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Optomechanics of Soft Materials
Some molecules change shape upon receiving photons of certain frequencies, but here we
study light-induced deformation in ordinary dielectrics with no special optical effects. All
dielectrics deform in response to light of all frequencies. We derive a dimensionless num-
ber to estimate when light can induce large deformation. For a structure made of soft
dielectrics, with feature size comparable to the wavelength of light, the structure shapes
the light, and the light deforms the structure. We study this two-way interaction between
light and structure by combining the electrodynamics of light and the nonlinear mechan-
ics of elasticity. We show that optical forces vary nonlinearly with deformation and read-
ily cause optomechanical snap-through instability. These theoretical ideas may help to
create optomechanical devices of soft materials, complex shapes, and small features.
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1 Introduction

In 1862, Maxwell predicted that light of any frequency exerts a
force on an illuminated surface [1]. The experimental confirma-
tion came in 1900 [2], but such optical forces are feeble, and their
practical uses have only arrived in recent decades, after lasers
became widely available. Lasers are now used to move solid par-
ticles [3,4], deform liquid interfaces [5,6], bend slender rods [7,8],
and stretch cells [9,10] (Fig. 1). Optomechanic devices have
emerged as a vibrant field of research and development [11–15].

This paper develops the optomechanics of soft materials. Opti-
cal forces are feeble, but are stronger than forces that are feebler.
We derive a dimensionless number to estimate when optical
forces are large enough to induce large deformation in soft materi-
als (Sec. 2). We then formulate a general method to calculate the
light-induced large deformation (Sec. 3). Our task is simplified by
two considerations: the optical properties of soft materials are
insensitive to deformation, and mechanical motion is much slower
than optical oscillation. Consequently, we calculate each incre-
ment of deformation using the Maxwell stress averaged over a sin-
gle period of optical oscillation. On the other hand, because the
feature size of a device may be comparable to the wavelength of
the light, in general, we do not average the Maxwell stress over
space. We apply the method to a sheet of soft dielectric between
two opposing lasers (Secs. 4–7). We show that optical forces vary
nonlinearly with deformation and readily cause optomechanical
snap-through instability.

Light-induced deformation has also been studied in materials
containing molecules capable of changing shape upon receiving
photons of certain frequencies [16–21]. Such light-sensitive mole-
cules achieve significant deformation at relatively low intensity of
light. Here, we focus on dielectrics with no special optical effects.
As we will show in Sec. 2, ordinary dielectrics achieve large
light-induced deformation only when the dielectrics are soft and
the light is intense. Soft dielectrics constitute a large family of
materials. This diversity will enable the choice of materials to
meet various demands in applications, such as large deformation,
facile fabrication, low cost, and biocompatibility. Maxwell stress
has been used to calculate optical forces on stiff dielectrics [7,8],
and estimate deformation of soft dielectrics [22–24]. Optical
forces enable two-way interactions between light and structures.
For a structure made of soft dielectrics, the structure shapes the
light, and the light deforms the structure. Here, we formulate the

optomechanics of soft materials that accounts for the two-way
coupling between light and structure. We combine electrodynam-
ics of light and nonlinear mechanics of elasticity.

Optical forces have been studied intensely, but have not been
used to create devices of soft dielectrics. The potential, however,
is enormous. Research in soft materials in the recent decade has
led to a broad perspective: the softness enables materials to
deform in response to stimuli, and the deformation provides func-
tions [25]. Deformation links many stimuli to many functions.
Thus, the deformation of a dielectric elastomer links a voltage to a
force [26], the deformation of a hydrogel links a change in acidity
in a solution to a change in the focal length of a lens [27], the
swelling of an elastomer seals an oil well for hydraulic fracture
[28,29], and the deformation of a gel and an elastomer enables
ionic music and ionic skin [30,31]. Soft materials can be fabri-
cated with feature sizes as small as several micrometers [32–35]
and moduli as low as �1 00 Pa [35–37]. It is conceivable that opti-
cal forces will enable devices of soft materials, complex shapes,
and small features. We hope that theoretical ideas described here
will aid the creation of this technology.

