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Abstract 

The unique lattice structure and properties of graphene has drawn tremendous interests recently. 

By combining continuum and atomistic approaches, this paper investigates the mechanical 

properties of single-atomic-layer graphene sheets. A theoretical framework of nonlinear 

continuum mechanics is developed for graphene under both in-plane and bending deformation. 

Atomistic simulations are carried out to deduce the effective mechanical properties. It is found 

that graphene becomes highly nonlinear and anisotropic under finite-strain uniaxial stretch, and 

coupling between stretch and shear occurs except for stretching in the zigzag and armchair 

directions. The theoretical strength (fracture strain and fracture stress) of perfect graphene lattice 

also varies with the chiral direction of uniaxial stretch. By rolling graphene sheets into 

cylindrical tubes of various radii, the bending modulus of graphene is obtained. Buckling of 

graphene ribbons under uniaxial compression is simulated and the critical strain for the onset of 

buckling is compared to a linear buckling analysis. 
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1. Introduction 

A monolayer of carbon (C) atoms tightly packed into a two-dimensional hexagonal lattice makes 

up a single-atomic-layer graphene (SALG) sheet, which is the basic building block for bulk 

graphite and carbon nanotubes (CNTs). Inspired by the discovery of carbon nanotubes, a series 

of efforts have been devoted to either grow graphene or isolate graphene from layered bulk 

graphite. Single and few-layered graphene have been grown epitaxially by chemical vapor 

deposition of hydrocarbons on metal surfaces [1-4] and by thermal decomposition of silicon 

carbide (SiC) [5-8]. Alternatively, thin graphene layers have been separated from intercalated 

graphite by chemical exfoliation [9], which however often results in sediments consisting of 

restacked and scrolled multilayer sheets rather than individual monolayers [10-13]. On the other 

hand, mechanical cleavage of graphite islands and thin films has produced graphitic plates and 

flakes, from just a few graphene layers to hundreds of layers [14-19]. With an improved cleavage 

technique, isolation of single-atomic-layer graphene was first reported in 2005 [20]. Since then, 

graphene has drawn tremendous interests for research in physics, materials science, and 

engineering [21]. 

Many unique properties of graphene result from its two-dimensional (2D) lattice structure. 

A debate however remains unsettled as to whether or not strictly 2D crystals can exist in the 3D 

space. Earlier theories based on the standard harmonic approximation predicted that a 2D crystal 

would be thermodynamically unstable and thus could not exist at any finite temperature as 

thermal fluctuation in the third dimension could destroy the long-range order [22, 23]. Recent 

experimental observations by transmission electron microscopy (TEM) and nanobeam electron 

diffraction revealed folding and mesoscopic rippling of suspended graphene sheets [24], 

suggesting that the 2D graphene lattice can be stabilized by gentle corrugation in the third 



 3

dimension. Indeed, theoretical studies of flexible membranes [25] have led to the conclusion that 

anharmonic interactions between long-wavelength bending and stretching phonons could in 

principle suppress thermal fluctuation and stabilize atomically thin 2D membranes through 

coupled deformation in all three dimensions. However, the continuum membrane theory predicts 

severe buckling of large membranes, as the buckle amplitude scales with the membrane size. On 

the other hand, atomistic modeling has shown that bending of a single-atomic-layer graphene is 

fundamentally different from bending of a continuum plate or membrane [26, 27]. Recently, 

Monte Carlo simulations of equilibrium structures of SALG at finite temperatures found that 

ripples spontaneously form with a characteristic wavelength around 8 nm and the ripple 

amplitude is comparable to the carbon-carbon (C-C) interatomic distance (~0.142 nm) even for 

very large graphene sheets [28]. The intrinsic ripples are believed to be essential for the 

structural stability of the 2D graphene lattice and may have major impacts on the electronic and 

mechanical properties of graphene. 

 As a new class of material, graphene offers a rich spectrum of physical properties and 

potential applications [21]. This paper focuses on the mechanical properties of graphene. From 

the micromechanical cleavage technique for isolating graphene sheets to the structural stability 

of the ripple morphology, the mechanical behavior of graphene has played an important role. 

Potential applications of graphene directly related to its mechanical properties include graphene-

based composite materials [12] and nanoelectromechanical resonators [29, 30]. More broadly, 

development of graphene-based electronics [4, 5, 17, 19, 21] may eventually require good 

understanding of the mechanical properties and their impacts on the performance and reliability 

of the devices. 
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 Direct measurement of mechanical properties of single-atomic-layer graphene has been 

challenging. An Atomic Force Microscope (AFM) was used in static deflection tests to measure 

the effective spring constants of multilayered graphene sheets (less than 5 layers) suspended over 

lithographically defined trenches, from which a Young’s modulus and residual tension were 

extracted [31]. A similar approach was used to probe graphene sheets (no less than 8 layers) 

suspended over circular holes, which yielded the bending rigidity and tension by comparing the 

experimental data to a continuum plate model [32]. More recently, nonlinear elastic properties 

and intrinsic breaking strength of SALG sheets was measured by AFM indentation tests [33]. On 

the other hand, theoretical studies on mechanical properties of graphene have started much 

earlier. Even before the success of isolating and observing SALG, elastic properties of graphene 

have been predicted based on the C-C bond properties [26, 27, 34-37], often serving as a 

reference for the properties of single-walled carbon nanotubes (SWCNTs). Indeed, SWCNTs are 

essentially SALG rolled into cylindrical tubes, for which the mechanical properties have been 

studied extensively. However, the intrinsically nonlinear atomistic interactions and non-

centrosymmetric hexagonal lattice of graphene dictate that mechanical properties of graphene 

differ from those of SWCNTs. Moreover, due to the unique 2D lattice structure, mechanical 

properties of graphene cannot be derived directly from its 3D form – bulk graphite. As different 

as they are, both CNTs and bulk graphite are made up of graphene, and thus their mechanical 

properties are physically related. Several recent studies have focused on mechanical properties of 

graphene [38-43].  

