uw flow theory for a deeply-
cracked bend specimen (CBB) and a center-cracked strip in ten-
sion (CCP), both in plane strain. Employing a normalized plot
similar to Fig. (14.4), they compared the calculated stress
and strain distributions directly with the HRR singularity



the Shih and German paper. Shown is the normal stress ahead !

of the crack Oy at various load levels (eg. values of : 70

R 5 e F oy . : : - : asl3

(ao\uv ranging from essentially s.s.y. to fully plastic ! . eolf ees HAR FICLD

vielding. For both n = 3 and n = 10 , the stress distribu- ) 6 . C%/J « 200
acd

o+ HRR FIELD

€74 =600

tion (and strain) of the bend specimen is well approximated
by the HRR singularity field for distances which are always \
greater than 2 or 3 times u\oo , i.e. always greater than w
about 4 to & times the COD, as long as (13.3) is satisfied. -
This 1s not the case for the center-cracked strip (CCP). For % % sol-
the low strain hardening case, n = 10 , the results of Fig. !
(14.6) are consistent with the size restriction (14.3). For 20
high strain hardening {(n = 3) {14.3) can be relaxed some-

cep

~— _c88
86

|
what ™ »
) m 1.0 ~
Muore work is needed to tie down the circumstances under |

0 L TS WA S SO | 0 L ) 1 t
0 20 40 60 80 100 {20 140 0 10 20 30 40
X/{d/ %} X/{9/9)

which a single parameter such as J or & can be used to

characterize the crack tip fields. What is clear however is

that the restrictions are a strong function of the configura-

tion-type when large scale yielding occurs. The condition

e A

(14.3) for center-cracked configurations may effectively mean

i —o a:3
M s e HRR FIELD 2.0
i * Co%/dx 60

L]
**s HHR FIELD
Coy/d =30

that the analysis of initiation and growth in this configura-
tion cannot be related to s.s.y. or bend-type data for inter- 0.0l
mediate strength, high toughness metals. For these materials .
200 u\oo can be on the order of 100 mm at initiation, and |
this would limit testing and application to very large

specimens and cracked bodies. On the other hand, for the other

[ P

types of configurations it appears as if the weaker require-
ment (13.3) is adequate to ensure correspondence with s.s.y.
data. Furthermore, (13.3) does not seem to be strongly

dependent on the level of strain hardening.

Y

Analogous studies in plane stress have not been made. It

[} 1 1 1 1 4 ] ) 1 1 3 1 1 L

is possible that the configuration-dependence under fully

plastic conditions will not be as strong as in plane strain, X/{3/%} X/(3/9 )

primarily because the perfectly plastic limit solutions do

Fig. (14.5). Normal stress ahead of crack in CBB and CCP from
obtained to fully plastic conditions with n = 3 , QO\m =
0.002 and a/b = 0.75 .

not display as wide a variation at least as far as the

stresses are concerned.

e e el -
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15. RELATIONSHIP BETWEEN mn

J~DOMINATED CONDITIONS

AND J UNDER

References: D.M. Tracey, J. Eng. Mat. and Technology, 98

1976, 146.

’

C.F. Shih, "Relationships between Crack Initiation
and Growth Parameters Based on the J-Integral and
the Crack Opening Displacement", Oct. 1978, G.E.
Tech. Information Series, to be published.

The separation between the
opened crack faces accord-

ﬂ
ing to the J-fields (10.6) J\m
and (10.10) will be denot- e -
ed by 38(r) . The relative
displacement of the faces 3
N2
to the tip in the x-direc- ‘
tion is u, - These are b \
given by
Fig. (15.1).
_n_ 1
J n+l n+l
(u , 8) = S r ta (n, n), NcmAz\ nj} (15.1)
0°0"n
Only in the limit n - = is there a nonzero value of & as

r - 0 . Rice (see Tracey, 1976) has suggested a definition for
aﬁ to be used for both hardening and nonhardening materials.
As depicted in Fig. (15.1) ¢
45° 1lines drawn back from the tip of
that is where

€ is taken as the opening at the
intercepts of the two

the deformed profile,

r - u

<= §/2

(15.2)
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Solving {15.2) and (15.1) for this value of § gives

an n mAmo. :vu\oo (15. 3)

where
i
dieg . n) = (aeg)™ (@ +4 vswm\Hs (15.4)

Shih {1978) has computed d for both plane stress and
plane strain. Plots are shown in Figs. (15.2) and (15.3) where
£y 1s identified with QO\m . Note that a = 1 in these

plots. In both cases the influence of strain hardening is

. : 10,001
) 0.1 02 03 - 04 0.5
Wriim

o 1 1

Fig. (15.2). Variation of d, Fig. (15.3). Variation of dj
with n and QO\M for plane with n and QO\M for plane
stress with o = 1 . strain with o = 1 .