2 Magnitude of Optical Forces

Light is a time-dependent electromagnetic field. Maxwell used
the electromagnetic field to calculate the optical forces in the vac-
uum. His result is applicable to a medium of constant permittivity
and permeability. The electromagnetic field in a given medium
without free charge or current satisfies the Maxwell equations:
r� eþ @b=@t ¼ 0, r� h� @d=@t ¼ 0, r � d ¼ 0, and
r � b ¼ 0. In these equations, e is the electric field, d the electric
displacement, h the magnetic field, and b the magnetic induction.
The field further satisfies the constitutive equations d ¼ ee and
b ¼ lh, where e is the permittivity and l is the permeability of
the medium. At an interface between two media, the field satisfies
the boundary conditions: n � b2 � b1ð Þ ¼ 0, n � d2 � d1ð Þ ¼ 0,
n� e2 � e1ð Þ ¼ 0, and n� h2 � h1ð Þ ¼ 0, where n is the unit
vector normal to the interface, and the subscripts indicate the two
media. Associated with the electromagnetic field in each medium
is the Maxwell stress [38]

Tij ¼ e eiej �
1

2
ememdij

� �
þ l hihj �

1

2
hmhmdij

� �
(1)

The Maxwell stress is a second-rank tensor and is a field in the
medium.

The Maxwell stress can be used to calculate the electromag-
netic forces acting on an object. For example, consider two plates
of conductor separated by a narrow gap of vacuum (Fig. 2). The
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voltage applied between the two plates causes an electric field in
the vacuum, in the direction normal to the plates. Equation (1)
predicts three components of Maxwell stress. One component is
tensile in the vertical direction, and the other two components are
compressive in the horizontal directions. The tensile Maxwell
stress in the vertical direction causes the two plates to attract each
other. This attractive electrostatic force balances a pair of

mechanical forces that pull the plates apart. The horizontal com-
ponents of the Maxwell stress are also commonly used in electro-
mechanical systems. For example, when a dielectric sheet is
partially placed in between the two plates, the horizontal Maxwell
stress draws the sheet into the area between the two plates [39].

Equation (1) indicates that Maxwell stress scales with ee2 and
lh2, as well as with the square root of their product,

ffiffiffiffiffi
el
p

eh.
Recall that c ¼ 1=

ffiffiffiffiffi
el
p

is the speed of light in the medium, and
e� h is the flux of energy (i.e., the energy of light crossing a
plane normal to the direction of propagation per unit time per unit
area). Consequently, the magnitude of the Maxwell stress scales
as P= ca2ð Þ, where P is the power and a the width of a beam of
light. For representative values of a laser, P ¼ 0:1 W, a ¼ 1 lm,
and c ¼ 3� 108 m=s, we estimate the Maxwell stress
P= ca2ð Þ � 300 Pa. By comparison, the elastic modulus is
�1011 Pa for stiff materials such as silicon, but is �100 Pa for a
soft gel. Thus, the Maxwell stress due to a laser can cause small
strains in stiff materials, but large strains in soft materials.

We compare the magnitudes of the optical forces to those of
other forces by forming dimensionless numbers. For example, to
stretch a cell by a large strain, the Maxwell stress P= ca2ð Þ needs
to be comparable to the elastic modulus of the cell, G. This con-
sideration leads to a dimensionless number P= ca2Gð Þ. Similar
considerations lead to dimensionless numbers that compare the
optical force with other types of forces, including forces due to
thermal fluctuation, viscous flow, surface tension, elastic bending,
and elastic stretching (Table 1). The larger the numbers are, the
greater the effect of optical forces will be.

Estimates of these dimensionless numbers agree with existing
experimental observations (Fig. 1). For example, optical forces
can overcome elasticity and cause deformation in two ways: bend
stiff materials and stretch soft materials. In bending a stiff mate-
rial, such as a slender rod of silicon, choosing power P ¼ 0:1 W,

Fig. 2 The Maxwell stress in the vacuum between two parallel
plates of conductor separated by a narrow gap of vacuum. The
applied voltage U induces electric charges 6Q on the two
plates, as well as an electric field E and a Maxwell-stress field in
the vacuum between the two plates. The Maxwell stress is a ten-
sor with three principal components, tensile in the vertical
direction, and compressive in the two horizontal directions.
The three components have the same magnitude, e0E2=2, where
e0 is the permittivity of the vacuum. The tensile Maxwell stress
in the vertical direction causes the two plates to attract each
other. This attractive electrostatic force is balanced by a me-
chanical force P.