 In the present study, we first develop a theoretical framework for deformation of 2D 

graphene sheets based on nonlinear continuum mechanics in Section 2. Section 3 describes a 

molecular mechanics (MM) approach to simulate mechanical behavior of graphene and to extract 
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its mechanical properties defined by the nonlinear continuum mechanics. Uniaxial stretch of 

SALG sheets is considered in Section 4, and cylindrical bending of SALG is discussed in Section 

5. In Section 6, buckling of finite-width graphene ribbons is simulated and compared to a linear 

buckling analysis. Section 7 concludes with a summary of findings from the present study and 

remarks on future works. 

 

2. Continuum Mechanics of Two-Dimensional Sheets 

Common mechanical properties of materials such as Young’s modulus, Poisson’s ratio, 

flexural rigidity, and fracture strength are all concepts of continuum mechanics. Specifically for 

graphene, these properties are derived from its unique 2D lattice structure. Before establishing 

the connection between the atomistic structure and the mechanical properties, a theoretical 

framework of nonlinear continuum mechanics is developed in this section to properly define the 

effective mechanical properties for the 2D graphene sheets. 

 

2.1 Kinematics: stretch and curvature 

 Take a planar graphene sheet as the reference state. The deformation of the sheet is 

described by a deformation gradient tensor F that maps an infinitesimal segment dX at the 

reference state to the corresponding segment dx at the deformed state (Figure 1), i.e., 

 XFx dd =  and 
J

i
iJ X

xF
∂
∂

= .     (1) 
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For convenience, we set up the coordinates such that 03 =X  for the graphene sheet at the 

reference state and thus the vector dX has only two in-plane components (J = 1, 2). On the other 

hand, dx has three components (i = 1, 2, 3) in general. 

 As a measure of the deformation, the Green-Lagrange strain tensor is defined as 

 ( )JKiKiJJK FFE δ−=
2
1  (2) 

where JKδ  is the Kronecker delta. The deformation induces a stretch of the infinitesimal segment, 

namely, 

 KJJK NNE
d
d

21+==
X
x

λ  (3) 

where XddXN JJ /=  is the unit vector in the direction of dX. 

Note that, for a 2D sheet, the Green-Lagrange strain is a symmetric second-order tensor 

in the 2D space of the reference state, which may be decomposed into two parts: 

 R
JK

P
JKJK EEE +=  (4) 

where the first term is due to in-plane displacements and the second term is due to out-of-plane 

rotation, as can be written in terms of the displacement components ( Xxu −= ): 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

=
KJKJJ

K

K

JP
JK X

u
X
u

X
u

X
u

X
u

X
uE 2211

2
1  (5) 

 
KJ

R
JK X

u
X
uE

∂
∂

∂
∂

= 33

2
1  (6) 
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 Under an infinitesimal deformation, the nonlinear terms in the in-plane Green-Lagrange 

strain can be neglected, reducing to the linear strain components: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=≈
J

K

K

J
JK

P
JK X

u
X
uE

2
1ε      (7) 

The nonlinear terms R
JKE  may be retained for large rotation, similar to the treatment of 

membrane strains in the nonlinear von Karman plate theory [44].  

A 2D sheet remains planar under a homogeneous deformation with a constant 

deformation gradient F. An inhomogeneous deformation may induce bending and twisting of the 

sheet into a corrugated surface in the 3D space. The curvature of the deformed sheet can be 

obtained from the first and second fundamental forms of the surface in 3D [45]. Following 

standard procedures of differential geometry [46], we define a curvature tensor 

 
JI

i
i

J

iI
iIJ XX

xn
X
Fn

∂∂
∂

=
∂
∂

=Κ
2

 (8) 

where the unit normal vector of the deformed surface is 

 
( )( ) 2

122211

21

42121 EEE

FFe
n kjijk

i
−++

=  (9) 

For an arbitrary line segment dX at the reference state, the normal curvature at the 

deformed state is given by 

 2λ
κ JIIJ

n
NNΚ

=  (10) 

where XddXN JJ /=  is the unit vector in the direction of dX and the stretch λ  is defined in Eq. 

(3). By solving a generalized eigenvalue problem [26, 45], two principal curvatures at each point 
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can be obtained, from which the mean curvature and Gaussian curvature can be determined. We 

note that by Eq. (8) non-zero curvature occurs only under inhomogeneous deformation with non-

zero gradients of the deformation gradient tensor (strain gradient). 

 For infinitesimal bending curvature, the unit normal is approximately (0, 0, 1) and the 

curvature reduces to the familiar form: 
JI

IJ XX
u
∂∂

∂
=Κ 3

2
, where u3 is the lateral displacement 

normal to the plane of the sheet. 

