Numerical Results for shear-lock free finite elements based on Mindlin-Reissner plate and Timoshenko beam theories

Plate Elements

N x N	Mesh Size (Full Plate)
Exact Solution	Srinivasa Rao and AK Rao and Theory of Plates and Shells
CF	Convergence Factor
ASR	Aspect Ratio
MR_FE_1 MR_FE_2 MR_FE_3 MR_FE_4	Finite Elements based on Mindlin-Reissner theory using new shape functions
Material:	E=1.092E06; v = 0.3;
Geometry:	Square plate a=10.0; h=2.0, 1.4, 1.0, 0.5;
Type of plate	Simply supported (SS)
Load:	UDL=10.0

Timoshenko beam elements

Ν	Number of Elements (Full beam)
Exact Solution	Theory of Elasticity
CF	Convergence Factor
ASR	Aspect Ratio
Timo_FE_1 Timo_FE_2 Timo_FE_3 Timo_FE_4	Finite Elements based on Timoshenko beam theory using new shape functions
Material:	29,000; $v = 0.3$;
Geometry:	L=5,10, 25,100, 200, 400; h=1.0; b=1.0;
Load:	Concentrated Load q=100.0 and UDL=10.0

<u>Higher order beam elements (capable of accurately predicting three dimensional stresses) based on the higher order shear deformation theories developed by me</u>

HFE_1 -	based on Lagrangian polynomials
HFE_3 -	based on Lagrangian polynomials
FE_NSF_1 -	based on new shape functions
FE_NSF_3 -	based on new shape functions

Advantages of the present new finite elements

- 1. The primary aim of this research work is to replace the finite elements based on the first order shear deformation theory available in the general purpose finite element packages by these new finite elements.
- 2. Presently all general purpose finite element packages like MSC-NASTRAN, NX- NASTRAN, ABAQUS, LS-DYNA, and ANSYS use the finite elements based on Timoshenko beam theory, Reissner-Mindlin plate theory and Kirchhoff-Love shell theory (all are called first order shear deformation theories). The drawback of these finite elements is that they can not be used for the analysis of thin structures due to shear lock problem. To eliminate this problem, special integration scheme must be used.

The new finite elements based on the Timoshenko beam theory, Reissner-Mindlin Plate theory developed by me using special shape functions and standard finite element procedure are applied to the analysis of beams and plates. The numerical results show that accurate solution is obtained for less number of elements. The specialties of these finite elements are that (i) thick and thin structures can be analyzed, (ii) No special integration scheme is required, (iii) a new concept, Convergence Factor (CF), is introduced in the formulation of these elements to accelerate convergence, and (iv) Accurate solution is obtained by keeping the number of elements as constant and increasing the value of the CF. Hence, this procedure reduces modelling effort, computational time and increasing accuracy.

- 3. A comparison study was carried out among the finite elements based on the new shape functions and Lagrangian shape functions using two higher order shear deformation theories developed by me for the analysis of simply supported beam under transverse load. The convergence is achieved faster than that of the finite elements based on the Lagrangian shape functions.
- 4. Considering the above points, study related to the development of triangular finite elements based on the new shape functions is in progress.
- 5. Compare to the development of other thin plate finite elements like Discrete Kirchhoff Theory (DKT) finite element and Mixed Interpolated Tensorial Component (MITC4) element, the development of these finite elements is very simple.
- 6. Since these new shape functions are very effective in accurately predicting displacements, strains and stresses, finite elements based on these shape functions can be developed for various applications, for example, multiscale modelling, crack propagation and gradient-enhanced damage models.
- 7. It satisfies Partition of unity condition.
- 8. It satisfies Kronecker Delta condition and hence imposition of essential boundary condition is not a problem.
- 9. The last two conditions can not be achieved in Isogeometric Analysis.