Fig. 1 Optical forces cause motions of various kinds. (a) Optical tweezers trap a rigid particle and move it in
a liquid. (b) A beam of light deforms the interface between two liquids. (c) Light in two waveguides causes an
evanescent optical field in the space between the waveguides, and bends them. (d) Two beams of laser
stretch a cell.
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width a ¼ 310 nm, length L ¼ 30 lm, and modulus G � 80 GPa,
we get L=að Þ4P= ca2Gð Þ � 4. In stretching a soft material such as
a cell, choosing power P ¼ 0:7 W, size a ¼ 10 lm, and modulus
G � 10 Pa, we get P= ca2Gð Þ � 2. Both estimates show that opti-
cal forces are sufficient to cause deformation, agreeing with
experimental observations [7,9]. The two dimensionless numbers
differ by the factor L=að Þ4, where L is the length and a the width
of the beam. This factor is huge for a representative value of
L=a � 100, enabling the optical forces to bend a stiff material,
even though the modulus G is large. The high moduli of stiff
materials, however, limit substantial change of shape to a single
type: bending of slender rods. By contrast, soft materials can
achieve large deformation of many types, and may potentially
lead to devices of many kinds. The remainder of this paper
focuses on the optomechanics of soft materials.

3 Optomechanics of Two-Way, Light–Structure

Interaction

We now develop the optomechanics of soft materials to account
for the two-way, light–structure interaction. Our task is simplified
by two considerations. First, the permittivity and permeability of a
soft dielectric are insensitive to deformation [40]. A soft dielectric
is a three dimensional network of polymer. The number of cross-
links between the polymer chains is much smaller than the num-
ber of monomers constituting the chains. The crosslinks turn a
liquid into a solid, but negligibly affect permittivity and perme-
ability. That is, when a crosslinked dielectric deforms and the
polymer chains have not reached their fully stretched length, the
extension limit, the electromagnetic property of the dielectric is
essentially the same as that of the corresponding liquid dielectric.
As a result, we assume that the permittivity and permeability are
independent of deformation, just like the property of liquid. This
assumption allows us to calculate the optical forces in soft materi-
als using the Maxwell stress.

Second, optical frequency is much larger than mechanical fre-
quency. The frequency of mechanical vibration scales as
a�1

ffiffiffiffiffiffiffiffiffi
G=q

p
, where a is the feature size, G the elastic modulus, and

q the density. For representative values, a ¼ 10�6 m, G ¼ 103 Pa,
and q ¼ 103 kg=m

3
, the frequency of mechanical vibration is

� 106 Hz, which is much lower than the frequency of light,
�1014 Hz. That is, each period of mechanical oscillation corre-
sponds to a large number of periods of electromagnetic oscilla-
tion. Consequently, each state of deformation is determined by the
Maxwell stress averaged over a single period of the electromag-
netic oscillation. On the other hand, because the feature size of a
device may be comparable to the wavelength of the light, in gen-
eral, we do not average the Maxwell stress over space.

Under these simplifications, we develop the optomechanics of
soft materials by combining the nonlinear mechanics of elasticity
and the electrodynamics of light. The nonlinear mechanics of elas-
ticity is well-established [41]. A material body is represented by a
sum of many small pieces. Each piece is named after its place X
when the body is in the undeformed state. The piece X occupies a

place x when the body is in a deformed state at time t. The func-
tion x ¼ x X; tð Þ describes the history of the deformation of the
body. The deformation gradient is FiK ¼ @xi X; tð Þ=@XK . The
nominal stress siK X; tð Þ relates to the true stress rij x; tð Þ as
rij ¼ siKFjK=detF. On a piece of volume dV Xð Þ, we prescribe

mass q Xð ÞdV and force ~B X; tð ÞdV. On a piece of area dA Xð Þ nor-

mal to the unit vector NK , we prescribe a force ~TidA Xð Þ. We add
“�” to distinguish the body force from the magnetic field, and the
traction from the Maxwell stress. The balance of forces requires

that @siK=@XK þ ~Bi ¼ q@2xi=@t2 in the volume and that

siKNK ¼ ~Ti on the surface.
The electrodynamics of light is also well-established [42]. In a

deformed state of the body, the electric field e x; tð Þ is sinusoidal in
time, e x; tð Þ ¼ Re E xð Þexp ixtð Þ½ �, where x is the frequency of the
light, and complex-valued field E xð Þ is the phasor of the electric
field. Phasors for the other fields are similarly defined, H xð Þ,
D xð Þ, and B xð Þ. We assume that the material is dielectric, with no
free charge or current density. Under this assumption, the Max-
well equations in terms of phasors are r � D ¼ 0,
r� E ¼ �ixB, r � B ¼ 0, and r�H ¼ ixD. The Maxwell
stress affects deformation through its average over a period of

electromagnetic oscillation, Tij

� �
¼ x=2pð Þ

Ð 2p=x
0

Tijdt. An evalu-

ation of this integral gives that [43]

Tij

� �
¼ 1

2
Re e EiE

�
j �

1

2
EmE�mdij

� �
þ l HiH

�
j �

1

2
HmH�mdij

� �� �
(2)

where E�i and H�i are the complex-conjugates of Ei and Hi,
respectively.

