Predicting high cycle fatigue life with unified mechanics theory

Hsiao Wei Lee, Cemal Basaran*

Department of Civil, Structural and Environmental Engineering, University at Buffalo, USA

ARTICLE INFO

Keywords:
Entropy
Unified mechanics theory
Microplasticity
Thermodynamics
Metal fatigue
Void evolution
Failure
Fracture

ABSTRACT

Fatigue life prediction of metals has been widely studied. However, most of the research is based on empirical models under the framework of Newtonian mechanics, that relies on experimental fatigue data for curve fitting a degradation evolution function. Unified mechanics theory (UMT), on the other hand, unifies the universal laws of motion of Newton by incorporating the second law of thermodynamics directly into the Newton’s laws at the ab-initio level. UMT introduces an additional linearly independent axis called Thermodynamic State Index (TSI), which can have values between zero and one. Evolution along the TSI axis follows the Boltzmann’s entropy formulation and the thermodynamic fundamental equation of the material. As a result, governing differential equations of any system automatically include energy dissipation, and degradation evolution. The fatigue model presented here is pure physics based and does not require an empirical evolution function obtained by curve fitting to fatigue test data. However, it does require deriving analytical thermodynamic fundamental equations of the material based on the principals of physics. Thermodynamic fundamental equation for high cycle metal fatigue is derived in this study.

1. Introduction

A model based on the unified mechanics theory is introduced to predict high cycle fatigue life of metals. Fatigue life prediction with the unified mechanics theory eliminates the need for curve fitting an empirical evolution function to a fatigue test data. The simulation results are compared with test data. In unified mechanics theory, the degradation evolution is calculated along the thermodynamic state index (TSI) axis which is quantified by the thermodynamic fundamental equation of the material (Basaran, 2021). The coordinate values of TSI start at zero and end at one. Thermodynamic fundamental equation provides the entropy generation quantity in the material under a given load. Based on this entropy value a new coordinate is calculated according to normalized form of Boltzmann’s entropy formulation of the second law. (Basaran, 2021; Boltzmann, 1877).

There are six mechanisms that generate entropy during high cycle metal fatigue. These are: configurational entropy, ΔS_c, vibrational entropy, ΔS_{vib} (Kelly et al., 2012; Abbaschian and Reed-Hill, 2009; Fultz, 2010), the entropy generation due to vacancy concentration gradient driven diffusion, ΔS_v (Basaran and Lin, 2008; Li et al., 2009), the entropy from heat conduction, ΔS_T (Basaran, 2021), the entropy generation due to atomic-friction-generated heat, ΔS_μ (Basaran, 2021), and finally the entropy generation due to micro-plasticity (Lemaitre et al., 1999; Doudard et al., 2005; Charkaluk and Constantinescu, 2009; Fan et al., 2018) ΔS_μ. Because entropy is an additive property, we can write the thermodynamic fundamental equation for the total entropy production as follows,

$$\Delta S = \Delta S_c + \Delta S_{vib} + \Delta S_v + \Delta S_T + \Delta S_\mu$$

Since microplasticity is one of the most important entropy generation mechanism in the current study, in the following we introduce some of the recent published research works about microplasticity theory.

(Mozafari et al., 2020) developed a thermodynamically-consistent rate-independent small strain based plastic constitutive theory to capture the inelastic microplastic work dissipation. In their paper, they derived the non-negative rate of dissipation and the kinematic relation for plastic strain rate based on the complementary energy density and the second law of thermodynamics. A dimensionless function that incorporate the smooth transition from microplastic to macroplastic flow response is introduced and implemented to the flow rule and constitutive equation. For the fatigue life prediction, they use the fatigue fracture entropy (FFE) as the threshold to estimate the number of cycle to failure. The finite element simulation shows that their model can predict the fatigue life of P355NL1 material under different variable stress amplitude strain-controlled loading blocks (Ustrzycka et al., 2020). analyzed the fatigue crack initiation in cyclic microplasticity...
mechanisms. They assumed the action of local stress leads to the proceeding of damage growth, and the fluctuations of local stress are resulting from material inhomogeneities such as inclusions, grain boundaries, boundary asperities, cavities, etc. They proposed a damage growth model based on the critical plane concept model that account for local stress fluctuations, which are usually neglected in formulation of the damage models. A critical value of accumulation leads to the initiation of macrocracks (Teng et al., 2020a, 2020b, 2020c). Proposed a unified fatigue life calculation based on intrinsic thermal dissipation and microplasticity evolution. They used the heat diffusion equation to correlated the temperature measurement to intrinsic dissipation of the material within a unit time under high cycle fatigue. The microplastic strain amplitude is obtained based on the law of localization and homogenization, and a unified energy approach. Jiranidehi and Khonsari (2021) developed a statistical method to estimate the plastic strain energy during metal fatigue. In their study, the term microplasticity refers to the plastic behavior at micro-elements when nominal stress amplitude exceeds the microelement’s yield limit. They used a probability function to describe the microplastic behavior when the applied cyclic load is given. The strain in the micro-element [local strain] is calculated based on a Weibull distribution. By incorporating another probability function for meeting the von-misses criteria (a grain slips on at least five independent slip systems to deform and preserve shape continuity of the material’s crystal structure), the microplastic strain energy in each micro-element can be calculated (Edward et al., 2021). Measured the microplasticity in a lamellar TiAl alloy during high cycle tensile fatigue by high resolution digital image correlation strain mapping at several stress and cycle increments under different conditions. They suggested that for the design of advanced TiAl alloys for increased damage tolerance, a more uniform microplastic strain, accommodated by effective strain transfer at microstructural boundaries, is to be targeted.