 

2.2 Stress and moment tensors 

 Within the theoretical framework of nonlinear hyperelasticity [47], the material property 

is derived from a strain energy density function that depends on the deformation gradient: )(FΦ , 

under the assumption of homogeneous deformation. For a 2D sheet, we write the strain energy 

density as a function of the 2D Green-Lagrange strain and the curvature: ( )ΚE,Φ=Φ . Note that 

the energy density for the 2D sheet has a unit of J/m2 or N/m, different from that for a 3D solid. 

The 2D membrane stress (force per unit length) and moment intensity (moment per unit 

length) are defined as the work conjugates of the 2D Green-Lagrange strain and the curvature, 

respectively: 

 
IJ

IJ E
S

∂
Φ∂

=  and 
IJ

IJM
Κ∂
Φ∂

= . (11) 

The stress tensor IJS  is analogous to the second Piola-Kirchhoff stress tensor in 3D, while the 

moment tensor IJM  represents a higher order quantity associated with the curvature. 
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The nominal stress acting on the 2D sheet is defined as the force at the deformed state per 

unit length of a line segment at the reference state, which can be obtained as the work conjugate 

of the deformation gradient F, namely 

 
iJ

iJ F
P

∂
Φ∂

=  (12) 

The nominal stress is analogous to the first Piola-Kirchhoff stress in 3D. Using the chain rule, the 

nominal stress can be related to the second Piola-Kirchhoff membrane stress and moment by 

( )IKjI
K

Jji
K

JK
iIJiIIK

iJ

IK
IJiIiJ MF

X
Fn

X
MnSFM

F
SFP

∂
∂

+
∂
∂

−=
∂
Κ∂

+= −1 ,  (13) 

where an inverse mapping is defined by ikJkiJ FF δ=−1  and thus xFX -1dd = . The differential 

relationship has a form similar to the relationship between bending moments and shear forces for 

continuum plates and shells [44].  

 

2.3 Tangent modulus 

 The nonlinear elastic properties of the 2D sheet can be described in terms of tangent 

modulus for stretch and bending. Using the 2D second Piola-Kirchhoff membrane stress and the 

2D Green-Lagrange strain, the material tangent modulus for in-plane deformation is defined as 

 
KLIJKL

IJ
IJKL EEE

SC
∂∂
Φ∂

=
∂
∂

=
2

 (14) 

Similarly, the tangent bending modulus of the sheet is 

 
KLIJKL

IJ
IJKL

MD
Κ∂Κ∂
Φ∂

=
Κ∂
∂

=
2

 (15) 
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In addition, there may exist a cross-term modulus for the coupling of in-plane and bending 

deformation: 

 
KLIJIJ

KL

KL

IJ
IJKL EE

MS
Κ∂∂
Φ∂

=
∂
∂

=
Κ∂
∂

=Λ
2

. (16) 

 Noting the symmetry in the 2D stress, stain, moment, and curvature tensors, the modulus 

can be written in an abbreviated matrix form by Voigt’s notation, and an incremental relationship 

is obtained as follows: 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Κ
Κ
Κ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ΛΛΛ
ΛΛΛ
ΛΛΛ

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

12

22

11

333231

232221

131211

12

22

11

333231

232221

131211

12

22

11

22 d
d
d

dE
dE
dE

CCC
CCC
CCC

dS
dS
dS

 (17) 
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⎟
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⎜
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⎛
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12

22

11

333231
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12

22

11

22 dE
dE
dE

d
d
d

DDD
DDD
DDD

dM
dM
dM

 (18) 

Equations (17) and (18) describe a generally nonlinear and anisotropic elastic behavior of a 2D 

sheet. Note that the coupling modulus IJKLΛ  does not possess the major symmetry and thus the 

Λ -matrix is not symmetric, while both the C- and D-matrices are symmetric. 

 Under the assumption of infinitesimal deformation, Eqs. (17) and (18) reduces to linear 

elastic relations. For isotropic, linear elastic materials, Young’s modulus and Poisson’s ratio can 

be obtained as: 11
2
2111 /CCCY −=  and 1121 /CC=ν , respectively. 

 

2.4 Uniaxial stretch 

 As an example, consider homogeneous deformation of a 2D sheet by a uniaxial stretch in 

the 1-direction, i.e, λ=11F  and 122 =F , while the other components of the deformation gradient 



 11

are all zero. The 2D Green-Lagrange strain components are then: ( )1
2
1 2

11 −= λE  and 

01222 == EE , and the curvature components are all zero. Using the tangent modulus, the 

increments of the second Piola-Kirchhoff membrane stresses are: 111111 dECdS = , 112122 dECdS = , 

113112 dECdS = . By Eq. (13), the increments in the nominal stresses are:  

 

( )
( )
( )
( )

2
11 11 11 11 11

22 11 21 11

2
12 11 31 12 11

21 11 31 11

31 32 0

dP F C S dF

dP F C dF

dP F C S dF

dP F C dF
dP dP

⎧ = +
⎪

=⎪
⎪
⎨ = +
⎪

=⎪
⎪ = =⎩

 (19) 

The nominal strain in the 1-direction is 1−= λε . Therefore, the tangent modulus for the nominal 

stress-strain is: 1111
2

11 SCC += λ . Only under an infinitesimal nominal strain ( 0→ε ), we have 

1111 CC ≈ . The nominal shear stresses (P12 and P21) exist when the sheet is anisotropic with non-

zero C31, which leads to the coupling between stretch and shear. 

