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Abstract 

The state of polarization vortices within a ferroelectric nanoparticle could be affected by the 

long-range electrostatic and elastic interactions from the neighboring particles. Phase field 

simulations were conducted to investigate the stability of polarization vortices within two 

interacting ferroelectric nanodots embedded in a non-ferroelectric medium. The interaction 

between these two nanodots can be neglected if the intermediate distance is larger than a critical 

distance, whereas the interaction becomes visible once the distance is smaller than that. Two 

separate vortices were observed to merge into one single vortex once an extreme state of perfect 

contact condition has been virtually achieved.  
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Ever since the concept of toroid moment order in low-dimensional ferroelectric 

nanostructures was brought forward by first-principles-derived simulations [1], there has been 

great interest in its potential applications to next generation high density data storage 

technologies [1-3]. It’s been observed numerically and experimentally that non-uniform vortex 

states of polarizations tend to form in finite-size ferroelectrics [1, 4-7] i.e., nanodots, nanodisks, 

nanorods, nanowires, etc, to reduce the depolarization energy. Such bistable vortex states of 

polarization are switchable [8-10], and therefore could be used to represent binary signals in 

ultra-high density data storage devices that consist of dielectric mediums with series of embedded 

nanoscale ferroelectric units. 

Although the number of experimental reports is still limited, theoretical investigations on the 

dynamics of vortex polarization states have been carried out through different approaches, such 

as first-principles-derived effective Hamiltonian methods [1], first-principles 

density-functional-theory-based methods [5], and Ginzburg-Landau-theory-based 

phenomenological approaches [4]. It’s been observed that the configurations of the polarization 

vortex states are highly dependent on certain factors, such as the nanostructure size [4, 11], the 

long range interactions [12], the intrinsic surface tension [13], and specific electromechanical 

boundary conditions [8, 14]. 

Among many fundamental problems, the stability of single polarization vortex state within a 

ferroelectric nanoparticle is of great importance to the design of related high density data storage 

devices. For instance, a memory system can be designed to consist of organized ferroelectric 

nanodots that are embedded in a non-ferroelectric medium, e.g., a dielectric thin film. The 

capacity of such system depends on the average space between each embedded ferroelectric 
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unit. Since the possibility exists for polarization vortex state in each nanodot to be affected by the 

long-range electrostatic and elastic interactions from the neighboring units, one needs to 

understand the mechanism of interaction between adjacent ferroelectric nanoparticles to assure 

the stability of the vortex structures within. 

In this letter, the stability of vortex structures of polarization due to the interaction between 

adjacent ferroelectric nanodots was numerically investigated. We consider two separate 

ferroelectric nanodots, with a certain distance from each other, that are embedded in a 

non-ferroelectric medium. In order to study the effects on the stability of polarization vortex 

brought by the interaction between these two nanodots, a phenomenological phase field approach 

has been employed to conduct three-dimensional (3D) simulations on the dynamics of 

polarization states within the system. In this phase field approach, the components of 

spontaneous polarization iP  are taken to be the order parameters. The total free energy of the 

system takes the form of ,( , , , )ij i i i jF E P Pε , where ijε  (i,j=1,2,3) are the components of strain 

tensor, iE  the components of electric field vector, and the subscript “, j” represents partial 

differentiation with respect to the xj coordinate direction. The temporal evolution of the polarization 

can be calculated from the following time-dependent Ginzburg–Landau equation 
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where L  is the kinetic coefficient, (r, )iF P tδ δ  represents the thermodynamic driving force for 

the spatial and temporal evolutions of the simulated system, r  denotes the spatial vector  

1 2 3r ( , , )x x x= , and t is time. The total free energy F  can be generally expressed as [15, 16] 

Lan ,[ ( ) ( ) ( , ) ( , )]i grad i j elas ij i elec i i
V
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where Lanf  is the Landau free energy density, gradf  is the gradient energy density that gives the 

energy penalty for spatially inhomogeneous polarization, elasf  denotes the elastic energy density, 

and elecf  represents the self-electrostatic energy density. A detailed description for the terms of 

free energy in Eq. (2) and the related coefficients can be found in Ref. [4, 15]. In addition to Eq. (1), 

the mechanical equilibrium equation , 0ji jσ =  and the electrostatic equilibrium equation 

2 2 2 2 2 2

0 11 1 22 2 33 3 1 1 2 2 3 3( / / / ) / / /x x x P x P x P xε κ φ κ φ κ φ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂  must be satisfied for a given 

polarization distribution, where ijσ  are the components of stress, φ  the electrostatic potential, 

