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ABSTRACT 

The principal challenge in developing a new thermal 
interface material (TIM) is to co-design its micro-attributes 
(e.g. filler type, packing fraction, size distribution) that 
simultaneously ensure high effective thermal conductivity 
(keff), low elastic modulus (Eeff) and low viscosity (ηeff). Today 
there exists little physical insight into size distributions of 
fillers that would optimize desired properties. These thermo-
mechanical metrics follow contradicting trends if filler content 
is only monotonically increased. In this paper, we elucidate 
microstructure-property correlations vital for optimizing 
effective properties. First, we systematically vary filler size 
distributions and generate different particulate structures with 
a previously developed packing algorithm [1]. Then, we 
employ mechanistic models, based upon physics of micro-
scale heat/force transport, to predict keff, Eeff and ηeff of the 
particulate structure, thereby identifying filler size domains 
that optimize the desired properties. 
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NOMENCLATURE 

A         area (m2) 
E         elastic modulus (MPa)  
F         force flux (N) 
h          particle surface-to-surface distance (m) 
k          thermal conductivity (W/moC) 
L         TIM bond line thickness (m) 
N         total number of particles 
P          probability density function 

 Q         heat flux (W) 

R         thermal resistance (oC/W) 
r           radius of particle (m)  
T          temperature (oC) 
u          displacement (m) 

Greek symbols 
α         heat/force transfer parameter 
η         viscosity (Pa.s) 
ε         connectivity parameter 
ϕ         volume fraction (%) 

         maximum volume fraction achievable (%) 
µ         mean particle diameter (m)         
σ         standard deviation of particle diameter (m) 

Subscripts 
i, j       particle index 
m, p    matrix, particle  
eff       effective 
max    maximum 

BACKGROUND 
 In an electronic package, the TIM resides between a heat 

generating chip and a heat spreader or sink and consists of 
metallic and non-metallic filler particles dispersed in a 
polymer matrix (Fig. 1) [2][3][4]. 

 

 
 
Fig. 1 (Top) Thermal interface material between silicon die 
and lid. (Middle) heat dissipating non-uniformly from the die 
to the lid through particulate TIM structure. (Bottom) Current 
research proposes a method to optimize TIM filler size 
distributions to achieve desired keff, Eeff and ηeff levels.   
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The heat dissipation from the chip is spatially non-
uniform with higher density near the computing cores.  The 
filler particles are provided in different size distributions. In 
view of improved performance, long-term reliability and ease 
of assembly, desired thermo-mechanical properties of these 
oil/filler composite materials are threefold: (a) high thermal 
conductivity (keff), (b) low elastic modulus (Eeff) and (c) low 
viscosity (ηeff). 

High keff enables higher power dissipation, low Eeff 
ensures small deformation originating from thermal expansion 
mismatch among components, and low ηeff provides better 
TIM dispensability during package assembly. Currently, 
formulation of new TIMs with superior properties is a highly 
challenging task given the trial-and-error based practice of 
mixing materials. One rule of thumb, for instance, is to pack 
conductive particles to the maximum density possible into the 
polymeric matrix. This strategy generally results in increased 
keff. However, Eeff and ηeff levels may also increase 
detrimentally. There is no mechanistic guideline dictating the 
particle sizes and types that would result in optimum 
properties. Here, we propose a numerical optimization 
method, first by generating microstructures with a Monte-
Carlo-based (i.e. random generation) algorithm, and then 
predicting their effective properties.  

Two major categories for particle mixing algorithms are 
available in the literature: (a) collective rearrangement (i.e. 
simultaneous updating of particle size and/or location with the 
assumption of a binding forcefield) and (b) sequential addition 
(i.e. particles are added one by one). The former is 
computationally very expensive and inherently limited to N 
<103 [5]. The latter is computationally more efficient [6]. We 
utilize a previously developed sequential Monte-Carlo 
algorithm [1] to generate various TIM structures to study their 
effective properties as a function of particle size distribution 
and determine the optimal structure. 
 
MODEL DESCRIPTION 
Generation of structure via Monte-Carlo algorithm 

In this method, that we outlined in detail in our earlier 
publication [1], three types of particles are packed by 
randomly generating their type, size and location within a 
constant-volume space with non-periodic boundary 
conditions.  