 

2.5 Cylindrical bending 

Consider rolling of a 2D sheet into a cylindrical tube with a mapping xX → : 

⎟
⎠
⎞

⎜
⎝
⎛=

L
XRx 1

1 2sin π , 22 Xx = , and ⎟
⎠
⎞

⎜
⎝
⎛−=

L
XRRx 1

3 2cos π    (20) 

where L is the width of the sheet before rolling and R is the tube radius. The deformation 

gradient in this case is 
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⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

02sin2
10

02cos2

1

1

L
X

L
R

L
X

L
R

ππ

ππ

F      (21) 

The corresponding 2D Green-Lagrange strain components are: 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛= 12

2
1 2

11 L
RE π  and 

01222 == EE . Therefore, the stretch in the circumferential direction of the tube is: 
L
Rπλ 2

= . In 

addition, by definition in Eq. (8), the curvature tensor has the components: 2

2

11
4

L
Rπ

=Κ  and 

01222 =Κ=Κ . The normal curvature for a line segment in the circumferential direction is then, 

REn
1

21 11

11 =
+
Κ

=κ . Thus, a variation in the tube radius simultaneously changes the stretch and 

the curvature: RdR
L

dE
2

11
2

⎟
⎠
⎞

⎜
⎝
⎛=
π  and dR

L
d

2

11
2

⎟
⎠
⎞

⎜
⎝
⎛=Κ
π . 

The strain energy density of the tube can be written as: ( ) ( )1111,ΚΦ=Φ=Φ ER . The 

membrane stress in the circumferential direction and the bending moment can then be obtained 

as: 1111 / ES ∂Φ∂=  and 1111 / Κ∂Φ∂=M . By Eqs. (17) and (18), the increments of the membrane 

stresses and moments are: 1111111111 ΚΛ+= ddECdS  and 1111111111 dEdDdM Λ+Κ= . Note that, 

while S11 and M11 can be obtained directly from the strain energy density function of the tube, 

other stress and moment components in the tube have to be evaluated separately.  

 

3. Atomistic Simulations of Graphene 
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Atomistic simulations based on empirical potentials can be used to predict mechanical properties 

of materials. In the present study, we adopt a molecular mechanics (MM) approach to simulate 

single-atomic-layer graphene sheets subjected to uniaxial stretch, cylindrical bending, and 

buckling instability. The MM simulations are used to determine the static equilibrium state of 

graphene by minimizing the total potential energy with respect to the atomic positions. The strain 

energy density as well as viral stresses can be obtained directly from the MM simulations, with 

which the effective mechanical properties (e.g., tangent modulus) can be deduced based on the 

continuum mechanics theory. 

 The MM simulations follow the standard procedures with a few exceptions as pointed out 

in the subsequent sections for specific examples. For completeness, the empirical potential used 

in the MM simulations is presented in this section, along with the method for viral stress 

calculations. 

 

3.1 Empirical potential 

Several empirical potential functions describing C-C atomic interactions have been developed 

[48, 49], which have enabled both large-scale atomistic simulations [39, 41, 50] and closed-form 

predictions of the elastic properties of graphene [26, 27, 43]. In particular, the second-generation 

reactive empirical bond-order (REBO) potential energy for solid carbon and hydrocarbon 

molecules allows for covalent bond breaking and forming with appropriate changes in atomic 

hybridization, which has been shown to be a reliable potential function for simultaneously 

predicting bond energy, bond length, surface energy, and bulk elastic properties of diamond [49]. 

The REBO potential is used in the present study for MM simulations of graphene. 
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The chemical binding energy between two carbon atoms is written in the form  

 )()()( ijAijRijij rVbrVrVV −==  (22) 

where rij is the interatomic distance, VR and VA are the repulsive and attractive terms, respectively, 

as given by 

 r
cR Ae

r
QrfrV α−⎟
⎠
⎞

⎜
⎝
⎛ += 1)()(  (23) 

 ∑
=

−=
3

1
)()(

n

r
ncA

neBrfrV β  (24) 

and cf  is a smooth cutoff function that limits the range of the covalent interactions within the 

nearest neighbors, namely 

 ( )

.
,

,

,0

,cos1
2
1

,1

)(

2

21

1

12

1

Dr
DrD

Dr

DD
Drrfc

>
<<

<

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

−
+=

π  (25) 

In addition to the pair potential terms, b  is an empirical bond order function, which is a 

sum of three terms: 

 ππσπσ
ijjiij bbbb ++= −− )(

2
1__

 (26) 

where the first two terms depend on the local coordination and bond angles, and the third term 

represents the influence of radical energetics and π-bond conjugation as well as the dihedral 

angle for C-C double bonds. Together, the function b  characterizes the local bonding 

environment so that the potential can to some extent describe multiple bonding states. As given 

in Ref. [49], the analytical forms of these functions are complicated and thus omitted here for 

brevity. 
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The parameters for the C-C pair potential terms are: Q = 0.031346 nm, A = 10953.5 eV, α 

= 47.465 nm-1, B1 = 12388.8 eV, B2 = 17.5674 eV, B3 = 30.7149 eV, β1 = 47.2045 nm-1, β2 = 

14.332 nm-1, β3 = 13.827 nm-1, D1 = 0.17 nm, and D2 = 0.20 nm. For a planar graphene sheet, 

these parameters lead to an equilibrium interatomic bond length, r0 = 0.142 nm. 