Fig-2_CB_AR_5_NEL_4

Fig-3_CB_AR_5_NEL_6

Fig-4_CB_AR_5_NEL_10

Fig-2_CB_AR_10_NEL_4

Fig-3_CB_AR_10_NEL_6

Fig-4_CB_AR_10_NEL_10

Fig-2_CB_AR_100_NEL_4

Fig-3_CB_AR_100_NEL_6

Fig-4_CB_AR_100_NEL_10

Fig-2_CB_AR_400_NEL_4

Fig-3_CB_AR_400_NEL_6

Fig-4_CB_AR_400_NEL_10

<u>Comparison among the finite elements</u> (1) based on Lagrangian shape functions using Higher order deformation theories <u>developed by me</u> (2) based on new shape functions using Higher order deformation theories and (3) based on new shape <u>functions using Timoshenko beam theory</u>

		L/2h=160/12							L/2h=80/12							
Ν	HFE_1	HFE_2	Timo_FE_1	Timo_FE_3	FE_NSF_1	FE_NSF_3	HFE_1	HFE_2	Timo_FE_1	Timo_FE_3	FE_NSF_1	FE_NSF_3				
2	1.8136	1.8136					0.7867	0.7867								
4	6.2233	6.2233	32.2712	32.2391	32.2712	32.2712	2.0073	2.0073	4.1140	4.1100	4.1258	4.1218				
8	15.8701	15.8701					3.2797	3.2797								
12	22.2602	22.2602	(6 elements	(6 elements	(6 elements	(6 elements	3.7158	3.7158	(6 elements	(6 elements	(6 elements	(6 elements				
20	28.0410	28.0410	with 1000 CF)	with 1000	with 1000	with 1000 CF)	3.9874	3.9874	with 1000	with 1000 CF	with 1000 CF)	with 1000				
24	29.3511	29.3511		CF)	CF)		4.0381	4.0381	CF)			CF)				
30	30.5177	30.5177					4.0806	4.0806								
36	31.1911	31.1911					4.1040	4.1040								
Reddy *				32.823			4.1567									
Exact Solution	32.7844							4.1317								

			L	/2h=40/12			L/2h=12/12								
Ν	HFE_1	HFE_2	Timo_FE_1	Timo_FE_2	FE_NSF_1	FE_NSF_3	HFE_1	HFE_2	Timo_FE_1	Timo_NFE_3	FE_NSF_1	FE_NSF_3			
2	0.2626	0.2626					0.02194	0.02194							
4	0.4302	0.4302	0.5366	0.5362	0.5424	0.5419	0.02367	0.02367	0.02264	0.02264	0.02419	0.02418			
8	0.5118	0.5118					0.02414	0.02414							
12	0.5305	0.5305	(6 elements	(6 elements	(6 elements	(6 elements	0.02423	0.02423	(6 elements	(6 elements	(6 elements	(6			
20	0.5406	0.5406	with 1000	with 1000	with 1000	with 1000 CF)	0.02428	0.02428	with 1000	with 1000 CF)	with 1000 CF)	elements			
24	0.5424	0.5424	CF)	CF)	CF)				CF)			with 1000			
30	0.5439	0.5439										CF)			
36	0.5447	0.5447													
Reddy *	0.54588							0.02393							
Exact Solution		0.5333							0.02052						

Fig-2_SSB_AR_5_NEL_4

Fig-3_SSB_AR_5_NEL_6

Fig-4_SSB_AR_5_NEL_10

Fig-1_SSB_AR_10_NEL_2

Fig-2_SSB_AR_10_NEL_4

Fig-3_SSB_AR_10_NEL_6

Fig-4_SSB_AR_10_NEL_10

Fig-1_SSB_AR_100_NEL_2

Fig-2_SSB_AR_100_NEL_4

Fig-3_SSB_AR_100_NEL_6

Fig-4_SSB_AR_100_NEL_10

Fig-2_SSB_AR_400_NEL_4

Fig-4_SSB_AR_400_NEL_6

<u>Comparison among the finite elements (1) based on Lagrangian shape functions using Higher order deformation theories</u> <u>developed by me (2) based on new shape functions using Higher order deformation theories and (3) based on new shape</u>