large. In plane stress the limit of the HRR singularity as

n - = gappears to be an = m\oc which is the same as the
Dugdale result (9.5), although there is no obvious reason

why these should be the same. In plane strain the limit as

n -~ = according to Shih's HRR singularity results from Fig.
{15.3) is mw = .78 u\oo . There is considerable variation in
the published finite element results for the relation between
&m and J (or K} in s.s.y. for the elastic~perfectly
plastic case. Rice and Sorensen (J. Mech. Phys. Solids, 26,
1978, pg. 163) give a comparison of results, not including

Shih's results presented here. Table (15.1) taken from Shih's

4
m
|
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9/E n«3 n=5 n = 10 n==
.001 .13 .27 .46 .78
?ﬂnmnw»waﬁulnﬁ .002 17 .31 .50 .78
.004 .21 -36 .53 .78
Flow Theory .002 .18 .29 -48 .63-.66
Deformation Theory .002 .20 .32 .52 .70
Tracey-Parks {31} .001 - .30 .47 .65
Sorensen [31) . 001 - .27 .47 .66
McMeeking [31) - .003 - .27-.30 .41~.44 .55-.67
Cracked Bend Bar .002 .19 - .49 .58-.65
Pully Plastic
Center Cracked Panel .002 .22 - .64 .82-.87
Fully Plastic
Table 15.1.

Comparison of Values of mn\Au\oov for Range of qO\m and n
for Plane Strain®.

paper compares results for plane strain from various sources -
reference [31] in the Table is the Rice-Sorensen paper. As
expected, the finite element results for the fully plastic
center-cracked panel are not in line with the other results
because J-dominance was not acheived. For the other cases
there is reasonable consistency among the results, except for
the elastic-perfectly plastic limit where d ranges between
about .55 and .8 .

Further comparisons of the results from (15.3) and 1l.s.y.
finite element analyses can be found in the paper by Shih.
Some comparisons between the theoretical predictions and
measured mnn J relations are also given in this paper and
reasonably good agreement is found. (The materials considered
have hardening exponents ranging from n =5 to n = 13)

Unless otherwise indicated, §¢/13/95) is determined from finite element
calculations for small scale plasticity. In Ref. {31}, calculations employ
J; flow theory. The fully plastic analyses for the cracked bend bar,
center cracked panel also employ J, flow theory.



80

16. CRACK GROWTH AND STABILITY UNDER J~CONTROLLED CONDITIONS

References: Paris, Tada, Zahoor and Ernst, "A Treatment of the
Subject of Tearing Instability", U.S. N.R.C.
Report NUREG-0311, August 1977.
Hutchinson and Paris, "Stability Analysis of J-
Controlled Crack Growth", to be published in an
ASTM-STP, 1978.

In general, the J-integral cannot be used to analyse crack
growth in the l.s.y. range. (In the s.s.y. range J could
equally well have been used instead of K in the analysis of
Section 6). Crack growth involves elastic unloading and non-
proportional plastic loading which is not properly modelled

by a deformation theory of plasticity on which J is based.
However, under restricted circumstances discussed below, small
amounts of crack growth and its stability can be analysed. The
approach is based on experimental data from a J-resistance
curve and it closely parallels, and includes as a special case,
the s.s.y. analysis of Section 6.

Conditions for J-controlled Growth

We consider materials with a J-resistance curve, uwﬁ>mv.
such as that in Fig. (16.1) which involves increasing J with
increasing a . For many
intermediate strength Jgloal
metals increases of Qw PYID S i
several times the initia- .
tion value Qo occurs P
after only a millimeter growth
or two of crack growth - Je -
see, for example, Fig. blunting
(13.3). As depicted in
Fig. (l16.1), let D be

the amount of growth n

8a
necessary to double J

above J. calculated Fig. (l16.1).

JROSERN
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using the initial slope following initiation
D = ua\Amuw\amvo (16.1)
Note that in s.s.y. D is exactly % the 1-guantity
introduced on pg. 25.
We now consider
the conditions under JandﬂMuﬂ%‘
which the region of “MWﬂy:m \‘\\ S
elastic unloading and Ve N
non-proportional / - # N A
plastic flow will { / \ 4
continue to be imbedded \ \ > ! R i
in J-dominated fields. \ AN WHM/HJ///I«
The conditions sought N Aa J/
are those which will \\\Mﬁ/ _ _ <
guarantee the situation
) ) . \3@92 proportional loading
depicted in Fig. (16.2). controtied by J- fields
With R denoting the
size of the region in Fig. (16.2).
which the J-fields of
deformation theory have
dominance, one condition is obviously that
da << R (16.2)
The second condition follows from the requirement that
nearly-proportional plastic loading occur within R but not,
of course, right up to the tip. Consider the strain field
(10.10) from the deformation theory solution, i.e.
_no_ n_
ey = ky ot e ¥ £ (16.3)