0ε  the dielectric constant of vacuum and ijκ  the components of relative dielectric constants of 

the material. The mechanical equilibrium equation can be solved analytically by employing the 

general eigenstrain theory for a given polarization distribution under the periodic boundary 

condition [15, 17]. The electrostatic potential is obtained by solving the electrostatic equilibrium 

equation [16]. In the electrostatic equilibrium equation, by assuming 0=ijκ  when ji ≠ , the 

relative dielectric constant matrix is diagonal [16]. This model is good for isothermal process 

below the Curie temperature only, and needs to be extended if temperature dependence is 

considered. The charge compensation is not considered in this work because the ferroelectric 

nanoparticles are embedded in an electrically insulating medium, corresponding to an ideal 

open-circuit boundary condition.  

 In order to investigate the interaction between two adjacent ferroelectric nanodots, a virtual 

experiment has been conducted through the above mentioned phase field simulation. The size of 

the overall simulated system, including two ferroelectric dots and the surrounding non-ferroelectric 

medium, is 128x128x64 discrete grids with a scale of nm5.021 =∆=∆ xx and nm25.03 =∆x . 

Specifically the size of the dots is 32x32x16 grids each. These two dots, aligned in 1x  direction 
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with an intermediate surface-to-surface distance of d, are then embedded in the non-ferroelectric 

medium. Periodic boundary conditions are set in all three directions for the outer boundaries of the 

surrounding medium. The interfaces between the ferroelectric nanodots and the surrounding 

medium are assumed to be coherent. Zero boundary condition, i.e. P=0, is used for spontaneous 

polarizations at the interfaces. The material constants adopted in the present simulations are the 

same as those used in Ref [16]. The elastic and dielectric constants of the non-ferroelectric 

medium are assumed to be the same as those of the ferroelectric nanodots such that the solutions 

to the mechanical and electrostatic equilibrium equations can be obtained analytically [16, 17]. 

The semi-implicit Fourier-spectral method [18] is employed to solve Eq. (1). A constant room 

temperature is assumed throughout the numerical experiment. 

Phase field simulation was then conducted on the above mentioned geometric model. One 

can refer to Ref [4] for typical 2D and 3D polarization distribution in one of the nanodots. It is 

noticed in Ref [4] that the polarization distribution is 3x -independent. Therefore our attention is 

mainly given to the effects on polarizations in 1 2-x x  plane for all simulation results. Fig. 1(a1)-(a2) 

shows the polarization distribution in 1 2-x x  plane within two nanodots that are separated by a 

distance of d=16nm. It is noticed that the toroidal distributions of the polarization remain the same, 

meaning that the interaction between the two vortices is negligible. But once the distance is 

gradually decreased, the interaction effect on the vortex structures becomes visible. Fig. 1(b1)-(b2) 

shows such scenario after the distance d is decreased to 4nm. It is observed that the polarization 

vectors near the far ends of the two dots do not have significant change, whereas the 

polarizations in the area closer to the adjacent interfaces start to deviate from the original 

distribution. The P1 component has an increase at the upper and lower corner of the adjacent 
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interfaces and the corresponding P2 component has been significantly reduced. Such changes 

can be easily identified by looking at the contour plots for P2 component in Fig. 1(b1)-(b2). Once 

the distance d is further reduced to 1nm, the interaction effect becomes stronger and more 

obvious as shown in Fig. 1(c1)-(c2). For such a tiny gap between the two nanodots, the interaction 

has significantly affected the polarization distribution in the areas closer to the adjacent interfaces. 

The polarizations within the affected areas have mostly evolved to be parallel to 1x  direction. The 

centers of vortices have also shifted to be closer to the adjacent interfaces. To have a closer look 

at the polarization distribution near the interacting interfaces, the P1 component of polarization in 

the left dot along its right interface has been plotted in Fig. 2 for different intermediate distances 

from 0 to 48nm. It’s been observed that the values of P1 are antisymmetric about the centerline 

parallel to 1x  direction, and the magnitude increases as the two dots are getting closer. No visible 

change of P1 is observed once the distance is greater than 16nm. The normalized toroidal 

moment G of the dots are plotted as a function of the normalized intermediate distance in Fig. 3. It 

is noticed that the magnitude of G has an apparent change once the distance is less than 16nm.   