 

3.2 Stresses by molecular mechanics 

In a discrete atomistic model, forces, rather than stresses, are used for the measure of 

mechanical interactions. Evaluation of stresses may be carried out based on the potential energy 

or directly from the forces. As defined in the continuum mechanics theory in Section 2, the 2D 

membrane stress SIJ and moment MIJ can be determined by differentiation of the strain energy 

density function with respect to the corresponding strain and curvature components, respectively. 

However, the energy method requires variation of the specific strain and curvature components 

independently. In the cases of uniaxial stretch, only one strain component (E11) is varied, and 

thus only one stress component (S11) can be determined by the energy method. To evaluate other 

stress components, we calculate the viral stresses based on a generalization of the virial theorem 

of Clausius [51]. In particular, the nominal stresses in a graphene sheet are calculated as the 

average membrane force over a reference area A: 

 ( )∑
≠

−=
nm

mn
i

m
J

n
JiJ FXX

A
P )()()(

2
1     (27) 

where )(mn
iF  is the interatomic force between atom m and n at the deformed state, and )(m

JX  is 

the coordinate of the atom m at the reference state. The kinetic part of the viral stresses has been 

neglected in the MM simulations.  
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4. Uniaxial Stretch of Graphene 

A rectangular computational cell of the graphene lattice with periodic boundary conditions is 

used to simulate uniaxial stretch of a single-atomic-layer graphene sheet in an arbitrary direction. 

The computational cell is obtained by multiple replications of the smallest rectangular unit cell 

with one side parallel to the direction of stretch. As illustrated in Fig. 2, to simulate uniaxial 

stretch of graphene in the (2n, n) direction, the unit cell contains 28 atoms in the shaded area, 

while the computational cell contains an integer number of the unit cells. The direction of stretch 

is designated by the chiral angle α  measured counterclockwise from the zigzag direction. 

 Before each simulation, the graphene sheet is fully relaxed to acquire the equilibrium at 

the ground state with zero strain. A uniaxial stretch is then applied in two steps. First, all the 

atoms in the computational cell are displaced according to a homogeneous deformation with the 

prescribed strain, and the dimension of the computational cell is modified accordingly. Second, 

with the boundaries of the computational cell fixed, the atomic positions are relaxed by internal 

lattice relaxation to minimize the total potential energy. The internal relaxation is necessary for 

deformation of non-centrosymmetric lattices [43]. A standard quasi-Newton algorithm called L-

BFGS [52] is used for energy minimization.  

Figure 3 shows the potential energy per atom as a function of the nominal strain ε  for a 

graphene sheet under uniaxial stretch in the zigzag direction ( 0=α ), along with the snapshots of 

the atomic structures for ε = 0, 0.16, 0.282 and 0.284. The computational cell in this case 

contains 160 atoms, and its strain-free dimension is 2.130 nm (armchair direction) by 1.968 nm 

(zigzag direction). The strain is applied with an increment of 0.002. Clearly, the potential energy 

increases as the strain increases until it reaches a critical point where a sudden drop of the energy 

occurs. From the snapshots, we see that the atomic lattice is stretched uniformly (with internal 
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relaxation) up to ε = 0.282 while the lattice is fractured spontaneously at the next strain 

increment. The critical strain for the bond breaking in the zigzag direction is thus determined to 

be fε = 0.283, which is the theoretical limit for a perfect graphene lattice under uniaxial stretch.  

The strain energy density of the graphene sheet can be obtained as ( ) 00 / AVV −=Φ , 

where V is the energy per atom at the deformed state, V0 is the energy per atom at the ground 

state, and A0 is the area pre atom at the ground state. The nominal stress P11 can thus be obtained 

from the potential energy: 
ε∂
Φ∂

=11P . Alternatively, the nominal stress as well as the other 

components (P22, P12, and P21) can be calculated from the viral stresses as given in Eq. (27).   

Figure 4a shows the nominal stress-strain curves for graphene under uniaxial stretch in the 

zigzag direction. The nominal stress P11 obtained from the potential energy agrees closely with 

the corresponding viral stress. In the perpendicular direction, the nominal stress P22 is positive, a 

result of the Poisson’s effect. Both the shear components of the nominal stress are zero, 

indicating no coupling between shear and stretch in the zigzag direction.  

 With the nominal stress components known, the second Piola-Kirchhoff membrane stress 

components are evaluated by the relationship in Eq. (13). For uniaxial stretch, we have 

 2121
12

122222
11

11 ,
1

,,
1

PSPSPSPS =
+

==
+

=
εε

 (28) 

Noting the symmetry, 2112 SS = , the nominal shear stresses must satisfy the relation, 

( )ε+= 12112 PP , which is required by balance of the angular momentum. Figure 4b plots the 

second Piola-Kirchhoff membrane stresses as a function of the Green-Lagrange strain 

( 2/2
11 εε +=E ), called S-E curves hereafter.  
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The tangent moduli C11 and C21 are determined from the slopes of the S-E curves, as 

plotted in Fig. 5. Both the tangent moduli decrease as the strain increases, demonstrating the 

nonlinear elastic behavior of graphene under the uniaxial stretch. Recently, based on AFM 

indentation experiments on suspended single-atomic-layer graphene and a nonlinear elastic 

membrane model, Lee et al. [33] deduced a quadratic stress-strain relationship for graphene 

under uniaxial stress 

 2
11

2
11

2
11 EDEYS DD +=  (29) 

where DY 2 = 340 ± 50 N/m is the 2D Young’s modulus at infinitesimal strain and DD2 = -690 ± 