However, our model does not require probability function to describe the microplastic behavior as Jiranidehi and Khonsari (2021), the analysis of fluctuation local stress at critical plane as (Ustrzycky et al., 2020), or derivation of a transition function from microplastic to macroplastic flow response as (Mozafari et al., 2020). Instead, in this paper the calculation of microplasticity that lead to entropy production is more similar to the two scale model shown in (Teng et al., 2020a, 2020b, 2020c). Nevertheless, the total intrinsic dissipation is derived on pure physics instead of doing the experimental thermal analysis.

In section 2, of this paper the unified mechanics theory is briefly introduced for readers who are not familiar with the theory. In section 3, thermodynamic fundamental equation is derived. More details of our microplasticity calculation will also be presented in this section. In section 4, the damage evolution formula is introduced and implemented in a MATLAB code to predict the fatigue life of a metal specimen under a high cycle fatigue. Simulation results are compared with test data.

2. Unified mechanics theory

Details of this theory are provided in Basaran (2021). Herein we provide a brief introduction. In Newtonian mechanics-based theory of elasticity, there is no dissipation, degradation mechanism, or irreversible process [entropy generation]. In theory of elasticity, it is assumed that deformation is reversible and the mechanism is 100% efficient from thermodynamic perspective. For example, according to Hooke’s Law, the strain of a spring of stiffness k subjected to load F is given by, \(\varepsilon = \Delta l / l_0 = \Delta F / k \). This strain is independent of age of the spring. In other words, if we consider spring as a thermodynamic system. It is assumed that efficiency of the system is 100%, which is a violation of the 2nd law of the thermodynamics.

However, it is well known that under a cyclic loading in linear elastic regime, any metal will still fatigue. Therefore, clearly the second law of thermodynamics is not violated. There is always irreversible entropy generation in any closed system, which is ignored in the Newtonian mechanics based theory of elasticity. If we apply a cyclic load on a metal within its elastic range [below the yield stress], the corresponding strain would always be the same at every cycle, according to the theory of elasticity. Because the second law of thermodynamics is not included in the universal laws of Newton directly. In summary, there is no entropy term or TSI axis in the formulation of the universal laws of motion by Newton. Moreover, in Newtonian mechanics the laws of thermodynamics are satisfied separately than laws of Newton [not in the same differential equation], (such as, satisfying the thermodynamic consistency using the Clausius-Duhem inequality). As a result, in Newtonian continuum mechanics derivative of displacement with respect to entropy is zero. In simple terms, for example Newton’s second law \(a = F/m \) gives initial acceleration of a ball. Laws of thermodynamics must be used and formulated separately to calculate the distance ball will travel. In unified mechanics this information is automatically included in the second law of the unified mechanics theory. No separate calculation is needed.

The concepts of thermodynamics can be traced back to 1850, when Rudolf Clausius (1850) and William Thompson (Kelvin) (Thomson, 1853) formulated both the first and second laws of thermodynamics. The first law is the conservation of energy. The second law is the entropy law. It states that in a natural process, the sum of the entropies of the interacting systems increases; The entropy of an isolated system never decreases. That is, there is a natural tendency of any isolated system, living or non-living, to degenerate into a more disordered state. When irreversible entropy generation rate becomes zero the system reaches thermodynamic equilibrium. If we regard the specimen as a thermodynamic system, when irreversible entropy generation rate becomes zero the specimen fails, (Basaran, 2021; Callen, 1985).

In statistical mechanics, entropy is an extensive property of a thermodynamic system. It is related to the number of microstructural configurations (a.k.a microstates) that are consistent with the macroscopic quantities and boundary conditions that characterize the system. The logarithmic connection between entropy and disorder state was first given by Max Planck in 1900 (Planck, 1900). The statistical interpretation of entropy is given by

\[
S = k_b \ln W
\]

(2)

In which \(S \) is the entropy, \(k_b \) is the Boltzmann constant and \(W \) is the disorder parameter. Entropy of any system can be calculated from thermodynamic fundamental equation, (Basaran, 2021) (Callen, 1985). The second law states that in any isolated system W has a natural tendency to evolve into a more disordered state. When maximum disorder is reached, the system is in thermodynamic equilibrium. In unified mechanics theory laws of Newton and laws of thermodynamics are unified at ab-initio level. As a result in addition to Newtonian x, y, z, time coordinates system, there is an additional fifth axis called Thermodynamic State Index (TSI) axis, which is linearly independent. As a result, derivative of displacement with respect to entropy is not zero as in Newtonian mechanics. In unified mechanics theory, in addition to nodal displacements, the entropy generation rate is also necessary at each increment to relate microstructural changes in the material with spatial and temporal coordinates.