functions using Timoshenko beam theory

				L/2h=160/12			L/2h=80/12							
Ν	HFE_1	HFE_2	Timo_FE_1	Timo_FE_3	FE_NSF_1	FE_NSF_3	HFE_1	HFE_2	Timo_FE_1	Timo_FE_3	FE_NSF_1	FE_NSF_3		
2	0.8254	0.8254					0.1849	0.1849						
4	3.6431	3.6431	20.326	20.306	20.374	20.354	0.6046	0.6046	1.3151	1.3139	1.3271	1.3259		
8	9.8570	9.8570					1.0482	1.0482						
12	13.9791	13.9791	(10	(10 elements	(10 elements	(10 elements	1.2009	1.2009	(10	(10	(10	(10		
20	17.7108	17.7108	elements	with 1000	with 1000	with 1000 CF)	1.2960	1.2960	elements	elements	elements	elements		
24	18.5568	18.5568	with 1000	CF)	CF)		1.3138	1.3138	with 1000	with 1000	with 1000	with 1000		
30	19.3102	19.3102	CF)				1.3287	1.3287	CF)	CF)	CF	CF		
36	19.7452	19.7452					1.3369	1.3369						
Reddy *	20.717							1.3486						
Exact Solution				20.6892			1.3408							

			L/	2h=40/12			L/2h=12/12						
Ν	HFE_1	HFE_2	Timo_FE_1	Timo_FE_3	FE_NSF_1	FE_NSF_3	HFE_1	HFE_2	Timo_FE_1	Timo_FE_3	FE_NSF_1	FE_NSF_3	
2	0.03475	0.03475					0.0016486	0.0016486					
4	0.07202	0.07202					0.0021069	0.0021069					
8	0.09064	0.09064	0.09339	0.09333	0.09634	0.09628	0.0022298	0.0022298	0.001979	0.001980	0.002230	0.002210	
12	0.09491	0.09491					0.0022529	0.0022529					
20	0.09723	0.09723	(10	(10	(10	(10	0.0022649	0.0022649	(10	(10	(10	(10	
24	0.09764	0.09764	elements	elements	elements	elements			elements	elements	elements	elements	
30			with 1000	with 1000	with 1000	with 1000			with 1000	with 1000	with 1000	with 1000	
36			CF)	CF)	CF)	CF)			CF)	CF)	CF)	CF)	
Reddy *				0.09770			0.002220						
Exact Solution	0.09576							0.002082					

Stress Results for Simply Supported Beam

Length =5.0, width=1.0, thickness=1.0, Maximum Bending Stress at the center of the beam

Fig.1 SS_ASR_5_Bending_Stress

Fig.2 SS_ASR_5_Shear_Stress

Length =10.0, width=1.0, thickness=1.0 Maximum Bending Stress at the center of the beam

Fig.3 SS_ASR_10_Bending_Stress

Shear stress calculation = 1.666

Fig.4 SS_ASR_10_Shear_Stress

Length =200.0, width=1.0, thickness=1.0 Maximum Bending Stress at the center of the beam

Fig.5 SS_ASR_200_Bending_Stress

Shear stress calculation = 33.33

Fig.6 SS_ASR_200_Shear_Stress

Length =400.0, width=1.0, thickness=1.0 Maximum Bending Stress at the center of the beam

Fig.7 SS_ASR_400_Bending_Stress

Shear stress calculation = 66.66

Fig.8 SS_ASR_400_Shear_Stress

Fig-2_SSP_AR_5_NEL_4x4

Fig-3_SSP_AR_5_NEL_6x6

Fig-4_SSP_AR_5_NEL_10x10

Fig-2_SSP_AR_7.14_NEL_4x4

Fig-3_SSP_AR_7.14_NEL_6x6

Fig-4_SSP_AR_7.14_NEL_10x10

Fig-2_SSP_AR_10_NEL_4x4

Fig-4_SSP_AR_10_NEL_10x10

Fig-2_SSP_AR_20_NEL_4x4

Fig-4_SSP_AR_20_NEL_10x10

Rhombic Plate under UDL

Element	Mesh	DOF	1	2	3	4	5	6		
MR_FE_1 ¹	4 x 4	75	0.3132	0.2059	0.1144	0.1255	0.05239	0.02053		
$MR_FE_2^1$	4 x 4	75	0.3133	0.2010	0.1144	0.1256	0.05241	0.02054		
$MR_FE_3^{1}$	4 x 4	75	0.3132	0.2059	0.1144	0.1255	0.05239	0.02053		
$MR_FE_4^{1}$	4 x 4	75	0.3133	0.2060	0.1144	0.1256	0.05241	0.02054		
DKT ²	4 x 4	75	0.304	0.198	0.113	0.121	0.055	0.028		
HSM	4 x 4	75	0.264	0.173	0.100	0.095	0.043	0.021		
ACM	8 x 6	189	0.296	0.198	0.114	0.114	0.052	0.020		
НСТ	8 x 6	189	0.281	0.188	0.111	0.111	0.049	0.018		
Expe	rimental Valu	e	0.297	0.204	0.121	0.129	0.056	0.022		
¹ one point i	ntegration	² Thre	² Three point integration;							

DKT – Discrete Krichhoff Theory element, Jean-Louis Batoz et al, A study of three-node triangular plate bending elements, international journal for numerical methods in engineering, Vol. 15, 1771-1812 (1980).