where x: is a dimensional constant. The increments in the

strains calculated from (16.3) for simultaneous increments in
J and a are
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U ¢ T ]
= nl TRl nas ., da:
awvu xs J r M:+w 7 i + 7 mwu_ (16.4)
wielre
B, = -DocoseE . o+ mHSG;W,m .
ij n+l ij 96 "ij
and wnere the change due to a is calculated as -da(3{ )/ax)

since the crack tip is shifting ahead in the x~direction. The
first term in the bracket in (16.4) corresponds to exactly
proportional loading while the second, arising from da , is

i3 and mwu
comparable magnitude, nearly proportional loading will occur

Aistinctly nonproportional. Since & are of

where
da/r << dJ/J

Using the material-based length quantity D from (16.1) for
growth just following initiation, this condition can be re-
written as

D << 1 (16.5)

The second condition is therefore
D << R (16.6)

since this insures that there exists an annular region, as
depicted in Fig. {16.2), D << r << R + in which nearly pro-
portional loading holds and in which the J-fields control, or
dominate, the actual behavior.

For a fully yielded configuration R will be some frac-
tion of the uncracked ligament (or other relevant characterist-
i¢ length) © . (As discussed in Section 14, R may be very
small for certain configurations, eg. the centered-cracked

Strip in plane strain). The (16.6) can be written as

i
i
i
i
1

el e e e g

e A e
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D << ¢ (16.7)

or
© mmu%»aaww >> 1 {16.8)

R

Only limited quantitative results are presently available for
a more precise specification of the two conditions (16.2) and
(16.8) . Calculations by Shih, et al. (1978), shown in Figures
(13.1) - (13.5), were carried out for the compact tension
specimen of A533B steel. The calculations were carried out
using uw flow theory. Nevertheless, J was found to be
essentially path independent for the crack advancing as much
as 5mm or 6% of the uncracked ligament, corresponding to
increases in J above uHo of more than a factor of 5 . In
addition, the calculated values of J agreed well with the
experimentally measured values of J using the deformation
theory formula (13.1). For their material and specimen w = 40 .
Further work by Shih and Dean (to be published) indicates that
values of w as small as 10 may insure J- controlled growth
in bend-type configurations, although this is a tenative
result. vValues for D in Table (16.1) introduced later range
from a small fraction of a millimeter to centimeters, but for
many of the intermediate strength metals D is on the order

of a millimeter or less and thus (16.8) may often be met.

Stability of J-controlled Growth

Consider the general specimen under compliant loading in
Fig. (8.1) where DH is taken to be prescribed. Given the
resistance curve of Fig. (16.1) the condition for continued

crack growth, with Aa having already occured, is
J = qubmv (16.9)

With (16.9) satisfied the condition for stability of crack
growth is
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(16.10)

Paris, ¢t al. {1977) introduced nondimensional quantities

dJg
. E (37 _ E R
T 58 _ ana 1, = 5 R (16.11)
%0 bp %
and called Ty the tearing modulus of the material. Stability
is then insured if
T < em (16.12)

and instability sets in when equality is acheived. Values of
ew (T in the Table) and D are given in Table (16.1) for a
number of materials based on values of mum\mm just following
initiations. This Table is taken from Appendix II of Paris,

et al. 1977. Note that ew ranges from .1 to over 200 .

(These values should only be regarded as preliminary estimates).

For later purposes, we now derive a general expression
relating Awa\wmvbe to Awa\mvm . Referring to Fig. (8.1),
let Ap =2 + CyP . Regard 4 and J as functions of a
and P . Thus, with >e fixed,

- (38 aa -
>a Avmvvmw + meumnm + OZQM 0

Then from

lu

T w da + m.&m&.

and eliminating 4P we obtain

(16.13)

This generalizes (6.8).

|
i
|
|
w
:

MATERIAL __ REF.

ASTH-A469 {7
(6.E.)

rotor steel
(Ni-Mo-V¥)

ASTH-A470 2]
rotor steel
(Cr-Mo-v)

ASTH-A471 [2]
rotor steel
{Ni-Cr-Mo-V¥)

AIS1-403 (3]
{12¢Cr-

stainless)

rotor steel

ASTH-A217 {4]

(2} cr-1Mo)
cast steel

ASTH-A453 (&3]
(A286)

(Discaloy)
stainless steel

»mq:-»owm mcu
stainless stee
{gas tongston

arc welds)

ASTH-AS40 [2]
(AISI 4340)
steel

Inco L.E.A, (4]
{low expan-

sien ailoy)

soln treated

and aged

APPLDIX 11
TABLE OF SOME MAYTRYAL PROPERTILS

(FncTuding
SPECIMEN

TYPE TEMP .