After formalizing the concepts described above mathematically, Newton’s second and third laws are unified with the second law of thermodynamics. Following laws of the unified mechanics theory are established (Basaran, 2021)

The second law, \((1 - \phi)F \, dt = d(mv) \)

(3)

The third law, \(F_{tsi} = \frac{dE_{tsi}}{dt} \)

(4)

where, \(\phi \) is TSI, \(F_{tsi} \) is the acting force, \(k_{tsi} \) and \(u_{tsi} \) are the stiffness and change in length of the reacting system.
Thermodynamic State Index (TSI), \(\varphi \), is given by
\[
\varphi = \varphi_c \left[1 - \exp\left(-\frac{m_k \Delta s}{R} \right) \right]
\]
(5)

where
\[
\varphi_c = \text{Factor of safety}
\]
(6)

In equations (5) and (6), \(\varphi_c \) is a user-defined critical value of TSI, \(\Delta s \) is the change in specific entropy, \(m_k \) is the molar mass, and \(R \) is the gas constant. When a material is in ground (reference) state, it is assumed to be free of any possible defects. It can be assumed that “damage” in a material is equal to zero. Therefore, TSI will be \(\varphi = 0 \). However, \(\varphi \) does not have to be taken as zero initially. In the final stage, material reaches an asymptotic thermodynamic equilibrium state. At this stage, entropy production rate will become zero, and \(\varphi = \varphi_c \). The purpose of \(\varphi_c \) is to adequately capture the specimen’s critical states of interest. For example, in the electromigration analysis of microelectronics solder joint, \(\varphi_c = 0.10 \) is used because 10% change in electrical resistance is considered failure in microelectronics. (Basaran et al., 2009). Unlike electromigration analysis of the solder joints, we set this \(\varphi_c \) value to a pre-defined value or simply set it as 1 for the fatigue analysis.

Fig. 1 shows the coordinate system in the unified mechanics theory. It is important to emphasize that in the new coordinate system derivative of displacement with respect to entropy is not zero because TSI is a linearly independent axis.

Since, 1998 (Basaran and Yan, 1998) the concept of using entropy as a damage metric to predict fatigue life has been extensively used for thermal, mechanical electrical loading and corrosion-fatigue, but never for high cycle fatigue [linear-elastic loading] (Basaran and Lin, 2008). (Li et al., 2009), (Basaran et al., 2004a, 2004b, 2008, 2009; Basaran and Yan, 1998; Basaran and Nie, 2004; Yao and Basaran, 2012, 2013a, 2013b, 2013c; Basaran and Lin, 2007a, 2007b; Ye et al., 2004, 2006; Li et al., 2008a, 2008b; Mankarthadoki et al., 2020; Temfack and Basaran, 2015; Basaran and Chandaroy, 2000; Meh dizadehAhi and Khonsari, 2021; Hajshirmamadi and Khonsari, 2020; Imanian and Modarres, 2015; Wang and Yao, 2017, 2019; Young and Subbarayan, 2019; Yun and Modarres, 2019a, 2019b; Osara and Bryant, 2019; Egner et al., 2020; Ribeiro et al., 2020; Teng et al., 2020b; Naderi et al., 2019). Mathematical details of the unified mechanics theory (UMT) are available in the literature, hence, we do not find it necessary to provide any further details.

3. Derivation of thermodynamic fundamental equation for high cycle fatigue: Entropy generation mechanisms

The following assumptions are made in the study.

1. Applied maximum stress is below the yield stress of the material hence no macroscopic plastic deformation is expected.
2. A mechanism called micro-plasticity is expected to happen at some defect sites at micro-level (Lemaître et al., 1999; Doudard et al., 2005; Charkaluk and Constantinescu, 2009; Fan et al., 2018).
3. Point defects, including atomic vacancies, interstitials, and impurities, can be built-in with the original crystal growth or created by energy input during fatigue process.
4. Input mechanical energy increases atomic vacancies and dislocation densities. However, the increasing dislocation density only causes hardening in the micro-level and never induces macroscopic plastic deformation as the maximum applied stress is below the metal’s yield stress. The vacancy generation/diffusion and dislocation motion(e.g. cross slip) around inclusions induce irreversibility at a micro-level in elastic cyclic loads. (Callister and Rethwisch, 2018; Marti et al., 2020; Mughabghi, 2009, 2013; Ho et al., 2017).
5. Vacancy concentration gradient in the specimen will result in vacancy diffusion and temperature gradient in the specimen result in thermomigration.
6. Temperature evolution in the specimen is determined by atomics-friction-generated heat, heat conduction, microplastic work and thermoelastic damping.

3.1. Configurational entropy generation

The micro-mechanisms in the crystal include the rearrangement of atoms which result in entropy production during the elastic fatigue loading. (Kelly et al., 2012) (Abbaschian and Reed-Hill, 2009).

Starting from Boltzmann’s entropy equation for entropy \(S = k_B \ln W \) (Boltzmann, 1877) (Planck, 1900), in which \(k_B \) is the Boltzmann constant and \(W \) is disorder parameter that describes the probability that the system will exist in the state it is in relative to all the possible states it could be in (Basaran, 2001) (Planck, 1900) (Basaran and Nie, 2004). We note that actually, this form of the Boltzmann equation is due to Plank (Planck, 1900). The configurational entropy \(S_c \) is a concept from statistical thermodynamics that use the binomial distribution formula (N is the number of lattice sites and \(n \) is the number of vacancies) \(N! \) to replace the disorder parameter \(W \), which is derived in the following form (Boltzmann, 1877) (Kelly et al., 2012) (Abbaschian and Reed-Hill, 2009) (Planck, 1900):

\[
S_c = k_B \ln \left(\frac{N!}{(N-n)!n!} \right)
\]
(7)