Twisting of a square plate

Mesh (b)	N	ode N	0	1	2	2	3	4	5	6	7	8	9					
	X	I-co		0	()	0	5	5	6.2	8	8	8					
	Y	-co		0	4	ļ	8	0	4	8	0	6.2	8					
						1	1				1		-		1		1	. <u> </u>
	Node N	No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mesh (c)	X-co		0	0	0	0	4	3	3	4	6	6	7	6	8	8	8	8
	Y-co		0	2	6	8	0	3	5	8	0	2	5	8	0	1	5	8

Element Type	DKT	HSM	ACM	НСТ	Mesh	MR_FE_1	MR_FE_2	MR_FE_3	MR_FE_4		
Point C [*]	0.24960	0.24960	.24972	0.25002	а	0.25740	0.25740	0.25742	0.25739		
					b	0.18963	0.18963	0.18945	0.19218		
					с	0.19229	0.19229	0.19218	0.19239		
	0.24960 (Exact thin plate solution)										

* Three point integration

New Numerical algorithm

Currently I am developing an efficient numerical method (based on Newton-Raphson method) to find out the roots of real-valued functions in one variable. The preliminary results for some functions are given below and the refinement of this work is going on. The time achievement is also being examined.

Polynomial functions

* -Two roots can be obtained at the same time. In this case both are the same.

1. Function: $x^3 - 3x^2 - 9x + 27 = 0$

Initial Value	Newton-Raph	nson Method	New M	ethod-1	New M	ethod-2
	Converged Value	No. of Iterations	Converged Value	No. of Iterations*	Converged Value	No. of Iterations*
25000	3.000000000	296	-3.000000000	7	-3.000000000	7
15000	2.9999999999	623	-3.000000000	7	-3.000000000	7
10000	2.9999999999	458	-3.000000000	7	-3.000000000	7
7000	3.000000000	322	-3.000000000	7	-3.000000000	7
500	2.999999999	292	-3.000000000	7	-3.000000000	7
10	3.000000000	122	-3.000000000	7	-3.000000000	7
1	3.000000000	680			3.000000000	126,7
-1			-3.000000000	6,11		
-5	-3.000000000	6	-3.000000000	7	-3.000000000	7,9
-600	-3.000000000	18	-3.000000000	7	-3.000000000	19,19
-9000	-3.000000000	25	-3.000000000	7	-3.000000000	26,26
-12500	-3.000000000	26	-3.000000000	7	-3.000000000	27,27
-26000	-3.000000000	27	-3.000000000	7	-3.000000000	28,28

Initial	Newton-Raph	nson Method	New Me	ethod-1	New Met	hod-2
Value	Converged Value	No. of Iterations	Converged Value	No. of	Converged Value	No. of
				Iterations*		Iterations*
98765	3.000009907	1475	1.000000000	2,2	1.00000000	635
3995	2.999989503	1251	1.000000000	2,2	1.00000000	635
987			1.000000000	2,2	1.000000000	635
195	2.999982054	1233	1.000000000	2,2	1.00000000	635
-95	0.999999999	547	1.000000000	2,2	1.00000000	198
-987	1.00000009	1522	1.000000000	2,2	0.999999999	70
-9865	0.999999999	368	1.000000000	2,2	1.00000013	326
-98765	1.00000012	95	1.000000000	2,2	1.00000020	94