(F*)

1“-c.t. 756*
100"
125°
150°
175*
250°
3c0°

T"-c.t. 3o0°
500*
800°

T -c.t. 50°
150"
250°
250°
360
$00°
800°

1°-c.t. 76*
200*
300
500"
800"

1"-c.t. -50°
75
300°
500°
800*

-452*
EN
400°
8o00°

1%-c.t.

1%-c.t. -452°

“Ttearing modulusT - 1)

o
w

oty T 3 o
cca!klumwm Jie mm Tda- 3.7
in-1b tbs
(ksi) e ) ) (y G
95.9 {760) - - .
95.3 1260 3.8 x1g~ 123.0 $03
94.5 - 3.0 x10%  101.0
93.7 1340 3.8 X108%  130.0 .03
$3.0 1050 3.6 X10%  j24.0
(88.0est.) - 3.4 X104 131.0 .03
80.0 720 2.8 X10%  131.0 .025
90.0 470 6.9 x103 25.5 -07
90.0 413 7.0 x103 25.8 .06
85.9 493 1.2 xioY 48.6 .04
146.1 860 1.45x10% 20.4 .06
134.0 594 3.25x103 5.4 18
128.5 §70 6.54x10° .9
138.0 575 2.03X10% 31.9
125.0 500 1.47x10% 7.9
115.0 35 9.58X103 21.6
104.0 325 B.75x103 24.1 .04
109.0 572 7.1 x10% 17.9
103.0 425 7.9 x10% 22.3
96.3 460 7.3 x103 23.6
94.5% 417 5.831102 19.6
86.2 372 4.08x103 16.5
79.5 905 2.5 X10%  119.0
718 860 1.89X10%  109.0
67.0 666 3.33x10%  221.0
64.5 433 2.40X10%  172.0
62.8 333 2.33x10%  176.0
167.0 815 3.87v10% 4.5 .02
135.0 692 2.0 x10% 32.8
119.0 600 1.2 xiot 25.6 .05
2.0 517 9.3 C10? 22.4
107.8 1666.7  3.54x10* 91.4 .05
(153.5est.) 600 3.7 x10% 471 .02
146.4 800 2.15x10% 30.1
145.5 652 2.10010 29.8 .
143.0 730 1.75%10% 25.7 .07
142.5 720 1.0 xi10* 14.8
133.0 725 boAsXipe 24.5
187.2 194 2.53x103 2,16 .08
137.2 263 1.07X103 1.71
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SPECIMEN
TYeE o TEMP,
1"-c.t. 757
Aluminum
510y {4] .t -457°
stainless steel
{shielded metal
arc welds)
Iconel [5] VIM-VAR/ST ¢.t. 75°
X750 00-/ST ¢.t. -452°
LJ-/STDA ¢.t. -452°
AAM-VAR/STDA -452®
vin-/STDA -452°
HIP- .- -452°
HIP-/STDA -452°
6] sTQ -452°
atsi-aigs [ ST DN
stainless Sensitizud 452
steel
hromarc-58 [6)0a{L-t}) c.t. -452°
stainless CW{T-1) -452°
steel STQ{T-1) -452°
{4) GTAW c.t. -4u2°
CW/GTAW WJ:_nr
GTAW/CN
GTAM/CW/ANY
GTAW/CW/AN*
Iconel[8]VIM-EFR/STOA c.t. -452°
706 VIM-VAR/STDA -452°
75°
Pyromet (4] GATW -452°
538 -452°
(20cr-6Ni-

amn)

stainless

steel

*Genotes following material
VIM-VAR-Vacuum

AAM-YAR-Air arc melited followed by

VIiM -
GiAd -
SMAW -

120
127

136,
184.
213,
172.
i85.

154,
152,

227.
216.
178,
181,

199,
214,
199,
175

213,

207

i66.

209.
137.

conditions
induction melted

foilowed by vacuum arc remelt.

vatuum arc remelt
Vdacuuis tnauction welted.
645 tungston arc welds,

Shielded metal arc welds

.4
.0

OC woNso

NONY SO OW

cow

-

23

320
240
138
135
500
465
233

1600
675

452

188
1250

615.5

7125
216.7
429
812

530
357

166
862.3

Denotes following heat treatments

1“(‘:

4.92x10¢%

1.03x10%

4.64x103
V.72x107
5.26X103
5.09x10?
2.06x10%
4.57x10%
1.89x10%

1.2
.5

X102
xio*

x10?
x1o*
X103
xto?

3.62X10%

1.21X10%
1.94x10¢
1.88x10

5.19x102
3.27xi0%

ST - Solution treat.