Atomic vacancies, defects, result from missing atoms from their original lattice sites. These vacancies are rearranged due to thermally activated transport. The variation of \(\Delta S_c \) from temperature state 1 to temperature state 2 is given by,

\[
\Delta S_c = k_B \ln \left(\frac{N!}{(N-n_2)!n_2!} \right) - k_B \ln \left(\frac{N!}{(N-n_1)!n_1!} \right)
\]
(8)

where \(n_1 \) and \(n_2 \) are the number of vacancies at temperature state 1 and state 2, respectively. Equation (8) can further be derived into the following form

\[
\Delta S_c = k_B \left[C_{21} \cdot \ln \left(\frac{1 - C_{21}}{C_{22}} \right) - C_{11} \cdot \ln \left(\frac{1 - C_{11}}{C_{12}} \right) \right]
\]
(9)

In which \(C_{11} \) and \(C_{22} \) are the thermodynamic equilibrium vacancy concentration at temperature state 1 and state 2, respectively.

Fig. 1. Coordinate system in unified mechanics theory (Basaran, 2021).
3.2. Vibrational entropy generation

The vibrational entropy is also a concept from statistical thermodynamics [or physical chemistry] that replaces disorder parameter W with the phase state of the atoms as they vibrate, which is defined by momentum and position coordinates (Fultz, 2010) (Atkins Paulaet al, 2018; Wollenberger, 1996; Laughlin and Hono, 2014). The vibrational state of the atoms change when vacancies are created. There are various models proposed to precisely calculate vibrational entropies when certain number of vacancies are removed, (Mishin et al., 2001). In this research we simply assume the variation of vibrational entropy is the same when each atomic vacancy is created (Abbaschian and Reed-Hill, 2009) (Burton, 1972). Therefore the total vibrational entropy in the system is given by,

$$ S_{vib} = n \Delta S_v $$

(10)

In which n is the number of vacancies created and ΔS_v is the variation of vibrational entropy when one atomic vacancy is created.

The variation ΔS_{vib} is

$$ \Delta S_{vib} = (n_2 - n_1) \Delta S_v $$

(11)

Comparing configurational entropy and vibrational entropy magnitudes.

The parameters necessary to calculate the configurational and vibrational entropy magnitudes are listed in Table 1.

Entropy calculations for these two mechanisms are based on the number of vacancies [or the vacancy concentration], which is related to the temperature at that state. If we assume that after several cycles, temperature in the metal increases from $T_0 = 298K$ to $T_f = 398K$, we can calculate the evolution of ΔS_c and ΔS_{vib}. Fig. 2, shows configurational entropy as a function of temperature. Fig. 3, shows vibrational entropy as a function of temperature.

3.3. Entropy generation due to vacancy concentration gradient driven diffusion

During fatigue process concentration of vacancies in the metal are not uniform. As a result, there is a vacancy concentration gradient. Vacancy concentration gradient driven diffusion and thermo-migration are governed by the vacancy conservation equation (or mass conservation), (Basaran and Lin, 2007a; Ye et al., 2004, 2006). Concentration of atomic vacancies should be higher around the edge and lower around the center for specimen with a round cross-section (cracks usually develop from outside to inwards), hence cause the vacancy diffusion.

The entropy generation from vacancy gradient driven diffusion ΔS_d is extensively studied (Basaran and Lin, 2008), (Li et al., 2009), (Basaran et al., 2004a, 2004b, 2008; Basaran and Lin, 2007b; Li et al., 2008b; Yao and Basaran, 2013a, 2013b, 2013c). It is given by:

$$ \Delta S_d = \int_{t_0}^t \left(\frac{C_v D_v}{k_B T^2} \left(\frac{Q}{T} \nabla T + \frac{k_B T}{c} \nabla c_v \right)^2 \right) dt $$

(12)

where k_B is the Boltzmann constant, C_v is the thermodynamic equilibrium vibrational entropy for bcc crystals

Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avogadro’s number</td>
<td>N_A</td>
<td>atoms/mol</td>
</tr>
<tr>
<td>Atomic weight</td>
<td>ρ_{atm}</td>
<td>g/mol</td>
</tr>
<tr>
<td>Density of steel</td>
<td>ρ_{vmd}</td>
<td>g/cm^3</td>
</tr>
<tr>
<td>Vacancy formation energy for Fe</td>
<td>Δh_f</td>
<td>eV</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>k_B</td>
<td>eV/K</td>
</tr>
<tr>
<td>Vibrational entropy for bcc crystals</td>
<td>Δs_v</td>
<td>$k_B/atom$</td>
</tr>
</tbody>
</table>

Fig. 2. Configurational entropy $(J K^{-1} m^{-3})$ versus temperature evolution.

Fig. 3. Vibrational entropy $(J K^{-1} m^{-3})$ versus temperature evolution.