2. Function: $x^5 - 11x^4 + 46x^3 - 90x^2 + 81x - 27 = 0$

3. Function:
$$x^3 - x - 1.0 = 0$$

Initial	Newton-Raphson Method		New Method-1		New Method-2	
Value	Converged Value	No. of Iterations	Converged Value	No. of	Converged Value	No. of
				Iterations*		Iterations*
126779	1.324717957	33	1.324717957	5,24	1.324717957	6,17
87765	1.324717957	33	1.324717957	5,24	1.324717957	6,17
8725	1.324717957	28	1.324717957	5,24	1.324717957	6,17
675	1.324717957	26	1.324717957	5,24	1.324717957	6,17
65	1.324717957	15	1.324717957	5,24	1.324717957	6,17
1	1.324717957	6	1.324717957	5,24	1.324717957	6,17
-1	1.324717957	22	1.324717957	5,24	1.324717957	15,19
-107	1.324717957	21	1.324717957	5,24	1.324717957	37,42
-9008	1.324717957	48	1.324717957	5,24	1.324717957	42,50
-77864	1.324717957	77	1.324717957	5,24	1.324717957	62,69

Initial	Newton-Raphso	on Method	New Meth	nod-1	New Method-2	
Value	Converged Value	No. of	Converged Value	No. of	Converged Value	No. of
	-	Iterations	-	Iterations*	-	Iterations*
987432	4.000000000	37	-3.000000000	8	-3.00000000	19
			1.00000000	5	1.00000000	5
87546	4.000000000	31	-3.00000000	8	-3.00000000	19
			1.00000000	5	1.00000000	5
576	4.00000000	19	-3.000000000	8	-3.00000000	19
			1.00000000	5	1.00000000	5
61	4.00000000	13	-3.00000000	8	-3.00000000	19
			1.00000000	5	1.000000000	5
1	1.00000000	1	4.00000000	1		
			1.00000000	10		
-1	4.00000000	2	-3.00000000	6	-3.00000000	19
			1.00000000	6	1.00000000	5
-68	-3.000000000	13	-3.00000000	8	-3.00000000	19
			1.00000000	5	1.00000000	5
-743	-3.000000000	19	-3.00000000	8	-3.00000000	19
			1.00000000	5	1.00000000	5
-56732	-3.000000000	30	-3.000000000	8	-3.000000000	19
			1.00000000	5	1.00000000	5
-487472	-3.000000000	35	-3.00000000	8	-3.000000000	19
			1.00000000	5	1.000000000	5

4. Function: $x^3 - 2x^2 - 11x - 12 = 0$

Initial	Newton-Raphson Method		New Method-1		New Method-2	
Value	Converged Value	No. of	Converged Value	No. of	Converged Value	No. of
		Iterations		Iterations*		Iterations*
874531	-1.769292354	67	-1.769292354	6,17		
34561			-1.769292354	6,17		
562	-1.769292354	107	-1.769292354	6,17		
43			-1.769292354	6,17		
2	-1.769292354	10	-1.769292354	6,17		
-3	-1.769292354	7	-1.769292354	6,17		
-71	-1.769292354	14	-1.769292354	6,17		
-8934	-1.769292354	27	-1.769292354	6,17		
-76987	-1.769292354	31	-1.769292354	6,17		

5. Function $x^3 - 2x + 2 = 0$ (Special case)

6. Function:
$$x^2 - 612.0 = 0$$

Initial	Newton-Raphso	on Method	New Method-1		New Method-2	
Value	Converged Value	No. of	Converged Value	No. of	Converged Value	No. of
	-	Iterations	-	Iterations*		Iterations*
345698	24.7386337537	19	24.7386337537	2	24.7386337537	6
			-24.7386337537	2	-24.7386337537	6
14567	24.7386337537	14	24.7386337537	2	24.7386337537	6
			-24.7386337537	2	-24.7386337537	6
456	24.7386337537	9	24.7386337537	2	24.7386337537	6
			-24.7386337537	2	-24.7386337537	6
5	24.7386337537	8	24.7386337537	2	24.7386337537	6
			-24.7386337537	2	-24.7386337537	6
-7	-24.7386337537	7	24.7386337537	2	24.7386337537	9
			-24.7386337537	2	-24.7386337537	9
-654	-24.7386337537	10	24.7386337537	2	24.7386337537	6
			-24.7386337537	2	-24.7386337537	6
-19654	-24.7386337537	15	24.7386337537	2	24.7386337537	8
			-24.7386337537	2	-24.7386337537	8
-786542	-24.7386337537	20	24.7386337537	2	24.7386337537	11
			-24.7386337537	2	-24.7386337537	11