We write the true stress rij as the sum of that due to the elastic
deformation and that due to the time-averaged Maxwell stress

rij ¼
FjK

detF

@W Fð Þ
@FiK

þ Tij

� �
(3)

where W Fð Þ is the Helmholtz free energy associated with the
stretching of the material. For an incompressible material,
detF ¼ 1 and Eq. (3) becomes that

rij ¼ FjK
@W Fð Þ
@FiK

�Pdij þ Tij

� �
(4)

where P is the Lagrange multiplier, to be determined as a part of
the solutions to boundary-value problems.

To account for the two-way interaction between the light and
the structure, such a boundary-value problem is solved in incre-
mental steps. Starting with an undeformed state, we apply
mechanical and optical loads of small amplitudes, determine the
optical field by solving an eigenvalue problem over the body of a
fixed configuration, and determine the increment of the displace-
ment field by solving a boundary-value problem. Then, we use the

Table 1 Dimensionless numbers of optical forces relative to other forces

Types of motion Dimensionless numbers Meanings of parameters

Trap a rigid particle against its Brownian motion P

ca2

a3

kBT

kB: Boltzmann constant
T: temperature

Move a rigid particle in a viscous liquid P

ca2

a

gv

g: viscosity
v: velocity of the moving laser source

Deform an interface between liquids against surface tension P

ca2

a

c
c: surface energy

Bend a stiff material against elasticity P

ca2

1

G

L

a

� �4 G: shear modulus

Stretch a soft material against elasticity P

ca2

1

G

G: shear modulus
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increment of displacement to update the configuration of the
body, and increase the loads by a small amount. We repeat
the procedure for many steps to obtain the final deformed state.
The optical field is Eulerian, and the elastic field is Lagrangian.
This mixed specification poses an interesting challenge for general
numerical method, which we do not pursue in this paper. Instead,
we focus on a special case to describe optomechancial phenomena
of potential significance in applications.

4 A Sheet of Soft Dielectric Between Two

Opposing Lasers

We apply the theory to a thin sheet of a dielectric between two
opposing lasers (Fig. 3). The refractive index is n in the sheet, and
is nout in the outside medium. The sheet has the dimensions
L1; L2;L3ð Þ in the undeformed state, and dimensions l1; l2; l3ð Þ in

the deformed state. The effect of surface tension is taken to be
negligible.

The two lasers have the same frequency and intensity, propa-
gating as plane waves in the opposite directions. Let EL;HLð Þ be
the field of the laser from the left side of the dielectric, and
ER;HRð Þ be the field of the laser from the right side of the dielec-

tric. We further assume that the fields EL and ER are symmetric
with respect to the midplane of the dielectric. Consequently, the
two lasers generate optical forces of equal magnitude in opposite
directions, and keep the midplane of the sheet stationary in space.
Let the coordinates x1; x2; x3ð Þ coincide with the directions of the
fields and propagations, with x3 ¼ 0 at the midplane of the dielec-
tric. The fields of the lasers are EL ¼ E0 exp ikoutx3ð Þ, HL

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
eout=l

p
E0 exp ikoutx3ð Þ, ER ¼ E0 exp �ikoutx3ð Þ, and HR

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
eout=l

p
E0 exp �ikoutx3ð Þ, where eout ¼ noutð Þ2e0 is the permit-

tivity of the outside medium, l is the permeability of both the
dielectric and the outside medium, E0 is the amplitude of the elec-
tric field, kout ¼ noutx=c0 is the wavenumber of the lasers, x is the
frequency of the lasers, and c0 is the speed of light in the vacuum. At
optical frequencies, the permeability of most materials is close to
that of the vacuum l0; For example, the permeability of water is
0.999992l0. Here, we assume that the permeability of both the
dielectric and the outside medium is the same as that of the vacuum.