STOA - Solution treat and double

aged.

{Ww - Cold worked,

in Lhic:

STQ - 2000°F-1 hour- water quenci

ess,

k1134

13.27

-t = -
WO &~ OOoOwWwo

—— o mOON

w

reduction

.07

13.3

.15
.62

.04

.32
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Next we will present
some specific results for
the deeply-cracked strip in P 4y
three~point bending shown
in Fig. (16.3). An analysis, I <Fa b
essentially identical to =
that in Section 12, gives

" L .
A b Bas
P cr
J == R Pd A (16.14)
0

N
<

[} cr

‘where 4 = >:n + >0H . This

result is not strictly cor-

Fig. (16.3).
rect under increasing crack

length. As shown in Hutchinson and Paris
expression for

(1978} the correct
J under increasing a is

>n~v a g

J = 2 M —-4da - H = da (16.15)
o € cr a ©
0
where a, is the initial crack length. For small amounts of
growth with the difference between (16.15) and
(16.14) will usually be small.
Carrying out an analysis similar to that in Section 12

by making use of a nondimensional function similar to (12.2)
for deeply-cracked strips, one can show

w >> i,

Mﬁ - p? .w.j _d
EEY P nm aP a c

Using the above expression in (16.13) and after some rearrange-
ment, one can show that (see Hutchinson and Paris)

2
) . apC < -4 (16.16)
da A ON 3p c
T 1+C M w
3Bor) |
al
where C = nz‘+ n:o is the combined compliance. Up to and

including initiation, all quantities on the right hand side of
(16.16) can be measured directly from a load-displacement

record; C AuM\wbonvw is

is assumed known. The quantity
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continuous at initiation but cannot be measured directly once
grow takes place. In (16.10), (33/23a) 4 from (16.16) provides
a check on stability at initiation Szwnm can be assessed
directly from the experimental record.

For a fully yielded strip of a nonhardening material P

is the limit load and Aww\mDOﬂv = 0 . Then (16.16) reduces
to @
{33} apic g
ﬁl|4 = - = (16.17)
a,, 2 c
c

T
The strong role of the combined compliance of the system on
stability is obvious from this formula. The limit load for the
strip of Fig. (16.3) is P = nvooom\r where A = ,364 in
plane strain and A = .268 in plane stress. Regarding the
uncracked strip as a beam gives C = bw\Anmvuv . Then, from

nc
its definition in (16.11),

N o
T = 16a° S .:LL - EL (16.18)
b Che)

nc) owo

Paris, et al. (1977) have tested a number of specimens
under three-point bending in series with a beam of variable
compliance as depicted in Fig. (16.4). The compliance of the
test machine is negligible compared to the combined compliance
of the specimen and the beam so the relative displacement of
the machine heads >e is prescribed. Using (16.16) and data
directly from the experimental load-deflection record, the
value of T Aemvuwwmm
when the beam was absent to a value of just under 50 for the
longest beam. (Note that the notation for b and L in Fig.
(16.4) is different from that in Fig. (16.3)). The value of

aw Aaamn
parameter in (16.8) is about 15 . For each specimen the point

) at initiation ranged from about zero

) Jjust following initiation was 36 and the o

(T, emv is plotted in the Figure and it is shown as a solid
point if fracture initiation was observed to be stable and as
and open point if unstable. The solid line T = aw is the
theoretical dividing line for stability and instability from
(16.12) .

-
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EXPERIMENTS OF PARIS, TADA, ZAHOOR AND ERNST

Kzzazz 0 ASTM- 471 ROTOR STEEL
(N1-Cr- Mo- V)
e S— E ddmt
-, ar Tmot * 51 —d 336
1 * ] N
w s RSl gy
ST ic
.-
8" S Lequivalent =< 76 o
i . .
2 2 (Topphiedly, igrion S 45 | .
« L .
Foe--—sas dm<q‘,‘«‘

i
P P . |
[ i
STABLE
UNSTABLE , o .
Ay by DR

Fig. (16.4).

The significance of the large em values for inter-
mediate strength metals Aew > 30 , say) is that in many situa-
tions the T-value will be considerably smaller than aw 80
that small amounts of crack growth can be tolerated. For
example, the s.s.y. result for the finite crack of length 2a

o

in an infinite body under tensile stress o has
J = amAcevw\m and

T = aAos\oovw

Thus, T for this problem in §.5.yY. wWill never exceed about

1 . Next consider a finite crack of length 2a in an infinite
body under fully plastic conditions. From fully plastic solu-

tions such as those in Section 12, where in plane strain ten-

. n
sion €/fe_ = (g/g.)  ,
/ y (a/ y
n+l
n+l

- L - = n
J o<m< a h(n) (o \owv a%mx a h(n}) (e \rwv

where h s~ 3 for n = 10 - see Hutchinson, ¢t al. {pg. 59).
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Under these conditions

n+l

hed n
= h -
T (n) (e \r<v

and T will only reach values as large as 30 , say, for
me = HOmm . Of course, when a crack extends across a

significant fraction of a cross-section and the loading condi-
tions approach dead loading, then T will be large as il-

lustrated by the analysis of the 3-point bend bar.

