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Abstract. - In this letter we obtain the finite-temperature structure of 180◦ domain walls in
PbTiO3 using a quasi-harmonic lattice dynamics approach. We obtain the temperature depen-
dence of the atomic structure of domain walls from 0K up to room temperature. We also show that
both Pb-centered and Ti-centered 180◦ domain walls are thicker at room temperature; domain
wall thickness at T = 300K is about three times larger than that of T = 0K. Our calculations
show that Ti-centered domain walls have a lower free energy than Pb-centered domain walls and
hence are more likely to be seen at finite temperatures.

Introduction. – Ferroelectric perovskites have been
the focus of intense research in recent years because of
their potential applications in high strain actuators, high
density storage devices, etc. [1]. It is known that macro-
scopic properties of ferroelectrics strongly depend on do-
main walls, which are extended two-dimensional defects.
Any fundamental understanding of ferroelectricity in per-
ovskites requires a detailed understanding of domain walls
in the nanoscale (see [2] and references therein). Theoret-
ical studies of domain walls have revealed many of their
interesting features. From both theoretical calculations
and experimental works, it has been observed that the
thickness of domain walls can vary from thin walls, which
consist of only a few atomic spaces to thick walls, which
are in the order of a few micrometers. There have been
studies using ab inito calculations [3–5] and anaharmonic
lattice statics calculations [6] suggesting that ferroelectric
domain walls are atomically sharp. Hlinka and Marton
[7] analyzed 90◦ domain walls in BaTiO3-like crystals in
the framework of the phenomenological Ginzburg-Landau-
Devonshire (GLD) model and obtained domain wall thick-
ness of 3.6 nm at room temperature. Chrosch and Salje
[8] measured the domain wall thickness in LaAlO3 in the
temperature range 295−900 K by x-ray diffraction. They
observed that domain wall thickness increases from about
20 Å to 200 Å and that the variation of domain wall thick-
ness with temperature is linear at low temperatures. Using
scanning probe microscopy, Iwata et al [9] found complex
180◦ domain walls with thicknesses 1 − 2 µm in PZN-
20%PT. Lehnen et al [10] investigated 180◦ domain walls

in PbTiO3 using electrostatic force microscopy (EFM) and
piezoelectric force microscopy (PFM) and observed thick
180◦ domain walls at room temperature with thickness of
about 5 µm. Shilo et al [11] studied the structure of 90◦

domain walls in PbTiO3 by measuring the surface pro-
file close to emerging domain walls and then fitting it
to the soliton-type solution of GLD theory. Using this
technique they observed that the domain wall thickness is
about 1.5 nm but with a wide scatter. They suggested
that the presence of point defects within the domain wall
is responsible for such variations. Lee et al [12] provided
a model to investigate the effect of point defects on the
domain wall thickness. See also [13] for a similar study.

Domain walls have been studied using different tech-
niques in the atomic scale at T = 0K. However, one
would be interested to know how different the structure
and thickness of a 180◦ domain wall at room temperature
are compared to those at T = 0K. In this letter, we study
the structure of Pb and Ti-centered 180◦ domain walls in
PbTiO3 as a function of temperature in some detail. We
first start with the static configuration of domain walls
and iteratively optimize the free energy for a small tem-
perature, e.g. T1 = 5K. The optimized structure at T1

will be the reference configuration for a higher tempera-
ture T2 = T1 + ∆T . Continuing in this way we optimize
the structure of the domain wall up to T = 300K. This
temperature range is where quantum effects are impor-
tant and hence molecular dynamics simulations can not
be used. This is also the temperature range where quasi-
harmonic approximation is reasonable.
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Fig. 1: Reference configuration of a Ti-centered 180◦ domain wall shown in both the TiO2 and PbO planes. Note that cores
and shells on the domain wall have no relative shifts and cores and shells on the left and right sides of the wall have opposite
relative shifts.

Method of Calculation. – The geometry of a Ti-
centered 180◦ domain wall is shown in Fig. 1. The do-
main wall is in a (100)-plane and the polarization vector
is in the y-direction and changes by 180 degrees across
the domain wall. In this geometry, depending on which
cations are placed on the domain wall, two types of do-
main walls are possible: Pb-centered and Ti-centered. In
this work, we consider both types and calculate their fi-
nite temperature structures. For our calculations, we use
the shell potential developed by Asthagiri et al [14] for
PbTiO3. In this potential, each ion is described by a core
and a massless shell. The short range interactions be-
tween Pb-O, Ti-O and O-O shells are described by the
Rydberg potential Vsr(r) = (A + Br) exp(−r/C), where
A, B and C are potential parameters. The cores and
shells of each ion have Coulombic interactions with cores
and shells of all the other ions. The core and shell of
an atom interact by an anharmonic spring of the form
Vcs(r) = (1/2)k2r

2 +(1/24)k4r
4, where k2 and k4 are con-

stants.
The structure of a domain wall is calculated by an ana-

lytical free energy optimization method. This method was
developed by Kantorovich [15] and has been applied to var-
ious different systems, e.g. in [16–18]. We refer the reader
to these references for the complete details of the method.
A domain wall is an example of a defective lattice with a
1-D symmetry reduction [19, 20]. Here we briefly explain
the free energy optimization method exploiting symmetry
reduction. For more details see [21].