Initial Value	Newton-Raphson	Newton-Raphson Method		New Method-1		New Method-2	
	Converged Value	No. of	Converged Value	No. of Iterations*	Converged Value	No. of Iterations*	
		Iterations	-		-		
99998.5	1.80000012	34	1.80000012	9,13	1.80000012	17,10	
12675.5	1.80000012	29	1.80000012	9,13	1.80000012	17,10	
175.5	1.80000012	19	1.80000012	9,13	1.80000012	17,10	
1.5	1.80000012	7	1.80000012	9,13	1.80000012	17,7	
-0.5	1.80000012	8	1.80000012	5,9	1.80000012	12,20	
-4.5	1.80000012	14	1.80000012	5,9	1.80000012	19,19	
-453.5	1.80000012	21	1.80000012	5,9	1.80000012	23,25	
-15673.5	1.80000012	34	1.80000012	5,9	1.80000012	35,35	
-78432.5	1.80000012	38	1.80000012	5,9	1.80000012	39,39	

7. Function: $(x-1)^3 + 0.512 = 0$

8. Function:
$$x^3 - x^2 - 10x - 8 = 0$$

Initial Value	Newton-Raphson	n Method	New Method-1		New Method-2	
	Converged Value	No. of	Converged Value	No. of Iterations*	Converged Value	No. of Iterations*
	_	Iterations	-		-	
876234	4.000000000	36	-1.000000000	6	-1.000000000	1
			-2.000000000	11	-2.000000000	8
34672	4.000000000	28	-1.000000000	6	-1.000000000	1
			-2.000000000	11	-2.000000000	8
764	4.000000000	19	-1.000000000	6	-1.000000000	1
			-2.000000000	11	-2.000000000	8
1	-1.000000000	1	-1.000000000	7	-1.000000000	1
			4.000000000	8	-2.000000000	8
-1	-1.000000000	1	-1.000000000	1	-1.000000000	1
			-2.000000000	7	-2.000000000	8
-467	-2.000000000	20	-1.000000000	6	-2.000000000	21,21
			-2.000000000	11		
-6542	-2.000000000	26	-1.000000000	6	-2.000000000	27,27
			-2.000000000	11		
-87321	-2.000000000	33	-1.000000000	6	-2.000000000	34,34
			-2.000000000	11		

Initial Value	Newton-Raphson	n Method	New M	ethod-1	New Method-2	
	Converged Value	No. of	Converged Value	No. of Iterations*	Converged Value	No. of Iterations*
		Iterations				
500000	2.000000000	90	-1.000000000	6	-1.000000000	6
			2.000000000	28	2.000000000	28
73256	2.000000000	55	-1.000000000	6	-1.000000000	7
			2.000000000	28	2.000000000	28
235	2.000000000	41	-1.000000000	6	-1.000000000	7
			2.000000000	28	2.000000000	28
5	2.000000000	76	-1.000000000	6	-1.000000000	7
			2.000000000	28	2.000000000	28
-10	-1.000000000	10	-1.000000000	6	-1.000000000	11
			2.000000000	28	-1.000000000	12
-563	-1.000000000	20	-1.000000000	6	-1.000000000	11
			2.000000000	28	-1.000000000	12
-96342	-1.000000000	32	-1.000000000	6	-1.000000000	33
			2.000000000	28	-1.000000000	33

$-3x^2 + 4 = 0$

10. Function:
$$x^4 + 3x - 4 = 0$$

Initial Value	Newton-Raphson	n Method	New Methe	od-1	New Method-2	
	Converged Value	No. of	Converged Value	No. of	Converged Value	No. of
		Iterations		Iterations*		Iterations*
107890	1.000000000	45	1.000000000	2,8	1.000000000	2
					-1.742959202	12
76543	1.000000000	45	1.000000000	2,7	1.000000000	2
					-1.742959202	12
546	1.000000000	27	1.000000000	2,8	1.000000000	2
					-1.742959202	12
3	1.000000000	9	1.000000000	2,8	1.000000000	2
					-1.742959202	12
-2	-1.742959202	6	-1.742959202	5,32	-1.742959202	10,25
-4321	-1.742959202	32	-1.742959202	5,8	-1.742959202	34, >1500
-432678	-1.742959202	49	1.000000000	2,8	-1.742959202	50, >1500