Fig. 4. an illustration of vacancy gradient.
increased to 398 K. We assume the vacancy concentration at the center is ten times smaller than at the edge, Fig. 4. The thermodynamic equilibrium vacancy concentration C_v can be calculated by

$$C_v = \exp\left(\frac{TD_S - \Delta h}{k_BT}\right)$$ \hspace{1cm} (13)

The vacancy concentration at room temperature (298 K) and at 398 K can be obtained as follows

$$C_{v,398K} = 3.25 \times 10^{-13}$$
$$C_{v,298K} = 6.1 \times 10^{-18}$$ \hspace{1cm} (14)

The normalized vacancy concentration c and normalized vacancy gradient are therefore given by

$$c_{\text{edge}} = C_{v,398K}/C_{v,298K}$$
$$\nabla c = (c_{\text{edge}} - c_{\text{center}})/1cm = 3.5 \times 10^6 m^{-1}$$ \hspace{1cm} (15)

The effective vacancy diffusivity D_v is given by

$$D_v = D_0 \exp\left(-\frac{Q}{RT}\right)$$ \hspace{1cm} (16)

For BCC iron (α-Fe), $D_0 = 2.8 \times 10^{-4} m^2/s$, activation energy $Q = 251 kJ/mole$, $R = 8.3145 \frac{kJ}{mol K}$ (Brandes and Brook). At 398 K, $D_v = 10^{-13} m^2/s$.

We can calculate the value of equation (12) as follows

$$\dot{S}_T = \frac{2.35 \times 10^{-13} \times 3 \times 10^{-37} J/K \times 398K}{1.38 \times 10^{-23} J/K \times (398K)^{3/2}} = 8 \times 10^{-91} JK^{-1}s^{-1}$$ \hspace{1cm} (17)

From the result of equation (17), it can be concluded that the entropy generation due to mass transport is negligible compared to other mechanisms.

3.4. Entropy generation due to heat conduction

In metal high cycle fatigue, a temperature gradient in the specimen which causes an irreversible heat flow across different temperature field is usually expected (Xue et al., 2008). The entropy generation equation is given by (Basaran, 2021) (Teng et al., 2020a), (Basaran et al., 2004b, 2008; Basaran and Lin, 2007b; Li et al., 2008b; Yao and Basaran, 2013a, 2013b, 2013c)

$$\Delta S_T = -\int_{t_i}^{t_f} \left(k \nabla T \cdot \nabla T / T^2 \right) dt$$ \hspace{1cm} (18)

where k_b is coefficient of heat conduction, ∇T is the temperature gradient. Again, in order to calculate the order of magnitude of this entropy generation mechanism, we assume a simple one dimensional temperature gradient $dT/\Delta x = 10 K/cm$ from the gage section to the grip section, Fig. 4. The thermal conductivity of steel is $K_b = 50 W/m$. After several cycles, if the temperature increases from $T_0 = 298 K$ to $T_f = 398 K$, and then maintain steady until near failure at around 1.4×10^5 cycles (operating frequency at 30 Hz). The evolution of ΔS_T for a specimen is shown in Fig. 5.

3.5. Entropy generation due to atomic-friction (scattering)-generated heat

The entropy generation due to atomic-friction-generated heat is given by (Basaran, 2021) (Callen, 1985) (Basaran and Nie, 2004)
3.6. Entropy generation due to micro-plasticity

The term micro-plasticity is used in two scale models, which was initially developed by (Lemaitre et al., 1999) and then reformulated by Doudard (Doudard et al., 2005). These researchers developed the micro-plasticity model to calculate the amount of micro-plastic strain during a high cycle fatigue. Then used the micro-plastic strain as a variable in an empirically function obtained from test data to predict the fatigue life. In our study micro-plastic strain is needed just to be able to calculate the amount of micro-plastic strain. We do not to use it as a variable in an empirically function obtained from test data to predict the fatigue life. In our study micro-plastic strain is needed just to be able to calculate the entropy generation. We do not to use it as a variable in an empirical curve-fit function to predict the fatigue life.

The fatigue regime in the material is investigated at macroscopic and microscopic scales independently. From the macroscopic view the material is deformed elastically during the elastic cyclic fatigue loading while from the microscopic view some micro-plasticity is activated because of high stress concentration at defects and localized dislocation slip planes (Lemaitre et al., 1999; Doudard et al., 2005; Charkaluk and Constantinescu, 2009; Fan et al., 2018).

The two scale model is based on a RVE (Representative Volume Element) and divides it into two parts: elastic matrix part and elastic-plastic inclusion part (see Fig. 8). The law of localization and homogenization is applied to deduce the relationship between macroscopic stress tensor and the microscopic stress and microscopic plastic strain. (Lemaitre et al., 1999) (Doudard et al., 2005) (Fan et al., 2018).

Microscopic stress tensor is given by,

\[
\sigma^\mu = \Sigma - 2\mu(1-b)\epsilon^\mu_p
\]

(20)

where \(\sigma\) is microscopic stress tensor, \(\Sigma\) is macroscopic stress tensor, \(\mu\) is the Lame’s constant, \(K\) is bulk modulus and \(\epsilon^\mu\) is microscopic plastic strain tensor.

Charkaluk and Constantinescu (2009) derived a modification of equation (20) using Kroner’s self-consistent scheme (Kroner, 1961). In the case of isotropic elastic behavior with a classically defined deviatoric plasticity, one can write the following relation,

\[
\epsilon^\mu = \Sigma - 2\mu(1-b)(1-f_e)\epsilon^\mu_p
\]

(21)

where \(f_e\) is the volume fraction of micro-defects experiencing micro-plasticity. Assuming that the material experiences the same elastic behavior at the mesoscopic and the macroscopic scale, the previous relation implies,

\[
\epsilon^\mu = E - [(1-f_e)(1-f_\text{sur})] \epsilon^\mu_p
\]

(22)

where \(\epsilon^\mu_p\) is the microscopic elastic strain tensor.