Fig. 2 and Fig.3 together demonstrated that the vortex structures are not stable once two separate 

ferroelectric nanodots get close enough to each other, and the critical distance is around 16nm, 

which is equivalent to the dimension of a single dot. The long-range (or nonlocal) electrostatic and 

elastic interactions of spontaneous polarizations and strains will cause significant interaction 

between the adjacent nanodots via the non-ferroelectric medium. 

It is imaginable that the interaction will get even stronger once the two dots are positioned 

even closer. One extreme case would be that the two adjacent dots are in perfect contact and the 

intermediate gap vanishes. To demonstrate the states of polarization vortices within two nanodots 
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in perfect contact, these nanodots are virtually positioned together without intermediate dielectrics 

in between. Each nanodot possesses its own vortex structure of polarizations at the initial stage 

as shown in Fig. 4(a). It is noticed that 180º polarization jump exists at the interface area. Such 

configuration is of course not stable and will relax during the following computing steps as shown 

in Fig. 4(b) and Fig. 4(c) until an equilibrium state is reached as shown in Fig. 4(d). It’s been 

noticed through Fig. 4(a)-(c) that the double-vortex configuration will gradually evolve to a 

single-vortex structure, which has been discussed in Ref [11]. According to the computational 

results in Fig. 4, one understands that the contact of two ferroelectric nanodots might cause the 

vortex structure in each individual dot to disappear, leading to loss of data during the application of 

data storage. It should be noted as well that the transfer from double-vortex to single-vortex 

configuration happens only if the vortices are in the same vortical directions at the initial stage. If 

the vortical directions are different, then a double vortex configuration will remain in the nanodots 

that are in perfect contact. This is because a double-vortex configuration with opposite vortical 

directions is energetically favored, and will remain stable in the system [11].   

In summary, phase field simulation has been conducted to investigate the interaction of two 

ferroelectric nanodots that are embedded in a non-ferroelectric medium. It’s been shown in this 

letter that the interaction between two adjacent dots will affect the stability of polarization 

distribution within. Via the intermediate dielectrics, the long-range electrostatic and elastic 

interactions of spontaneous polarizations and strains will cause deviations of the polarizations in 

the nanodots from the original vortex distribution near the adjacent interfaces. The strength of 

such effect is depending on the intermediate distance between the dots. A critical distance of 

32-grid (equivalent to the dimension of a single dot) is determined from the computational results. 
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The interaction can be neglected when the distance is larger than the critical distance, whereas 

the interaction effect becomes stronger and more visible as the intermediate distance decreases 

below the critical distance. Finally, a perfect contact condition has been achieved by virtually 

positioning the two nanodots together without intermediate dielectrics. It’s been observed from the 

simulation results that the double-vortex configuration, with the same vortical direction, is not 

stable in the double-dot-in-contact system and will eventually evolve to a squeezed single-vortex 

structure. The simulation results presented in this letter suggest that the interactions among 

nanoscale ferroelectric units should be carefully considered while designing ferroelectric 

nanostructure reinforced data storage devices, and contact between adjacent functional units 

should be highly prohibited.        
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List of Figure Captions 

 

1. The steady states of the vortices within two adjacent nanodots with different intermediate 

distances: (a1)-(a2) d=16nm; (b1)-(b2) d=4nm; and (c1)-(c2) d=1nm (The subscripts 1 and 2 

denote the left and right dots, respectively). The contour plots indicate values of normalized 

polarization component P2. The characteristic polarization is set as P0=0.757 Cm-2. 

2. The normalized polarization component P1 along the right surface of the left dot in the 

double-dot system for different intermediate distances from 0 to 48 nm. The characteristic 

length is set as 0x =0.5 nm.  

3. The normalized toroidal moment G of the dots for different intermediate distances dx1. The 

toroidal moment of polarization is defined as dV
V V∫ ×= PrG
1 . The characteristic moment is 

defined as G0 =r0P0=1nmx0.757C/m2=0.47e/Å, in which r0 and P0 are the duple characteristic length 

and the characteristic polarization, respectively. 

4. The dynamics of the vortex structures within two nanodots that are in perfect contact: (a) Initial 

state; (b) the state after 600 time steps; (c) the state after 800 time steps; and (d) the final state 

in equilibrium where two vortices merge into one single-vortex structure. The contour plots 

indicate values of normalized polarization component P1. 
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Fig. 2 
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Fig. 3 
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Fig. 4 