Initial Value	Newton-Raphson	Method	New Method-1		New Method-2	
	Converged Value	No. of	Converged Value	No. of Iterations*	Converged Value	No. of Iterations*
		Iterations				
100000	0.146359512	40	6.237758018E-02	5	0.146359512	11
			-4.373708626E-02	6	-4.373708626E-02	12
35678	0.146359512	38	6.237758018E-02	5	0.146359512	11
			-4.373708626E-02	6	-4.373708626E-02	12
453	0.146359512	27	6.237758018E-02	5	0.146359512	11
			-4.373708626E-02	6	-4.373708626E-02	12
1.0	0.146359512	27	6.237758018E-02	5	0.146359512	11
			-4.373708626E-02	6	-4.373708626E-02	12
-15	-4.373708626E-02	19	6.237758018E-02	5	-4.373708626E-02	23,23
			-4.373708626E-02	6		
-6743	-4.373708626E-02	34	6.237758018E-02	5	-4.373708626E-02	23,23
			-4.373708626E-02	6		
-98456	-4.373708626E-02	40	6.237758018E-02	5	-4.373708626E-02	35,35
			-4.373708626E-02	6		

11. Function:
$$x^3 - 0.165x^2 + 3.993e - 04 = 0$$

12. Function:
$$x^3 - 0.03x^2 + 2.4e - 04 = 0$$

Initial Value	Newton-Raphson Method		New Method-1		New Method-2	
	Converged Value	No. of	Converged Value	No. of	Converged Value	No. of Iterations*
		Iterations		Iterations*		
100000	2.661081797E-02	45	-7.952197642E-03	6,13	2.661081797E-02	16
					-7.952197683E-03	36
67543	2.661081797E-02	44	-7.952197642E-03	6,13	2.661081797E-02	16
					-7.952197683E-03	36
723	2.661081797E-02	32	-7.952197642E-03	6,13	2.661081797E-02	16
					-7.952197683E-03	36
2	2.661081797E-02	18	-7.952197642E-03	6,13	2.661081797E-02	16
					-7.952197683E-03	36
-20	-7.952197683E-03	18	-7.952197642E-03	6,13	2.661081797E-02	36
					-7.952197683E-03	20
-67845	-7.952197683E-03	43	-7.952197642E-03	6,13	-7.952197683E-03	44
-120007	-7.952197683E-03	43	-7.952197642E-03	6,13	-7.952197683E-03	44

Initial Value	Newton-Raphsor	n Method	New Metho	od-1	New Method-2	
	Converged Value	No. of	Converged Value	No. of	Converged Value	No. of
		Iterations		Iterations*		Iterations*
564327	0.700000007	38	0.70000006	8	-2.600000005	8
			0.149999999	5	0.1499999999	6
5637	0.70000007	28	0.70000006	8	-2.600000005	8
			0.149999999	5	0.1499999999	6
74	0.70000007	17	0.70000006	8	-2.600000005	8
			0.149999999	5	0.149999999	6
0	0.1499999999	5	0.70000006	8	-2.600000005	8
			0.149999999	5	0.1499999999	6
-13	-2.600000005	10	0.70000006	8	-2.600000005	8
			0.149999999	5	0.1499999999	6
-2451	-2.600000005	23	0.70000006	8	-2.600000005	24,25
			0.149999999	5		
-123867	-2.600000005	33	0.700000006	8	-2.600000005	24,25
			0.1499999999	5		

13. Function: $2x^3 + 3.5x^2 - 4.21x + 0.546 = 0$

Initial Value	Newton-Raphson Method		New Method-1		New Method-2	
	Converged Value	No. of	Converged Value	No. of	Converged Value	No. of Iterations*
		Iterations		Iterations*		
34562	32.363031067	20	32.363031067	12	2.814202526	6,8
			2.814202526	5		
6534	32.363031067	21	32.363031067	12	2.814202526	6,8
			2.814202526	5		
31	32.363031067	5	32.363031067	4	32.363031067	5,8
			14.822764775	6		
0	2.814202526	6	2.814202526	5	32.363031067	5,8
			32.363031067	12		
-10	2.814202526	8	2.814202526	5	2.814202526	8,9
			32.363031067	12		
-5678	2.814202526	21	2.814202526	5	2.814202526	8,9
			32.363031067	12		
-26524	2.814202526	21	2.814202526	5	2.814202526	8,9
			32.363031067	12		