Charkaluk and Constantinescu (2009) report that, although it cannot exactly be correlated to the volume ratio, it is assumed that the relative surface ratio covered by the activated micro slip bands can be used to represent \(f_e\). For a low carbon steel which has a fatigue limit of 235 MPa, a value of \(f_e = 3\%\) is chosen for a stress amplitude of 180 MPa, a value of \(f_e = 10\%\) for a stress amplitude of 250 MPa and a value of \(f_e = 20\%\) for a stress amplitude of 300 MPa. However, these numbers taken from (Cugy et al., 2002) are purely empirical. We believe \(f_e\) may be calculated by dislocation dynamics simulations for a given initial defect ratio.

A computational scheme for the microplastic strain increment was proposed by Charkaluk and Constantinescu (2009), as follows

\[
\Delta \epsilon^\mu = \sqrt{\frac{2A_{\omega+1} - \sigma_{\omega+1}}{2(1-f_e)(1-f_\text{sur}) + \frac{1}{h}}} A_{\omega+1}^\star
\]

(23)

In which \(h\) is the hardening modulus, and \(A_{\omega+1}^\star\) is given by,
\[A_{m+1} = \text{dev}(\Sigma_m) - \left(2\mu(1-b)(1-f_v) + \frac{2}{3} h \right) \sigma_{\text{ps}} + \text{dev}(\Delta\Sigma) \]
\[b = \frac{6(K + 2\mu)}{5(3K + 4\mu)} \]

(24)

For the microplasticity model, linear kinematic hardening is utilized as a first approximation. The yield criterion is given by,

\[f = \sqrt{(S^\alpha - \alpha^\text{dev}) : (S^\alpha - \alpha^\text{dev})} - \frac{\mu}{\sqrt{3}} = 0 \]

(25)

and the hardening rule is given by

\[\alpha^\text{dev} = h g^\alpha \frac{1}{\sigma_{\text{ps}}} (\sigma^\alpha - \alpha^\text{dev}) = h \frac{2}{3} \left(\rho g / \dot{\rho} \right) \frac{1}{\sigma_{\text{ps}}} (\sigma^\alpha - \alpha^\text{dev}) \]

(26)

where \(S^\alpha \) is the microscopic deviatoric stress, \(\alpha^\text{dev} \) is the deviatoric part of the microscopic back stress, \(\alpha^\text{ps} \) is the microscopic equivalent plastic strain, \(\alpha_{\text{ps}} \) is the microscopic yield stress, \(\sigma^\alpha - \alpha^\text{dev} \) is the translational direction of the microscopic yield surface under Ziegler’s rule, \(h \) is the kinematic linear hardening modulus defined as the slope of the stress strain curve for a finite plastic strain value, \(h = (\sigma^\alpha - \alpha_{\text{ps}}) / \sigma_{\text{ps}} \).

The entropy generation due to microplasticity is given by (Basaran, 2021) (Basaran and Yan, 1998) (Basaran and Nie, 2004) (Mankarathodi et al., 2020) (Basaran et al., 2004a).

\[\Delta S_{\text{ip}} = \int \phi_{\text{ip}} \frac{\sigma^\alpha}{\tau} : \epsilon^\alpha \frac{d\tau}{d\epsilon} \]

(27)

In which \(\sigma^\alpha \) and \(\epsilon^\alpha \) are micro stress and strain rate tensors. During the microscopic plastic deformation, some plastic work is stored as dislocation stored energy. This stored dislocation energy is accounted for in the microscopic plastic deformation, some plastic work is stored in dislocation stored energy. This stored dislocation energy is accounted for in the microscopic plastic deformation, some plastic work is stored as dislocation stored energy. This stored dislocation energy is accounted for in the microscopic plastic deformation. This stored dislocation energy is accounted for in the microscopic plastic deformation, some plastic work is stored as dislocation stored energy. This stored dislocation energy is accounted for in the microscopic plastic deformation, some plastic work is stored as dislocation stored energy. This stored dislocation energy is accounted for in the microscopic plastic deformation, some plastic work is stored as dislocation stored energy. This stored dislocation energy is accounted for in the microscopic plastic deformation. This stored dislocation energy is accounted for in the microscopic plastic deformation. This stored dislocation energy is accounted for in the microscopic plastic deformation.

The TSI, \(f_v \), in \(\Delta S_{\text{ip}} = \int \phi_{\text{ip}} \frac{\sigma^\alpha}{\tau} : \epsilon^\alpha \frac{d\tau}{d\epsilon} \) is a metric of entropy evolution. It should be emphasized that \(f_v \) is not the percentage of coalesced cracks in the cross section. It is defined as the maximum percentage of dislocations slip planes that can be activated during microplasticity. We assume that the percentage of activated dislocations follow the evolution of thermodynamic state index.