T I

e e e e o

1
|
!
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17. SOURCE OF STABLE CRACK GROWTH

References: F.A. McClintock and G.R. Irwin, ASTM STP 381, 1965,
pg. 84.
A.D. Chitaley and F.A. McClintock, JMPS, 15, 1971,
Pg. 147.
J.R. Rice, in Fracture, Volume I1, 1968, py. 277.
J.R. Rice and E.P. Sorensen, JMPS, 26, 1978, pg.
163.

In this section the problem of a crack growing guasi-statical-
ly in an elastic-perfectly plastic medium is considered. We
start by contrasting the steady-state problem in Mode III with
the stationary problem, both in s.s.y. Then the transient
problem is treated with emphasis on the tearing resistance of
the material immediately following initiation. Lastly some
recent work on the s.s.y., plane strain problem will be dis-
cussed.

Steady-state crack growth in S.5.yY. Mode III

active piastic zone

elastic - plastic Uom_.w@

{
L

wake of residuat
plastic strains

Fig. (17.1).

We consider the steady-state situation depicted in Fig,
(17.1) where the crack has grown under 8.8.y. conditions such
that to an observer traveling with the crack tip the stress
and strain fields no longer change. Far from the tip (except

-
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in the wake) the stresses are given by the elastic singularity
tields, 1.e.,

, R -2 S| 1]
(v, ,mu = K{2nr) mw:mm\ OOmNmk
The material is assumed to be elastic-perfectly plastic with
the yield condition

The analysis given below is due to McClintock and Irwin (1965).
The present version is largely taken from the fracture article
by Rice {1968), using results from the more recent paper by
Chitaley and McClintock (1971), but contact will be made with
the results of the last few sections.

Let () denote the material derivative with respect to
the increase in crack length, i.e. 3( )/3a . If f(x,y)
denotes the instantaneous spatial variation of any guantity in
steady-state, then

.

f = - 3f/3x (17.1)

In the active plastic zone ahead of the tip equilibrium and
yielding, plus a focussing of the strain-rate, requires the
same fan of slip lines as in the stationary problem (see Fig.
(11.1)) with

T = Tyl + Tgiy = To ig (17.2)
With Y = «xwx + «% w% = <nwn + <mwm as the strain-

rdte vector which in steady-state is given by

= Vv = - V{dw/ox) = -

tde

the constitutive law is

4
1
i
H
i
'
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. ‘e ‘p . ‘ . .
Y=Y + Y = 1/G+ Mr, 8)1 = /G + »ao wm {(17.4)
Now,
t= 1 i, = -1 3(i)/3x = -1 r Yeing i (17.5)
T = 15, 0 i x Ty siné i .

Using (17.3) and (17.5) in (17.4) and equating components, we
find (with Yo = Ao\o )

3 {aw] _ 1 3 (aw) _
.Q.MTIL T Yo Tr o Taeax) - " (17.6)

The general solution to the first of (17.6) is

Y, = 3wW/3x = <omw:m inxr + F(6) (17.7)

X

To determine F(6) note that on the elastic-plastic boundary
P

Yy = m\o (since y* =0 ) , i.e. for r = r(e)

Y = Y, i, = ¥y —umw:wu + cosf i d

< 0~6 ol <X ~y )
Thus on C Yy = ~ Yo sin® so that

F = =Yg sinb(l+ AnT{6))
and therefore in the active zone
Y, = =Y w»n¢—w+.nbhﬁhmv\nv~ (17.8)
x 0 | |

Since w«%\vx = w<x\w< . from (17.8) we obtain for 8 = 0
ahead of the crack tip (3( )}/a3x = 9( )/3r and 3( )/3y =
18 )/00)

J
3y y r w
X o .0 B!
35 T 1+ PDHN‘WIQ (17.9)
[

2o,
or

Rl

where ﬂv =T(6 = 0) . Finally integrate (17.9) subject to

«m n <o mnnu ﬂv t»n:nvm resulting strain distribution

directly ahead of the crack in the active plastic zone



94

=y | .20 .01
Yy = <oﬁp¢.»sﬁnﬁ\ﬁv+ N»: AHU\HV_ (17.10)

This result can be contrasted with the corresponding
strain distribution directly ahead of the crack in the sta-
tionary problem from (11.14)