120  N/m is a third-order elastic modulus. The negative value of DD2  leads to lessening of the 

tangent Young’s modulus ( 11
22

1111 2/ EDYdEdS DD += ) at increasingly tensile strain, similar to 

the tangent moduli shown in Fig. 5. However, due to the nonlinearity, the tangent moduli under 

uniaxial stretch cannot predict the tangent Young’s modulus under uniaxial stress. Only under 

infinitesimal strain, the Young’s modulus can be obtained as 11
2
2111 / CCCY −= . As noted in the 

previous studies [26, 43], the Young’s modulus of graphene predicted by the Brenner’s potential 

(see Table I) is considerably lower than that predicted by Ab initio models [34]; the latter is close 

to the experimentally measured DY 2 . 

The nonlinear finite deformation of the graphene sheet breaks the hexagonal symmetry of 

the un-deformed lattice, leading to an anisotropic mechanical behavior. As shown in Fig. 6 for 

graphene sheets under uniaxial stretch in four different directions, both the tangent modulus and 

the fracture stress/strain vary with the direction of stretch. The tangent moduli for the four 

directions are plotted in Fig. 7 as functions of the Green-Lagrange strain. Only at infinitesimal 

strain ( 011 →E ) the graphene is isotropic, with 8.28811 =C N/m, 9.11421 =C N/m, and 031 =C . 
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These values agree closely with analytical results from previous studies using the same empirical 

potential [26, 27]. For uniaxial stretch in all directions, 11C  and 21C  decrease with increasing 

strain and become negative before the lattice is fractured spontaneously. This may seem to be 

surprising, but it is understood that the condition for spontaneous fracture of the graphene lattice 

is zero slope in the nominal stress-strain curves. As discussed in Section 2.4, the tangent modulus 

for the nominal stress-strain under uniaxial stretch is 1111
2

11 SCC += λ , where ελ +=1 . Setting 

011 =C  leads to a negative tangent modulus 11C  at the point of spontaneous fracture. 

Figure 7c shows that the tangent modulus C31 becomes nonzero under finite stretch in a 

direction other than zigzag ( 0=α ) or armchair ( o30=α ). Consequently, a shear stress has to be 

applied to the graphene sheet in order to maintain uniaxial stretch in the chiral direction 

( o300 <<α ). The stretch-shear coupling of the planar graphene sheet may have contributed to 

the previously reported tension-torsion coupling of single-walled CNTs [53, 54]. Indeed, only 

CNTs with chirality other than zigzag or armchair were found to exhibit the coupling between 

tension and torsion. 

Figure 8 plots the nominal fracture strain and fracture stress of graphene under uniaxial 

stretch versus the chiral angle of stretch. It is noted that, while the nominal fracture strain varies 

significantly from 0.178 to 0.283, the nominal fracture stress varies slightly from 30.5 N/m to 

35.6 N/m. The MM simulations show that a perfect graphene lattice has the maximum fracture 

strain and fracture stress in the zigzag direction ( 0=α ). A minimum fracture strength seems to 

exist in a direction between o11.19=α  and o30=α  (armchair). The intrinsic strength of the 

suspended single-atomic-layer graphene sheets as determined by Lee et al. [33] based on AFM 

indentation experiments and a nonlinear membrane model was 42 N/m, with an isotropic fracture 
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strain at 0.25. While the fracture stress is noticeably higher, the fracture strain is well within the 

range of the present MM results. The relatively lower fracture stresses in Fig. 8 can be expected 

as a result of the relatively lower elastic modulus predicted by the Brenner’s potential. 

 

5. Cylindrical Bending of Graphene Sheets 

It has been found that bending of single-atomic-layer graphene sheets is fundamentally different 

from the classical theory of plates or shells [26, 27]. Since the thickness of the graphene sheet is 

essentially zero, the bending modulus would be zero by the classical theory. However, at the 

atomistic scale, the bond-angle effect on the interatomic interactions results in a finite bending 

modulus of graphene. For infinitesimal bending curvature ( 0→κ ), the bending modulus of 

planar graphene was predicted to be [26, 27] 

 
ijk

ij

ijk
A

VbrVD
θθ cos4

3)(
2
1

00 ∂
∂

=
∂
∂

=  (30) 

where Vij is the interatomic potential as given in Eq. (22), VA(r0) is the attractive part of the 

potential at the ground state, b  is the bond order function given by Eq. (26), and ijkθ  is the angle 

between two atomic bonds i-j and i-k ( jik ,≠ ). For the 2nd generation Brenner potential, the 

bending modulus was found to be 1.8 eV-Å2/atom or equivalently, 0.11 nN-nm [26]. 