Currently, we are unable to find any computational studies on the relation between \(f_v \) and stress amplitude. Moreover, there is no \(f_v \) data available obtained by microscopy for DP600 steel at hand. However (Torabian et al., 2017), performed a fatigue test on DP600 steel and published the results of fractography studies. The appearance of slip bands in ferrite grains on the surface of the specimen around gauge part under 30-Hz fatigue loading is shown in Fig. 10. The yellow arrows

Table 2

| Material parameters for DP600 steel (Charkaluk and Constantinescu, 2009) (Torabian et al., 2017). |
|---|---|---|
| | Youngs modulus | 210000 MPa | 440 MPa |
| | Hardening modulus | 1000 MPa | 260 MPa |
| | Macroscopic yield stress | 250 MPa | 260 MPa |
| | Microscopic yield stress | 440 MPa | 260 MPa |
| | Poisson’s ratio | 0.3 | 10 * 10^-6/C |
| | Thermal expansion coefficient | 0.3 | 10 * 10^-6/C |
| | Coefficient coefficients | 0.3 | 10 * 10^-6/C |
| | Heat capacity | 460 J Kg^-1 K^-1 | 460 J Kg^-1 K^-1 |
| | Time representative of the thermal exchanges, \(\tau_{\text{eq}} \) | 100 cycles | 15°C |

3.6.1. Calculating entropy due to micro-plasticity

In the following section, material constants for simulation are obtained from (Charkaluk and Constantinescu, 2009) (Torabian et al., 2017), and are given in Table 2.

The microscopic yield stress in this microplasticity model (Charkaluk and Constantinescu, 2009) (Torabian et al., 2017) is the mean fatigue limit of the specimen. It is assumed that no microplasticity occurs below the macroscopic fatigue limit, (Lemaitre et al., 1999).
indicates the slip bands, which are estimated to be around 10% of the observing surface. We use this $f_v = 10\%$ as a constant value for the calculation of stress and strain localizations in our study (Charkaluk and Constantinescu, 2009). report that the f_v value may be a material constant. However currently there is not enough experimental data to support this assumption. For specimen made of same material but with different geometry and dimensions, we believe that fractography studies for individual cases are necessary.

It should be noted that the microplasticity calculation in this subsection is based on the following assumptions:

1. The hardening behavior of the material is approximated by a bilinear kinematic hardening curve. Hardening modulus is defined as the slope between (lower yielding strength) LYS and UTS(ultimate tensile strength) from the stress strain curve, as a first approximation.
2. The microscopic hysteresis loops are stabilized and they are the same at each defect site. The evolution of TSI, ϕ, from 0 to 1 only induces microplasticity at more defect sites.
3. The energy dissipation due to kinematic hardening at microplasticity sites is small enough to be ignored (Naderi et al., 2010).

The hysteresis loop for one cycle at defect location calculated by equations 21–26 is shown in Fig. 11. The entropy production due to microplasticity for a specimen undergoing 1.4×10^5 cycles (at a frequency of 30 Hz) is shown in Fig. 12.

3.7. Comparison between different entropy generation mechanisms

The order of magnitude of each entropy generation mechanism is summarized in Table 3.

From Table 3, it is observed that the configurational entropy and vibrational entropy generation mechanisms are around the same order of magnitude. They are very small compared to heat conduction and microplasticity. The diffusion mechanism and atomic-friction-generated heat are also very small. Furthermore, between the microplasticity and heat conduction, entropy generation due to microplasticity is two orders of magnitude bigger. Hence, we conclude that the total entropy production, the thermodynamic fundamental equation, can be simplified as

$$\Delta S = \Delta S_{\text{conf}} + \Delta S_{\text{vib}} + \Delta S_{T} + \Delta S_{\mu} + \Delta S_{\Phi} \approx \Delta S_{\mu}$$

(29)

Therefore, the thermodynamic state index of the unified mechanics theory can be given by,

$$\phi = \phi_{cr} \left(1 - \exp \left(-\frac{m}{10^4} \int_0^T \phi_{cr}^\mu \frac{e^\mu}{d^\mu} dt \right) \right)$$

(30)

In Equations (27) and (30) the reason to incorporate the TSI value into microplastic work is to account for the increasing probability of microdefects that emerge in the specimen during fatigue process.

Equation (30) is an exponential, hence, ϕ never reaches unity. In practice we determine a ϕ_{cr} as a threshold. In this paper, we consider the specimen is failed when ϕ reaches $\phi_{cr} = 0.995$, since the probability of reaching maximum entropy at this state is 99.5%.

4. Temperature evolution due to mechanical work

The absolute temperature T of the specimen plays an important role in metal high cycle fatigue life. We can expect to have different fatigue life prediction results if we control the temperature for the sample to achieve isothermal state. However, the degree of difference will depend on the isothermal temperature and thermodynamic equilibrium temperature of the sample. Because temperature gradient value controls the entropy generation rate in equations (12) and (18). Moreover, material properties are a function of temperature.

From the BCC ferrite grain point of view, the crack initiation mechanism can be divided to thermally activated mode and athermal mode. The transition between these two regimes is strongly dependent on strain rate and temperature (Torabian et al., 2017). For the high cycle fatigue of DP600 steel under conventional low frequency tension-compression loading (e.g. at 30 Hz) the strain rate is well below...
the transition strain rate, for all ranges of stress amplitude. Hence the deformation is expected to happen in athermal region, where the formation of slip bands in ferrite grains results in local stress and strain concentration that leads to trans-granular crack initiation, eventually surface failure.

However, this is not always the case for high cycle fatigue under ultrasonic vibration because of the significantly higher degree of temperature rise due to self-heating and the high strain rate.