We adopt a sequential packing approach to ensure the 
maximum utilization of the available interstitial space. This 
recipe was conditioned to pack the largest particles first (up to 
total volume fraction of 25%), followed by second largest 
ones (up to 35% of total volume fraction) and the smallest one 
to a total particle volume fraction of 50% in the box. We note 
that the 50% total volume fraction is not the saturation state; 
however, for the current paper, we attempt to identify the 
optimized filler size ranges before proceeding to saturated 
volume fractions in a future study. 
 
Inter-particle heat/force transfer models 

To determine keff of discrete particulate composites, we 
utilize the recently revisited analytical framework of inter-
particle thermal conduction [7] by Dan et al., which was 
originally derived by Batchelor and O’Brien [8]. They 

assumed that confronting hemispherical portions of respective 
particles take part in heat/force exchange (Fig. 2) via a 
cylindrical conduit  [9] whose radius 

 
r

ij
 is given by [10]:  

  

r
ij
= a

2rirj

ri + rj

                                    (1) 

where a is a tuning parameter whose value is determined by 
benchmarking simulation results with experimental data 
(described in forthcoming section). The inter-particle thermal 
resistance, ijR  (oC/W) is computed by linearly summing intra-

particle (
 
Ri

 and 
 
R

j
)  and trans-matrix ( mR ) resistances [8].  

Subbarayan and co-workers demonstrated that the same  
analytical expressions could be utilized for force exchange  
[9]. The inter-particle compliance (1/Eij) can then be obtained 
by summing matrix and individual particle compliances (1/Em, 
1/Ei and 1/Ej respectively). The readers are referred to the 
authors’ earlier publication for full details [1]. 
 
3D network of heat/force transfer  

The collection of particles forms a 3D global network 
(Fig. 2), through which heat/force is transported. The 
condition for constructing this network is that a particle i 
interacts with its neighbor j if [10]:  
 
 

 
 

Fig. 2  (Top) model for inter-particle heat exchange with three 
thermal resistance terms. (Bottom) 3D network of thermal 
resistances, each line representing Rij.  
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where hij is the minimum particle-to-particle surface distance 
and ε

 
is another tuning parameter signifying the degree of 

inter-particle connectivity. Its value is determined from 
comparing simulation results with experimental data 
(described in next section).  
 
Prediction of keff  and Eeff 

Heat ( totalQ ) is assumed to flow from the bottom to the 

top boundary with adiabatic sidewalls. At any node i 
connected to its neighbors j (where, j = 1,2,3…

 
N

neighbor
), the 

steady-state heat/force inflow must equal heat/force outflow 
[11]. Thus, one can write:  

neighbor neighbor neighborN N N
j
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By ascribing the boundary conditions (for example, Ttop = 0 
and Tbottom = 1) one can solve for all the nodal temperatures 
(Ti) within the bulk of the material. For the force model, Ti 
terms are replaced by displacement terms (ui) and resistances 
Rij replaced by compliance (1/Eij) in Equation (3). Then, the 
total heat ( totalQ ) or total force (Ftotal) flux can be computed 

considering the particles directly in contact with the either 
boundary. Finally, keff and Eeff can be computed as follows: 
 

;  total total
eff eff

bottom top bottom top

Q FL L
k E

T T A u u A
= =

 
                           (4) 

where A and L are area and thickness of the TIM respectively.  
The model is validated by tuning the parameters α and ε, 

so that they can reproduce experimentally determined 
effective properties of a representative TIM. This set of values 
are calibrated to reproduce the empirically-determined keff and 

Eeff levels of the representative TIM with an error <0.3%. 
These values are used for subsequent structures generated 
through the packing algorithm. The

 
h

eff
model (outlined 

below) does not require any calibration. For the heat transport 
model, we have determined the values of α and ε to be 1.5 and 
1.73 respectively. For the force balance model, they are 1.5 
and 1.35 respectively. A sensitivity analysis of the predicted 
properties with α and ε will be discussed in the next section. 
 

 
h

eff
Model 

We use a discrete 
 
h

eff
 model accounting for the 

polydispersity of particle aggregate proposed by Dörr et al. 
[12]. For a N-disperse composite material, where each particle 
is added sequentially, the

 
h

eff
 can be expressed as  [12]: 
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For i > 1, the maximum volume fraction achievable, 
 
i

 can 

be computed from the following expression: 

  

i = i1 j
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                         (6) 

Note that for monodisperse distribution (when i = 1), 
theoretical limit of the maximum volume fraction, 

1 0.64 = [10, 13]. The infinitesimal volume fraction 

increment (with respect to the available space) 
 
i  

can be 

expressed [12] as: 

  

i = i 1 j
j=i+1

N


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                         (7) 

Where, i  is the volume fraction of the i-th particle with 

respect to the entire TIM volume.  
 