In the present study, we simulate bending of graphene by rolling planar graphene sheets 

into cylindrical tubes of different radii. Similar to the uniaxial stretch simulations, a rectangular 

computation cell with periodic boundary conditions is first selected and then rolled into a tube 

according to the deformation gradient in Eq. (21). As discussed in Section 2.5, for a particular 

computational cell of size L, changing of the tube radius simultaneously changes the bending 
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curvature and the stretch in the circumferential direction. To uncouple the bending and stretch, 

we set the tube radius π2/LR =  and use different computational cells with varying L to get 

different radii and bending curvatures. In each simulation, the atoms are first displaced according 

to the deformation gradient in Eq. (21). Then, the total potential energy is minimized under the 

constraint that the tube radius does not change. To enforce this constraint, the atomic positions in 

one of the two sublattices of the graphene are fixed, while the atoms of the other sublattice are 

allowed to relax. In this way, the tube radius does not change during the energy minimization 

step. Consequently, all the 2D Green-Lagrange strain components are zero, and the normal 

curvature in the rolling direction is simply: 
Rn
1

11 =Κ=κ . The bending moment is then 

calculated by differentiating the strain energy density with respect to the curvature, and the 

tangent bending modulus is determined by the incremental relationship: 111111 Κ= dDdM . We 

note that several previous studies (e.g., Ref. 26) calculated strain energy of fully relaxed carbon 

nanotubes, which potentially included contributions from both bending and stretching. By 

applying the no-stretch constraint, the strain energy in the present study is purely bending 

relative to the planar graphene sheets at the ground state. 

Figure 9 plots the strain energy per atom as a function of the bending curvature for 

graphene sheets rolled in the zigzag direction. Due to the constraint on the tube radius, the strain 

energy is higher than that of fully relaxed carbon nanotubes [26]. The obtained bending moment 

vs curvature is plotted in Figure 10. The bending moment increases almost linearly as the 

curvature increases in the range between 0.1 nm-1 to 2 nm-1, with slight nonlinearity at large 

curvatures. By a linear fitting with the first 10 data points, the bending modulus of graphene is 

obtained as D11 = 0.225 nN-nm. The same bending modulus is obtained for rolling of graphene 

in the armchair direction. The bending modulus obtained from the present study is about twice of 
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the bending modulus predicted by Eq. (30) in the previous studies [26, 27]. It is unclear what 

causes this discrepancy. The definition of the bending modulus in the present study (Eq. 15) is 

identical to Eq. (20) in Ref. [26] for infinitesimal bending curvature. While the bending modulus 

by Eq. (30) was found to be consistent with the strain energy of fully relaxed carbon nanotubes, 

it is not known how much stretch was induced by relaxation of the tube radius. A combination of 

bending and stretch could in principle lower the total strain energy of the nanotubes, which then 

leads to apparently lower bending moment and lower bending modulus. Furthermore, Eq. (30) 

appears to account for only one bond angle. Considering that each C-C bond in the graphene 

lattice is associated with four bond angles (both ijkθ  and jikθ ), two for each carbon atom, we 

speculate that a summation over the two bond angles would result in doubling of the bending 

modulus (2D0), which would then compare closely with the present MM simulations. Further 

studies are being conducted to better understand bending of graphene. Interestingly, the bending 

modulus obtained from the present MM simulations is surprisingly close to that predicted by an 

Ab initio study [34], as listed in Table I. 

 

6. Buckling of Graphene Ribbons 

A thin sheet tends to buckle under compression. In this section we simulate buckling of single-

atomic-layer graphene ribbons under uniaxial compression. Similar to the MM simulations for 

uniaxial stretch, rectangular computational cells with periodic boundary conditions are used. 

Instead of the tensile strain ( ελ +=1 ), uniaxial compressive strains ( ελ −=1 ) are applied. An 

initial perturbation with out-of-plane displacements of the atoms is introduced to trigger the 

buckling instability. It should be noted that the intrinsic rippling of the 2D graphene lattice [28] 

is not taken into account in the present simulations. 
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Figure 11a shows the potential energy per atom as a function of the compressive strain in 

the zigzag direction for a graphene ribbon of width L = 1.97 nm. Two curves are shown for 

comparison, one with initial perturbation and the other with in-plane deformation only. The two 

curves overlap each other at small strains but deviate from each other beyond a critical strain. 

The bifurcation due to buckling leads to a lower potential energy. Figure 11b plots the buckling 

amplitude (the maximum out-of-plane displacement) as a function of the compressive strain, 

from which the critical strain for the onset of buckling is clearly identified: =cε 0.0068. The 

graphene ribbon remains planar before the critical strain, despite the initial perturbation. Beyond 

the critical strain, the buckling amplitude increases with the compressive strain. A snapshot of 

the deformed graphene ribbon at 01.0=ε  (compressive) shows a nearly sinusoidal buckling 

profile (inset of Fig. 11b).  

MM simulations are performed for graphene ribbons of various widths under uniaxial 

compression in different chiral directions. The critical strains for the onset of buckling are 

plotted in Fig. 12 for compression in the zigzag and armchair directions. It is found that the 

critical strain for buckling is insensitive to the chiral direction, but depends on the width of the 

graphene ribbon. The dependence is similar to that for the classical Euler buckling of thin plates 

[44], i.e., 2~ −Lcε . Noting that the critical strain for buckling is relatively small for the graphene 

ribbons considered in the present study, an isotropic, linear elastic behavior may be assumed for 

the buckling analysis. Similar to the classical Euler buckling [44], a linear analysis predicts that 

the critical load (force per unit length along the edge) for buckling of a graphene ribbon is 

 2

24
L

DPc
π

=  (31) 
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where D is the bending modulus and L is the ribbon width. The critical nominal strain cε  for the 

onset of buckling is then 

 2
11

2

11

4
LC
D

C
Pc

c
πε ==  (32) 

where C11 is taken to be the in-plane elastic modulus of graphene at infinitesimal strain. For 

comparison, we plot in Fig. 12 the prediction of the linear analysis using three sets of the elastic 

modulus and bending modulus of graphene (Table I). The elastic modulus and bending modulus 

obtained in Sections 4 and 5 of the present study give a prediction (linear analysis-1) that slightly 

overestimates the MM results. However, using the bending modulus by Eq. (30), the second line 

(linear analysis-2) significantly underestimates the critical strain. Interestingly, the linear 

prediction with the moduli from the Ab initio study [34] agrees closely with the MM results.  