The thickness of the dielectric is comparable to the wavelength
of the lasers in the sheet, K ¼ 2pc0= nxð Þ, but the in-plane dimen-
sions of the sheet are much larger than K. For example, one can
take the thickness of the film to be � 1 lm, and the lateral dimen-
sions of the film and the spot size of the laser to be � 100 lm.
Thus, we will consider only homogeneous deformation of princi-
pal stretches k1 ¼ l1=L1, k2 ¼ l2=L2, and k3 ¼ l3=L3.

Both in the dielectric and outside, the components of the elec-
tric field are E1 ¼ E and E2 ¼ E3 ¼ 0, and the components of the
magnetic field are H2 ¼ H and H1 ¼ H3 ¼ 0. Equation (2) shows
that only the principal Maxwell stresses are nonzero

T1h i ¼ � T2h i ¼
1

4
e Ej j2�l Hj j2
	 


; T3h i ¼ �
1

4
e Ej j2þl Hj j2
	 


(5)

The dielectric is assumed to be incompressible, k1k2k3 ¼ 1, so
that Eq. (4) becomes that

r1 � r3 ¼ k1

@W k1; k2ð Þ
@k1

þ T1h i � T3h i (6)

r2 � r3 ¼ k2

@W k1; k2ð Þ
@k2

þ T2h i � T3h i (7)

We represent the elasticity of the dielectric using the neo-
Hookean model [44]

W k1; k2ð Þ ¼ G

2
k2

1 þ k2
2 þ k1k2ð Þ�2�3

	 

(8)

where G is the shear modulus of the dielectric.
For the time being, we assume that the sheet is subject to no

external mechanical forces. The balance of forces in the x1 and x2

directions requires that the resultant forces vanish,
Ð l3=2

�l3=2

r1dx3 ¼
Ð l3=2

�l3=2
r2dx3 ¼ 0. The balance of force in the x3 direction

requires that the stress in the dielectric equals the Maxwell stress,

r3 ¼ Tout
3

� �
. Inserting these boundary conditions to Eqs. (6) and

(7), and using Eq. (8), we get

t1 � t3 ¼ G k2
1 � k2

3

� �
(9)

t2 � t3 ¼ G k2
2 � k2

3

� �
(10)

where

t1 ¼ �
1

l3

ðl3=2

�l3=2

T1h idx3; t2 ¼ �t1; t3 ¼ Tout
3

� �
� T3h i (11)

Fig. 3 Two antiparallel lasers deform a thin sheet of a soft
dielectric. The refractive index is n in the dielectric, and nout in
the outside medium. (a) In the undeformed state, the dielectric
has the dimensions (L1;L2;L3). (b) In the deformed state, the
dielectric deforms to the dimensions (l1; l2; l3). The electromag-
netic fields of the left and right lasers are (EL;HL) and (ER;HR),
respectively. The lasers generate the Maxwell stress in the
dielectric and outside. (c) The Maxwell stress causes equivalent
mechanical stress acting on the dielectric.
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Equation (11) writes the optical forces as the equivalent mechani-
cal stresses acting on the dielectric (Fig. 3(c)). Once the optical
field is known in the dielectric and the outside medium, Eq. (5)
gives the Maxwell stresses, and Eqs. (9)–(11) determine the
stretches.

5 Total Reflection

Consider the special case that the two lasers are fully reflected
at the surfaces of the sheet. This total reflection may be achieved
by coating the sheet with conducting films. In this case, no optical
field exists inside the sheet, and only the Maxwell stress in the
outside medium, Tout

3

� �
, causes the sheet to deform. The electric

field on the right hand side of the sheet is the superposition of the
incident wave and the reflected wave

Eright ¼ E0 exp �ikoutx3ð Þ � exp ikout x3 þ l3ð Þð Þ½ � (12)

Hright ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
eout=l

p
E0 exp �ikoutx3ð Þ þ exp ikout x3 þ l3ð Þð Þ½ � (13)

Consequently, Eq. (2) gives Tout
3

� �
¼ �eoutE2

0, known as the
radiation pressure. The same radiation pressure exists on the

left-hand side. The radiation pressure is independent of the
thickness of the dielectric and the polarization of the lasers.
These conclusions are consistent with existing experiments and
calculations [45,46].