Determination of optimum computational domain size  

To determine the computational volume size, we consider 
a mono-disperse system with a fixed TIM thickness. We 
gradually increase the volume size by increasing the lateral 
dimensions until a saturation is reached in terms of the 
predicted volume fraction (63-64%) and effective properties 
(keff and Eeff). This procedure was repeated for several particle 
sizes that were 5%, 25%, 50% and 75% of the fixed TIM 
thickness. The lateral sides of the volume (which yields size-
independent properties) are found to be about 7 times the 
mean diameter of the largest particle type for the fixed TIM 
thickness. 
 
RESULTS & DISCUSSION 
 
TIM structures with systematic variation in filler size 

To begin our discussion, we first generate eighteen cases 
of three-filler (labeled A, B and C) particulate composites by 
systematically varying one particle size at a time. We generate 
all these structures up to a volume fraction of 50% within a 
constant representative volume element, which ensures no 
size-dependent simulation artefacts. The structures are 
presented in Fig. 3. For ease of visualization, all volumes are 
sliced into equal cubes although the lateral dimensions of the 
computational volumes were set at ~7X the largest particle 
size. The size distribution functions of individual filler types 
are assumed Gaussian with pre-defined means (µA, µB and µC) 
and standard deviations (σA, σB and σC). While packing, each 
particle is selected from the three-sigma interval around the 
mean. The standard deviations of these distribution are 8.57% 
of the average diameter of the smallest particle type (i.e. the 
one designated as type C). 

In Fig. 3, for the first set of cases (CASE 1 through 6), the 
size of the largest filler A is gradually increased from a value 
close to the diameter of the medium-sized filler B. Sizes of the 
fillers B and C are kept constant. For the second set of cases 
(CASE 7 through 12), filler B size is systematically varied 
between the smallest C and the largest filler A sizes. For the 
last set of cases (CASE 13 through 18), the smallest filler size 
C is varied up to a value close to the medium sized filler B, 
while the sizes of A and B are kept constant. We predict 
effective properties of all these structures as presented in Fig. 
4.   

 



 
 
Fig. 3  Various cases of filler packing: sizes of fillers A, B and 
C are respectively varied in CASEs 1-6, 7-12 and 13-18.  

 
 
Fig. 4 Predicted effective properties for various filler sizes 
(normalized by smallest mean diameter of type C, µC). 



Size distribution-dependent effective properties 
We assign different sets of properties to each particle type 

(Table 1), where the two largest filler types (A and B) are 
considered to be of the same material.  
 
Table 1. Filler properties used in the simulations.  
 

 Thermal conductivity, 
kp/km  

Elastic modulus,  
Ep/Em  

Filler A 1025 69 x 106 
Filler B 1025 69 x 106 
Filler C 125 370 x 106 

 
It is important to note that the current model is generic, 

and one can ascribe any realistic material properties to these 
fillers. Using these properties, we predict effective properties 
of all the generated cases. The predicted results normalized to 
the matrix properties are presented in Fig. 4. From Fig. 4, the 
maximum level of keff is achieved in CASE 2, CASE 3 and 
CASE 4, where it is increased by about 20-21 times the matrix 
conductivity km. Noticeably, degradation in viscosity and 
compliance levels are not significant among these cases. Thus, 
enhancement of thermal conductivity should be directed 
towards further fine-tuning in the narrow range between 
CASE 2 and CASE 4. In general, the combinations of large 
particles and very small particles (CASE 1 through 6), where 
the largest particles size are about 5-10 times the smaller 
particle size, have better thermal conductivities. In future 
work, we will refine this range by running the simulations to 
saturated particle volume fractions. 