 

7. Summary 

A theoretical framework of nonlinear continuum mechanics is developed for two-dimensional 

graphene sheets under both in-plane and bending deformation. Atomistic simulations by 

molecular mechanics are carried out for single-atomic-layer graphene sheets under uniaxial 

stretch, cylindrical bending, and buckling instability. It is found that graphene becomes highly 

nonlinear and anisotropic under finite-strain uniaxial stretch, and coupling between stretch and 

shear occurs except for stretching in the zigzag and armchair directions. The theoretical strength 

(nominal fracture strain and nominal fracture stress) of perfect graphene lattice also varies with 

the chiral direction of uniaxial stretch. By rolling graphene sheets into cylindrical tubes of 

various radii, the bending modulus of graphene is obtained, which differs from a previous 
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prediction by a factor of 2. Buckling of graphene ribbons under uniaxial compression is 

simulated and the critical strain for the onset of buckling is compared to a linear buckling 

analysis. Future studies will investigate graphene sheets under combined bending and stretching 

as well as the effects of finite temperatures on the morphology and mechanical properties of 

graphene.  
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Table I. Comparison of elastic moduli of single-atomic-layer graphene under infinitesimal 

deformation (Young’s modulus 11
2
2111 / CCCY −=  and Poisson’s ratio 1121 /CC=ν ) 

 C11 (N/m) C21 (N/m) Y (N/m) ν D  
(nN-nm) 

Present study (MM) 288.8 114.9 243 0.398 0.225 

Arroyo and Belytschko [26] 288 114.5 243 0.397 0.11 

Ab initio [34] 353 52.6 345 0.149 0.238 
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Figure 1. Schematic illustration of a 2D graphene sheet before and after deformation. 
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Figure 2. Illustration of a rectangular unit cell of graphene lattice with a particular chiral 
direction. 
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Figure 3. Energy per atom vs nominal strain of a single-atomic-layer graphene sheet under 

uniaxial stretch in the zigzag direction (α = 0), with snapshots of the equilibrium atomic 

structures at ε = 0 (A), 0.16 (B), 0.282 (C), and 0.284 (D).  
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Figure 4. (a) Nominal stresses vs nominal strain and (b) Second Piola-Kirchhoff membrane 

stresses vs Green-Lagrange strain for a single-atomic-layer graphene sheet under uniaxial stretch 

in the zigzag direction. The nominal stress P11 is calculated by both the energy method (open 

circles) and the viral stress method (solid line). 

(a) 

(b) 



Qiang Lu and Rui Huang, Nonlinear mechanics of single-atomic-layer graphene sheets 

 37

 

0 0.05 0.1 0.15 0.2 0.25 0.3
−50

0

50

100

150

200

250

300

350

Green−Lagrange strain E
11

T
an

ge
nt

 m
od

ul
us

 (
N

/m
)

 

 

C
11

C
21

C
31

Y2D+2D2DE
11

 

Figure 5. Tangent elastic moduli of a single-atomic-layer graphene sheet under uniaxial stretch in 

the zigzag direction. The dashed line is the tangent Young’s modulus from Eq. (29) as suggested 

in Ref. [33]. 

 



Qiang Lu and Rui Huang, Nonlinear mechanics of single-atomic-layer graphene sheets 

 38

 

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

30

35

40

Nominal strain ε

N
om

in
al

 s
tr

es
s 

P
11

 (
N

/m
)

 

 

α = 0 (zigzag)

α = 10.89o

α = 19.11o

α = 30o (armchair)

 

Figure 6. Nominal stress vs nominal strain for single-atomic-layer graphene sheets under 

uniaxial stretch along different chiral directions. 
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Figure 7. Tangent elastic moduli C11, C21 and C31 of single-atomic-layer graphene sheets under 

uniaxial stretch along different chiral directions. 
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Figure 8. Nominal fracture strain and stress of single-atomic-layer graphene sheets under 

uniaxial stretch along different chiral directions.  
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Figure 9. Strain energy per atom of single-atomic-layer graphene sheets rolled into cylindrical 

tubes of different curvatures ( R/1=κ ) along the zigzag direction; the stretch in the 

circumferential and axial directions of the tubes is constrained so that the 2D Green-Lagrange 

strain components are all zero. 
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Figure 10. Bending moment vs curvature for cylindrical bending of single-atomic-layer graphene 

sheets in the zigzag and armchair directions. 
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Figure 11. (a) Energy per atom and (b) buckling amplitude vs nominal compressive strain for a 

single-atomic-layer graphene ribbon (L = 1.97 nm). For comparison, the dashed line in (a) shows 

the energy for in-plane deformation only. The inset in (b) shows a buckled graphene ribbon at 

01.0=ε . 

L

0068.0=cε
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Figure 12. Critical strain for onset of buckling for single-atomic-layer graphene ribbons under 

uniaxial compression in the zigzag and armchair directions by molecular mechanics simulations, 

in comparison with the predictions by a linear buckling analysis using the elastic moduli listed in 

Table I.  

 
 