Yg = <oAH@\HV (17.11)

where ﬂ@ is the distance to the elastic-plastic boundary in
the stationary problem. Chitaley and McClintock (1971) have
carried out a detailed numerical analysis of the s.s.y.,
steady-state problem in Mode III. They find that to within

about 5%

N
Hum uﬁﬂhw amu A:LE
L 0 To¥o
and in the subsequent discussion we will take (17.12) to hold.
The singularity in the stationary problem is much
stronger than for the growing crack. At the same value of K

(or J) the strain near the tip (i.e., H\ﬂﬁ << 1) 1is con-
siderably larger in the stationary problem. In Fig. (17.2) a

plot is given of

ZQV
:mv

5.5,

n mWT :S:n\l,f wgfnvxm; ::.SV
stat. P

The lower strain levels in the growing crack problem
result from the distinctly nonproportional plastic deformation
which occurs in the active plastic zone. An elastic-plastic
material has considerable resistance to nonproportional
straining as compared to a nonlinear elastic solid. This is
the source of the stable crack growth. For example, note from
(17.4) that the plastic part of the strain-rate is constrained
to have only an Wml component. For a true deformation theory
of plasticity there is no difference between the strains in
the stationary problem and the growing problem at the same
value of J .

ey

95

Axmvww
o | el stat
8+
s
&k
2F
R B S S
Fig. (17.2).

To further explore the implications of the steady~-state
solution vs. the stationary solution, McClintock and Irwin
proposed the following "microscopic" critical strain condition
for initiation and continued growth in Mode I1I

Yg = Y at r = r {17.14)
in the plastic zone ahead of the crack. (Here we use total

strain; McClintock and Irwin used plastic strain). For initia-
tion this implies from (17.11) and (17.12)

L c .
Qn =3I T, and Hv = ar, (17.15)
where o = «n\xo - For steady-state growth the criterion
implies, using (17.10),

1,.2
Ye = <o~w+.pshﬂv\ﬂnv.vmp: ﬁﬂv\nnvw

Solving for r /r

o’ Tc in the above and using (17.12), one finds

a
Jgg = FIY Tp explv2a-1 - 1) {17.16)
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[

1000 55

|

100 |

T

AW\AP‘» »— ._ Pa\
1 10 100 LA

Fig. (17.3).

Thus,

J

2 = Texpl/2a°T - 1] (17.17)
(o]

A plot of this ratio is shown in Fig. (17.3). For
a = 10 , Qmm = wan . For even larger values of a s J

§S
becomes very much larger than un . Note that for relatively
"brittle"” materials where 1 < g < 10 , Qmm is not substan-
tially above Qo and umm = uo for a=1 .

Initiation and subsequent growth in S$.5.Y. Mode III

We now consider the transient problem starting from the
crack prior to growth and analysing the subsequent growth. At
an appropriate point the fracture criterion (17.14) will again
be invoked. The distance to the elastic-plastic boundary
(e, a) is now a function of a and 6 . Again, let ()
denote the material derivative with respect to a . Eq. (17.4)

.

still stands and 1 is still given by (17.5) since

T o= Momm in the plastic zone. Since

e

[P

S-S

S P
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. . ow . 1 3w,
TE Tt T gete
Eq. (17.4) implies
w _ -1 dw
3r T Y sindr and T yao r (17.18)

The first of these equations can be differentiated to give

1

%WAﬂwwv = wmwwﬁ ==, cosfr
which then integrates to

1 1

Yg = ~YgCOs8r T fnr + r T F(0)

With A+®v0 denoting the value of Yg at the current location
of C , this can be rewritten as

Yo = Ygcos8r T n(I/r) + (I/1) (¥y) (17.19)

C

Directly ahead of the crack (6 =0 , I = ﬂﬁv this specializes
to

mm = 40ﬂ|~ hshnv\nv + Aﬂv\HVAwmvﬂﬁ (17.20)

To calculate the last term note that Yg = Yo o©n c ,
since y = 7/G = <oum . Let U<m\ow denote the derivative of

Yg following the elastic-plastic boundary. Since A«mvn is
the material derivative of Yy ¢ ahead of the crack n:mmw two
derivatives are related by

o (¥ 3& 141 ) =0
- = (y_) +  e— (l+r =
D 8 dr |r
t Hv e ]
where in the convective term nﬁu¢.nuv\am = p;.mv . Now,

LY
<
~

Mo i af1aw) 1. 12
’ ar ar|{r a8 Y <m r a8

so that Aw<®\wnvn = |<o\ﬂu (since Yy = Yo and Yo = 0 on
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C) . Therefore,
() =y o 1+t )
6'r 0°p p
P
Using this in (17.20) gives
Vo = Tor lltin(r /ril 4y ol (17.21)
] 0 P 0 p )
or
dy, = vy e in(r_/r)lda + v, r Ldr (17.22)
2 0 p 0 P °
The first term in (17.21) or (17.22) is exactly the same
as the steady-state contribution - see (17.9) - with no change
in hw,« while the second term can be thought of as that due
toc a stationary crack with increasing r - see (17.11) .