6 Sheet Optically Matched With the Medium Outside

Next consider the case that the sheet and the outside medium
are optically matched, n ¼ nout. If we only apply the laser on the
right side ER;HRð Þ, Eq. (2) gives T1h i ¼ T2h i ¼ 0 and
T3h i ¼ Tout

3

� �
¼ �eE2

0=2, so that the net optical forces vanish.
However, if we apply two opposing lasers, the optical field will be
the superposition of the two lasers, giving E ¼ 2E0cos kx3ð Þ and
H ¼ �2i

ffiffiffiffiffiffiffi
e=l

p
E0sin kx3ð Þ. Equations (2) and (11) give the equiva-

lent stresses t1 ¼ �eE2
0 sinkl3ð Þ= kl3ð Þ, t2 ¼ �t1, and t3 ¼ 0. As the

thickness of the sheet changes, t1 changes between tensile and
compressive, and vanishes as kl3 !1. Applying the equivalent
stresses to Eqs. (9) and (10), we obtain the state of deformation
(Fig. 4). When the thickness of the sheet is the multiples of the
half-wavelength of the lasers, the optical forces vanish. To main-
tain the same deformation, the amplitude of the lasers needs to be
infinitely large (Fig. 4(a)). We plot the corresponding in-plane

Fig. 4 Deformation induced by optical forces in a dielectric optically matched to the outside. K is the wavelength of the laser
inside the dielectric. (a) The out-of-plane stretch as a function of the amplitude of the input optical field. When the thickness
of the deformed dielectric, l3, approaches the multiples of the half wavelength, 0:5K; 1:0K; 1:5K. . ., all components of the opti-
cal force approach zero, so that amplitude of the input optical field, E0, becomes larger and larger to maintain the deforma-
tion. (b) and (c) The in-plane stretches as functions of the out-of-plane stretch. (d) The stretches depend on the thickness of
the undeformed dielectric, L3.

Journal of Applied Mechanics JULY 2015, Vol. 82 / 071011-5

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 06/03/2015 Terms of Use: http://asme.org/terms



stretches as functions of the out-of-plane stretch, where the curves
jump whenever optical forces vanish (Figs. 4(b) and 4(c)).

The stretches depend on the thickness of the undeformed
dielectric, L3 (Fig. 4(d)). The dielectric is optically matched with
the outside, so that the out-of-plane component of the optical force

vanishes, t3 ¼ T
out

3

� �
� T3h i ¼ 0, but the in-plane components of

the optical force in general do not vanish, t1 ¼ � 1=l3ð ÞÐ l3=2

�l3=2
T1h idx3 and t2 ¼ � 1=l3ð Þ

Ð l3=2

�l3=2
T2h idx3. When L3 ¼ 0:5K;

1:0K; 1:5K, and so on, all components of the optical force vanish,
and the dielectric does not deform. When L3=K!1, the in-
plane components of the optical force average out, t1 ¼ t2 ! 0,
and the dielectric does not deform.

The optical force varies nonlinearly with the deformation, and
can readily cause optomechanical instability. Such instability has
been observed in optomechanical systems involving slender rods
of stiff materials [15], but has not been reported in optomechani-
cal systems of soft materials. To illustrate the basic behavior, con-
sider a sheet placed between the two opposing lasers, clamped at
the top and the bottom, and then pulled by a mechanical force f
(Fig. 5(a)). The clamps constrain the sheet in the horizontal direc-
tion, k1 ¼ 1, and the sheet is incompressible, k3 ¼ 1=k2. Thus,
Eq. (7) gives

eE2
0

sin kl3

kl3

þ f

l1l3
¼ G k2

2 �
1

k2
2

 !
(14)

We plot the force–stretch relation for a sheet between lasers of a
fixed amplitude (Fig. 5(b)). As the stretch k2 increases, the thick-
ness of the dielectric l3 decreases, and the optical force decreases
to negative, returns to positive, and then decreases again. Conse-
quently, the force–stretch curve reaches the peak, goes down, and
then goes up again. This curve corresponds to a snap-through
instability. When the force f is programmed to increase gradually,
the sheet initially elongates gradually. Upon reaching the peak
of the curve, the sheet suddenly stretches greatly. Furthermore,
when the force is programmed to increase and then decrease grad-
ually, the sheet snaps forward and backward, undergoing hystere-
sis. We plot Fig. 5(b) using a sheet of the undeformed thickness
L3 ¼ 2:0K. If we use a thicker sheet, the force–stretch curve will
have multiple peaks and valleys, since the deformed thickness
will go through several periods of the sinusoidal optical force. We
have also tried various other types of mechanical constraints and
loads, and found that the snap-through instability occurs in many
configurations.