14. Function:
$$0.004x^3 - 0.2x^2 + 2.45x - 5.4 = 0$$

Transcendental functions

1. Function: $e^{-x} - x = 0$

	Newton-Raphson Method		New Method-1		New Method-2	
	Converged Value	No. of Iterations	Converged Value	No. of Iterations*	Converged Value	No. of Iterations*
100000	0.567143290	6	0.567143290	6,7	0.567143290	6,7
8525	0.567143290	6	0.567143290	5,7	0.567143290	6,9
525	0.567143290	6	0.567143290	6,7	0.567143290	6,7
25	0.567143290	6	0.567143290	6,7	0.567143290	6,9
1	0.567143290	5	0.567143290	5,7	0.567143290	6,7
-1	0.567143290	6	0.567143290	5,7	0.567143290	7,10
-20	0.567143290	25	0.567143290	5,7	0.567143290	26,28
-105	0.567143290	110	0.567143290	5,7	0.567143290	111,113
-515	0.567143290	520	0.567143290	5,7	0.567143290	521,523

Initial	Newton-Raphson Method		New Method-1		New Method-2	
Value	Converged Value	No. of Iterations	Converged Value	No. of	Converged Value	No. of
				Iterations*		Iterations*
500	1.049908899	500	1.049908899	4,16		
150	1.049908899	159	1.049908899	4,16		
11	1.049908899	18	1.049908899	4,16		
0	1.049908899	9				
-1						
-10			1.049908899	4,16		
-135			1.049908899	4,16		
-550			1.049908899	4,16		

2. Function: $xe^{x} - 3.0 = 0$

3. Function: $e^{x} - 3x = 0$

Initial Value	Newton-Raphson Method		New Method-1		New Method-2	
	Converged Value	No. of	Converged Value	No. of Iterations*	Converged Value	No. of Iterations*
		Iterations				
500	1.512134551	506	0.619061286	5	0.619061286	7
			1.512134551	10	1.512134551	7
200	1.512134551	206	0.619061286	5	0.619061286	7
			1.512134551	10	1.512134551	7
53	1.512134551	59	0.619061286	5	0.619061286	7
			1.512134551	10	1.512134551	7
0	1.512134551	6	0.619061286	5	0.619061286	7
			1.512134551	10	1.512134551	7
-24	1.512134551	7			0.619061286	8
					1.512134551	31
-2234	1.512134551	7	0.619061286	5		
			1.512134551	6		
-67456	1.512134551	7	0.619061286	5		
			1.512134551	6		

Initial Value	Newton-Raphson Method		New Method-1		New Method-2	
	Converged Value	No. of	Converged Value	No. of Iterations*	Converged Value	No. of Iterations*
		Iterations				
500	0.442854401	505	0.442854401	5,9	0.442854401	5,8
150	0.442854401	155	0.442854401	5,9	0.442854401	5,8
2	0.442854401	7	0.442854401	5,9	0.442854401	5,8
0	0.442854401	5	0.442854401	5,9	0.442854401	5,8
-75	0.442854401	8	0.442854401	6,7	0.442854401	5,8
-2350	0.442854401	8	0.442854401	5,9	0.442854401	9,9
-98754	0.442854401	8	0.442854401	5,9	0.442854401	9,9

4. Function: $e^{x} + x - 2 = 0$

Conclusion

- 1. The first algorithm is independent of initial guess.
- 2. It converges very faster than the other two, that is, the Newton-Raphson method and New Method-2.
- 3. The modifications carried out in the present two algorithms are very simple and the mathematical expressions used are very short statements involving only arithmetic operations.
- 4. The performance of the first algorithm is far better than that of the other two and in some cases the performance of the second algorithm is similar to that of the Newton-Raphson method.
- 5. In some cases, two different roots are simultaneously obtained by these two algorithms. In the case of the NR method, it is not possible.

Future Work

The above work is extended to the analysis of a system of non linear equations in 'n' variables to examine the performance of the algorithm.