The reason could be attributed to the fact that the smaller 
particles are able to fill in the interstitial gap among the 
relatively larger ones in these structures. These small particles 
provide greater degree of heat transport path because of the 
increase in the surface area, whereby the total proportion of 
the matrix transporting the heat is reduced. By contrast, the 
minimum enhancement of thermal conductivity is noted for 
CASE 13 through 18, where the volume is filled with 
progressively large particles, which leaves more interstitial 
gap among them. This is particularly so since the particles are 
assumed perfectly spherical. Thus, two confronting spheres 
will have more matrix material between them in comparison 
with two flat heat-transmitting facades. For the cases with 
reduced keff, the average interstitial gap among the particles is 
substantial.  In such case, heat would be transported by a 
significant portion of the matrix material. This rationale could 
be extended to explain why keff is increased in CASE 12. 

A similar trend in the structure-property correlation is 
noted in Eeff levels across cases since the spring model 
considers force transfer mechanism to be analogous to heat 
transport. The same rationale as described above for the trends 
in keff and various structures could be applied to comprehend 
these trends in Eeff. On the other hand, from the viscosity 
model, we note that the variation in 

 
h

eff
is insubstantial for 

CASE 1 through 12. It decreases monotonically from CASE 1 
through CASE 18. Notice that the decrease in 

 
h

eff
 with 

respect to variation in the largest particle size (CASE 1 

through 6) is insignificant compared to the variation in the 
smallest particle size (CASE 13 through 18). 

We also present a study on the sensitivity of the tuning 
parameters (α and ε) with respect to keff in Fig. 5. It follows 
that the variation in the effective thermal conductivity is linear 
with each parameter. Here, when each parameter is changed, 
the other one was kept constant. The currently used values are 
indicated with arrows. The values of these parameters are 
determined by (a) first, determining material type and filler 
size distribution of an actual benchmark TIM material with 
known effective properties, (b) then, simulating its micro-
structure in terms of particle type and size distribution, and 
finally solving for α and ε values which reproduce the known 
properties (keff and Eeff) of the benchmark TIM with error level 
< 0.1%. As Fig. 5 suggests, 10% of deviation in the currently 
chosen α and ε values causes a ~10% change in keff levels. We 
use thus-obtained magnitudes to predict effective properties of 
other simulated TIM structures.  

 

 
 
Fig. 5 Study of tuning parameters (α and ε) sensitivity on keff 
(arrows indicating currently chosen values). α is used to 
regulate exposure level of thermal flux (i.e. diameter of heat 
conduit) between confronting hemispheres, while ε to adjust 
extent of thermal neighborhood (i.e. number of neighboring 
particles,) of a certain particle.  
 

The current modeling results provide a physical rationale 
why some cases (specifically with prevalent small particles) 
have better thermal conductivity. It is related to how thermal 
path is established by the optimum combination of large and 
very small particles. For instance, a particulate structure would 
have superior heat transport capability if the smallest particles 
fill in the interstitial gap among the largest ones to effectively 
establish enhanced thermal paths. It should also be noted that 
the heat transport could occur along multiple parallel paths if 
thermal resistances for respective paths are of equal or 
comparable magnitudes. For instance, if there is an interposing 
smaller particle between two large particles, the two large 
particles may establish a direct thermal path and a parallel 
path could also exist connecting the large particles with the 
smaller interposing particle. The discrete nature of the thermal 
resistance network accounts for this physics. If multiple 
parallel paths of heat are physically possible, as dictated by the 
condition in Equation (2), the appropriate network would be 
established and the nodal temperature solutions (hence, the 



effective conductivity) would be adjusted accordingly. This 
scenario is physically possible in nature. 
 
CONCLUSIONS 

With a previously-developed algorithm, we have generated 
computational models of TIM structures by systematically 
varying sizes of three different particle types. We have also 
utilized analytical models from literature to predict keff, Eeff and 
ηeff for all these structures to reveal the dependency of 
effective properties on the fillers sizes while keeping the other 
attributes of the constituent materials (i.e. number of filler 
types and the type of the matrix) constant.  

We find that the lateral dimensions of the computational 
volume for the packing algorithm should be about 7 times the 
largest particle size for a fixed TIM thickness. The results 

quantitatively establish an optimum window of filler size 
distributions for optimal properties, i.e. the largest particle size 
should be about 5-10 times the smallest particle size.  Further 
refinement of this range will be studied in future work. The 
main contribution of the current research is to provide 
promising physical guidelines for optimizing TIMs. In 
addition, the modeling framework paves the way for studying 
roles of different chemical species as filler types and matrix 
materials in the future.  
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