7 Sheet Optically Mismatched With the Medium

Outside

Now consider the case that the sheet and the outside medium
are optically mismatched, n 6¼ nout. Each incident wave will cause

Fig. 5 Optomechanical snap-through instability. (a) A thin
sheet of dielectric is placed in the optical field of two antiparal-
lel lasers. The dielectric is clamped at the top and bottom, and
is pulled by a mechanical force f in the vertical direction. (b) In
the presence of the optical field, the force–displacement curve
is not monotonic, leading to a snap-through instability.

Fig. 6 Maxwell stresses in a dielectric optically mismatched
with the outside. Because T2h i52 T1h i, only T1h i and T3h i are
plotted. (a) When l3 5 K, both T1h i and T2h i average to zero, but
T out

3

� �
6¼ T3h i. (b) When l3 5 1:5K, all three components of the

optical force vanish.
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both transmitted and reflected waves. The net optical field can be
solved analytically, giving [42,47]

Ein ¼
2 1þ qð Þcos kx3ð Þ

1� q2e�2ikl3ð Þ E0 ei kout�kð Þl3=2 � qe�2ikl3 ei koutþkð Þl3=2
h i

(15)

Hin ¼
ffiffiffi
e
l

r
2i 1þ qð Þ sin kx3ð Þ

1� q2e�2ikl3ð Þ E0 ei kout�kð Þl3=2 � qe�2ikl3 ei koutþkð Þl3=2
h i

(16)

Eright ¼ E0e�ikoutx3 þ
qþ e�ikl3
� �

1� qe�ikl3
� �

1� q2e�2ikl3ð Þ E0eikout x3þl3ð Þ (17)

Hright ¼
ffiffiffiffiffiffiffi
eout

l

s
E0e�ikoutx3 �

qþ e�ikl3
� �

1� qe�ikl3
� �

1� q2e�2ikl3ð Þ E0eikout x3þl3ð Þ
� �

(18)

where q ¼ nout � nð Þ= nout þ nð Þ measures the optical mismatch
and k ¼ nx=c0 is the wavenumber of the light inside the sheet.
Here, Ein and Hin are the net field inside the sheet, and Eright and

Hright are the net field on the right side of the sheet. Because of the
symmetry of the setup, we do not list Eleft and Hleft.

Inserting the optical field into Eq. (5), we obtain the Maxwell
stresses

T1h iin¼ eE2
0

1þ qð Þ2 1þ q2 � 2q cos kl3ð Þ½ �
1þ q4 � 2q2 cos 2kl3ð Þ cos 2kx3ð Þ (19)

T2h iin¼ � T1h iin; T3h iin¼ �eE2
0

1þ qð Þ2 1þ q2 � 2q cos kl3ð Þ½ �
1þ q4 � 2q2 cos 2kl3ð Þ

(20)

T1h iright¼ eoutE2
0Re

qþ eikl3
� �

1� qeikl3
� �

1� q2e2ikl3ð Þ e�ikoutl3 e�2ikoutx3


 �
(21)

T2h iright¼ � T1h iright; T3h iright¼ �eoutE2
0 (22)

where e ¼ n2e0 is the permittivity of the dielectric. Because of the
symmetry of the setup, we do not list the Maxwell stress on the
left side of the sheet. Note that the through-thickness Maxwell
stress, T3h i, is constant in each medium, independent of the

Fig. 7 Deformation induced by optical forces in a dielectric optically mismatched with the outside. (a) The out-of-plane
stretch changes with the amplitude of the optical field. At l3 5 K, the optical mismatch gives rise to a nonzero optical force,
so that the deformation is maintained by a finite amplitude of the optical field, E0. By contrast, at l3 5 1:5K, all components of
the optical force vanish, so that the deformation cannot be maintained by an optical field of finite amplitude. (b) and (c) The
in-plane stretches as functions of the out-of-plane stretch. (d) When the dielectric and the outside are optically mismatched,

T
out

3

D E
6¼ T3h i in general, and the out-of-plane component of the optical force deforms the dielectric even when L3=K! ‘.
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positions. In general, the values of T3h i in different media are dif-
ferent. This difference causes a nonzero equivalent stress in the
through-thickness direction. The in-plane Maxwell stresses are
sinusoidal functions of x3. We plot the Maxwell stresses when the
sheet is at two specific thicknesses, l3 ¼ K and l3 ¼ 1:5K (Fig. 6).
When l3 ¼ K, the value of T3h i in the sheet differs from that out-
side. This difference gives a nonzero equivalent stress, even
though the in-plane Maxwell stresses average out. By contrast,
when l3 ¼ 1:5K, the value of T3h i in the sheet is the same as that
outside, so that the equivalent stress vanishes.