We can simulate the temperature evolution in equation (30) for more precise simulation. The absolute temperature of the specimen is governed by the fully-coupled thermo-mechanical equation derived from classical continuum mechanics as follows, (Basaran and Nie, 2004):

$$k \nabla^2 T = \rho C \frac{\partial T}{\partial t} - \rho \nu \nabla \cdot \mathbf{e} - \rho \nu T \left(\frac{\partial \mathbf{e}}{\partial t} \right) + \left(A_1 - T \frac{\partial \nu}{\partial t} \right) \mathbf{V}_k$$

(31)

In which ρ is the density, $C = \frac{T}{\theta}$ is defined as specific heat, \mathbf{e} and \mathbf{e}' are elastic and plastic strain vectors, respectively, σ is the stress tensor, r is the strength per unit mass of the internal distributed heat source, and A_1 is a thermodynamic force associated with the internal thermodynamic variables, V_k.

Equation (31) can yield the evolution of temperature due to mechanical work with properly imposed boundary conditions. In order to simplify this equation, we can ignore plastic strain \mathbf{e}', internal distributed heat source r and other thermodynamic variables $A_1 V_k$.

These assumptions are justified, because:

1. We are investigating mechanical response under elastic loads only, as such there is no uniform plastic strain. However, the contribution from microplasticity is not neglected.
2. From section 3.5 we know the contribution of r is extremely small.
3. $(A_1 - T \frac{\partial \nu}{\partial t}) V_k$ represents the non-recoverable energy corresponding to internal coupling source (such as grain coarsening, phase transformation). However for metals this non-recoverable energy only represents 5–10% of the mechanical dissipation (plastic work) and is often negligible for high cycle fatigue (Naderi et al., 2010) (Teng et al., 2020c).

Therefore, equation (31) is simplified to the following expression

$$\rho C \frac{\partial T}{\partial t} - \nu \mathbf{e} - \rho \nu T \left(\frac{\partial \mathbf{e}}{\partial t} \right) = 0$$

(32)

If we ignore the thermal fluctuation due to thermoelastic damping, and simplify the conduction term as $- k_0 \nabla^2 T \approx \rho C \frac{\partial T}{\partial t}$, equation (32) can be written in the following time integration form

$$\rho C \frac{T_{n+1} - T_n}{\Delta t} - \nu \mathbf{e}_n - \rho \nu T_n \left(\frac{\partial \mathbf{e}_n}{\partial t} \right) + \frac{\rho C T_n - T_{eq}}{\tau_{eq}} = 0$$

(33)

Temperature evolution in the material is calculated at each cycle using equation (33).

The overall computation scheme is achieved in a coupled manner. We first assume a small starting ϕ value [use the equilibrium vacancy concentration] to calculate the microplastic work and TSI in the first step by equation (30), then use the obtained value to calculate the temperature increment in the next step by equation (33), and so on.

The entropy generated due to microplasticity is strongly affected by the stress amplitude. Fig. 13 shows the simulated temperature evolution for DP600 steel operating at 30 Hz for various stress amplitudes using equation (33). A rapid climbing stage followed by a steady state is observed. However, equation (33) cannot capture the rapid raising temperature when a specimen is near failure, when the temperature spikes.
equation (32), TSI is included in the equation of microplasticity entropy production to account for influence of microplasticity on entropy production. At the early stages there are too few microplasticity sites. Because microplasticity is the largest contributor to entropy generation, the corresponding TSI calculated by the entropy production is small at early stages. After a certain number of cycles, enough microdefects are activated hence more entropy is produced. The significant increase in entropy causes the sudden increase of TSI. This trend is similar to low cycle fatigue test data reported in the literature, (Mankarathodi et al., 2020) (Temfack and Basaran, 2015).

Simulation results obtained using the unified mechanics theory are shown in, Fig. 16, are compared with test data from (Torabian et al., 2017) are shown in Fig. 17. It shows that the predicted cycles to failure obtained from unified mechanics theory and the test data of (DP600) at 30 Hz loading frequency are matching reasonably well. Test data given in Fig. 17 shows expected scatter, especially at lower stress levels. It is very well known that fatigue test data is always stochastic. Unified mechanics theory, which is based on Boltzmann entropy formulation yields stochastic expected life.

5. Conclusions

Unified mechanics theory is used for predicting high cycle fatigue life of DP600 steel. The thermodynamic fundamental equation of metals under high cycle fatigue is derived. In the simulation, no empirical curve fitting function is needed for fatigue life prediction. The entropy generation due to atomic vacancy configuration, atomic vibration and mass transport are extremely small compared to entropy generation due to microplasticity. It was also assumed that entropy generation due to grain coarsening during high cycle fatigue is negligible.

The entropy generation due to microplasticity is the most dominant entropy generation mechanism. This mechanism can be visualized as a number of microplastic inclusions at localized defect sites inside an elastic matrix which has its own micro-stress, micro-strain based on laws of localization and homogenization. Energy is dissipated through the micro-plastic work at the locations of these inclusions. The number of inclusions increase as TSI \(\phi \) increases from 0 to \(\phi_{cr} \). Metal high cycle fatigue life prediction results based on the theory of unified mechanics are compared with experimental test data. It is shown that the prediction and test data match very well.

We should emphasize that micro-plastic strain has been used before as a variable to establish an empirical fatigue life function obtained from test data. However, no such empirical function is needed here.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements

All persons who have made substantial contributions to the work reported in the manuscript (e.g., technical help, writing and editing assistance, general support), but who do not meet the criteria for authorship, are named in the Acknowledgements and have given us their written permission to be named. If we have not included an Acknowledgements, then that indicates that we have not received substantial contributions from non-authors.

References

Basaran, C., Chandaroy, R., 2000. Using finite element analysis for simulation of centrically loaded things, then that indicates that we have not received substantial

...