14
Again we invoke s.s.y. and assume (17.12) provides a

good approximation to Hv - see for example H. Andersen, JMPS,
21, 1973, py. 337 and E.P. Sorensen, Int. J. Fracture, 14,
1978, pg. 485. Since QH@ = Nmu\A:<o ﬂov ; (17.22) becomes

dy .,

_ -1 )
g = Yot ~H+4n:Anv\Hvuam + Nma\Adao r)

We now adopt the near-tip fracture criterion (17.14).
Consider initiation and the first increment of growth. Again
with o = <O\<c B

5 J
(e, =2 C.o=qar (17.23)
p'c YoTg c
and
=y r 't (17.24)
Ty T Yo ¥o )

Assume (17.23) and (17.24) pertain such that initiation is
possible. Regard the strain ahead of the crack as a function
of x , which is fixed to the material points and chosen to
coincide with r before growth and a , i.e. «mﬂx. a) . The

il

A e ey e

g e
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condition which is currently met is <mﬁno. a) = Yo i after an
increment of growth da we require <mAnn¢‘am , a+da) = <n .
This is

. ¢<m
«mAHn¢,mm. a+da) = <¢AH0~ mv¢<<oﬁﬁo~ ajda + JmNAHn. a)da = Ye
or
ay Y
: = -8 = -€
Yglrera) = 3% (ford) = T,
where the last equality follows from (17.24).
Using (17.21) in the above with (17.23) we find
mv =a-1-2na {17.25)
or, from (17.12),
dJ m
Mmﬂwo = 5757, (a- 1~ fna) {17.26)
This provides the tearing modulus at initiation
G {dJ it
aw = IMHNM .NLQIHldeV (17.27)
T c
0
A "perfectly brittle" material with o = 1 corresponds to
Hw = 0 ; while for large a , ew ~ wa/2 . Similarly the
material-based length quantity, D , introduced in (16.1) is
given by
D = '..—O = r a
Anu\amvn ca~1l-1na
(17.28)

x r. for o > 10
Thus for a material with a large tearing modulus (a > 10 ,
Hw > 15) the distance D needed to double J above un is
essentially r. . which can be thought of as the size of the
fracture process zone in the present context.

The model suggests certain implications relating macro-
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scopic fracture resistance to features of the fracture process
Zone. In particular, note that the ratio, umm\ﬁo , in (17.17)
and the nondimensional tearing modulus ew in (17.27) depend
only on a = <Q\<o - Furthermore, for large o umm\ao in-
creases exponentially while ew increases linearly in a .
Note that for a = 60 , em Y 100 and umm\un ¥ 1000 . For
larger values of a the small strain assumptions will certain-
iy be violated for typical values of Yo @t the point where

r = v, . But the model does suggest the source of the large
values of Hw which are observed experimentally in plane
strain. The very large values of umm\un for large a result
from the considerable resistance an elastic-plastic material
offers to nonproportional straining, as has already be noted.
This effect is undoubtedly overestimated by the simple smooth

vield surface of Mises (and Tresca in Mode III) used in the

present analysis. In this sense the values of umm\uo for
large o may be considerably in excess of observable values.

Starting from (17.22) it is possible to set up the
problem for calculating the entire resistance curve uwA>mv ;
we have only determined its initial slope and its asymptote.
See McClintock and Irwin (1965) and Rice (1968) for an approxi-
mate determination of the whole curve.

Rice and Sorensen (1978) have considered the more diffi-
cult Mode I, plane strain problem in s.s.y. Qualitatively the
findings are similar to Mode III and several features of the
analysis are closely analogous. The authors assume that the
near-tip stress field is still the Prandtl slip line field
under growing conditions. This is not obvious in plane strain
but they present numerical results which suggest the plausibi-
lity of the assumption. While the criterion (17.14) is sensible
in Mode II1I, a critical condition cannot be taken to be met
ahead of the crack in plane strain Mode I since the strains
are most intense above and below the tip in the small strain
solution. Instead, Rice and Sorensen used an mwnmnamnucm
criterion which is essentially an integration of the near-tip
strains. They require the crack opening displacement to reach
a critical value at some fixed small distance back behind the
tip. By making contact with numerical results they are able to

st oy~
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obtain an approximate integration of the equations relating
the crack opening displacement, the crack advance and J .
Resistance curves are determined. Large tearing resistance is
found, typical of observed values, with realistic choices for

the near-tip fracture criterion.