The equivalent stresses are

t1 ¼ �eE2
0

1þ qð Þ2 1þ q2 � 2q cos kl3ð Þ½ �
1þ q4 � 2q2 cos 2kl3ð Þ

sin kl3ð Þ
kl3

; t2 ¼ �t1

(23)

t3 ¼ eE2
0

1þ qð Þ2 1þ q2 � 2q cos kl3ð Þ½ �
1þ q4 � 2q2 cos 2kl3ð Þ � eoutE2

0 (24)

Inserting the optical forces into Eqs. (9) and (10), we determine
the stretches of the sheet. We note several differences between the
optically mismatched case (Fig. 7) and the optically matched case
(Fig. 6). As l3 ! K the optical mismatch ensures that the lasers
cause an optical force, so that e0E2

0 now is finite. For a thick
dielectric, the in-plane optical forces vanish, but the optical mis-
match causes a finite through-thickness optical force in general.
The optical force pulls the sheet in the thickness direction when
n > nout, but compresses the sheet in the thickness direction when
n < nout.

8 Maxwell Stress as a Boundary Condition

We have added the Maxwell stress as the part of the
stress–stretch relation in Eq. (3). We have also transformed the
Maxwell stress into the equivalent stress in the calculation of
the dielectric sheet. This method is generally applicable. For a
dielectric of constant permittivity and permeability, with no free
charge or current, the Maxwell equations ensure that

r � T ¼ c�2@ e� hð Þ=@t [42,46]. If we further assume that the
Maxwell stress affects deformation through its time average, and
the electromagnetic field is a sinusoidal function of t, we find that
@ e� hð Þ=@th i ¼ 0 and r � Th i ¼ 0. We let re

ij ¼ FjK@W Fð Þ
=@FiK �Pdij be the stress due to elasticity, leave the equation
FiK ¼ @xi X; tð Þ=@XK unchanged, and change the equation for the

balance of forces to @se
iK=@XK þ ~Bi ¼ q@2xi=@t2, where the nomi-

nal stress se
iK satisfies re

ij ¼ FjKse
iK=detF. These equations are the

same as the equations in nonlinear elasticity. However, the bound-
ary condition now should be modified to be re

ijnj ¼ ~ti

þ Tout
ij

D E
� Tij

� �	 

nj. In addition to the mechanical traction ~ti, the

difference of the Maxwell stress in the medium outside and that in
the dielectric should be added on the boundary. We can solve
such a problem by deriving the electromagnetic field in deformed
state, calculating the Maxwell stress field, prescribing the differ-
ence of the Maxwell stress on the boundary, and applying the gov-
erning equations of nonlinear elasticity.

9 Conclusion

Our calculations show that optical forces can cause large defor-
mation of soft materials. We show that optical forces vary nonli-
nearly with deformation and readily cause optomechancial
snap-through instability. We describe the optomechanics of light-
induced large deformation in structures of any shape. Optomechanics
combines electrodynamics of light and nonlinear mechanics of
elasticity. For a soft dielectric with no special optical effects, its
optomechanical behavior is fully specified by three material con-
stants: the permittivity, permeability, and shear modulus. Struc-
tures made of soft dielectrics are sensitive to geometry, creating

an enormous space for innovation in conceptual design, computa-
tion, and fabrication.

Optical forces enable two-way, light–structure interaction. A
structure shapes a light, and the light deforms the structure. One
potential application of the optomechanics of soft materials con-
cerns using light to control light. For example, in the field of struc-
tural colors, a structure of a feature size comparable to optical
wavelength interacts with light through scattering, diffraction, or
interference [48–55]. One may use soft materials to make the
structures, and then use optical forces to deform the structures and
change the optical behavior. One can also conceive optical circuits
reconfigurable by optical forces. A second potential application
concerns the transduction between light and other stimuli. Many
soft materials deform in response to stimuli such as stress
[53–55], electric field [26,51], and acidity and humidity
[27–29,52]. Thus, the deformation of soft materials enables the
transduction between stimuli of different types. It is conceivable,
for example, that devices can be created using ordinary soft
dielectrics to perform optochemistry. We hope that the theoretical
ideas developed here will aid in the creation of devices using
light-induced large deformation.
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