The multi-lattice of PbTiO3 can be partitioned into the

union of some 2-D equivalence classes that are parallel
to the domain wall. Therefore, we reduce the dimen-
sion of the problem from three to one, i.e., we can write
L =

⊔
I

⊔
α∈Z LIα, where L, LIα, and Z are the lattice,

2-D equivalence classes, and the set of integers, respec-
tively. Note that j = Jβ means that the atom j is in the
βth equivalence class of the Jth sublattice [19]. As an ap-
proximation similar to that of [22], we assume only a finite
number of neighboring equivalence classes, N , on each side
of the domain wall and assume the temperature-dependent
bulk configuration outside this region. Therefore, the size
of the effective dynamical matrix would be 15 × 2N . To
obtain the lattice structure around the domain wall at a
finite temperature, we minimize the Helmholtz free energy
F , calculated based on the quasi-harmonic approximation
with respect to the configuration

{
Xj

}
j∈L at a finite tem-

perature T . Note that away from the domain wall the two
half lattices approach their temperature-dependent con-
figurations. We can write the free energy of the defective
lattice F ≡ F ({Xj}j∈L, T

)
, as

F = E ({Xj}j∈L
)

+
∑

k

∑

i

{
1
2
h̄ωi(k)+kBT ln

[
1− exp

(
− h̄ωi(k)

kBT

)]}
,

(1)

where E is the total static energy of the lattice and ω(k)
is the frequency at wave number k ∈ B with B the first
Brillouin zone of the sublattices. Note that for calculating
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Fig. 2: The y-coordinates of Pb and Ti cores in the Pb-centered 180◦ domain wall as a function of temperature. LS denotes
the lattice statics solution.

Fig. 3: The y-coordinates of Pb and Ti cores in the Ti-centered 180◦ domain wall as a function of temperature. LS denotes the
lattice statics solution.

the derivatives of the frequencies, we exploit the analytical
method of Kantorovich [15].

For optimization of the free energy, we use the quasi-
Newton method with the Broyden-Fletcher-Goldfurb-
Shanno update for calculating the approximate inverse
Hessian in each step [23]. We should mention that to con-
verge to the optimized configuration, one should select an
initial configuration close to the solution. Thus, for cal-
culating a finite temperature configuration, we start with
a nominal configuration (see Fig. 1), which is obtained
by relaxing the bulk at temperature T = 0K, and then
using this bulk configuration with opposite directions of
core-shell shifts on the two sides of the 180◦ domain wall.
Then, we relax the nominal configuration and obtain the
lattice statics solution. Next, using the lattice statics so-
lution, we obtain the lattice configuration at zero temper-
ature and then we use temperature steps of ∆T = 25K,
and obtain the optimized configuration at a given finite
temperature. This way we observe that the quasi-Newton
method converges relatively fast. Assuming force toler-
ance of 0.05 eV/Å, our solutions converged after about

20 to 40 iterations depending on the temperature. Note
that we only assume periodicity of unit cells in the y- and
z-directions. In the x-direction we assume N unit cells
in each side of the domain wall and use the temperature-
dependent bulk configurations as the far field boundary
conditions. Our numerical experiments show that N = 12
would be enough to capture the atomic structure near the
domain walls up to T = 300K as we do not see changes in
the structure by choosing larger N . In our calculations,
we used a 1 × 3 × 3 k -point Monkhorst-Pack mesh [24].
Also for calculating the classical Coulombic potential and
force, we used the damped Wolf method [25].

Numerical Results for 180◦ Domain Walls. – Be-
cause displacements of core and shell of the same atom
are close, we only report the core displacements. Figure
2 shows the y-coordinates (tetragonal coordinates) of the
Pb and Ti cores relative to a Pb core on the Pb-centered
domain wall. Figure 3 shows the y-coordinates of the Pb
and Ti cores relative to a Ti core on the Ti-centered do-
main wall. In these figures ȳ = y − (c/2), where c is the
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temperature-dependent lattice parameter in the tetrago-
nal direction. The lattice parameters change with tem-
perature such that by increasing temperature, unit cells
transform from tetragonal to cubic [26]. Here to calculate
lattice parameters at a finite temperature, we separately
optimized the bulk lattice at that temperature. Note that
far from the domain wall, each half lattice approaches its
corresponding temperature-dependent bulk configuration.

In these figures, LS denotes the lattice statics solution
(static energy minimization). We observe that the lat-
tice statics solution and the configuration obtained by the
free energy minimization at zero temperature although
predicting nearly the same domain wall thicknesses, are
different due to the zero-point motions; the lattice stat-
ics method ignores the quantum effects. It is known that
zero-point motions can have significant effects in some sys-
tems [27]. Here we observe that zero-point motions affect
the Ti-centered domain wall more than the Pb-centered
domain wall; zero-point motions change the lattice statics
solutions by about 15% in the Pb-centered domain wall
and by about 50% in the Ti-centered domain wall. Since
the atomic displacements normal to the domain wall are
small (they are of order 10−2 Å) we do not report them
here. However, we will comment on them in the sequel.

Increasing the temperature from 0 to 300K, we observe
that the domain wall thickness increases from 1nm to
about 3nm. This qualitatively agrees with experimental
observations for 90◦ domain walls in PbTiO3 by Foeth
et al [29] and domain walls in LaAlO3 by Chrosch and
Salje [8] who observed that domain wall thickness increases
with temperature. They measured an average domain wall
thickness from room temperature up to the Curie temper-
ature. It is worth mentioning that from Ginzburg-Landau-
Devonshire theory, domain wall thickness is proportional
to |T −Tc|−1 [8], where Tc is the Curie temperature. This
means that for low temperatures domain wall thickness is
linear in temperature. We observe this linear behavior in
our numerical simulations. We should also mention that
a similar trend was observed in a lattice of dipoles [21].

Note also that domain wall thickness cannot be defined
uniquely very much like boundary layer thickness in fluid
mechanics. Here, domain wall thickness is by definition
the region that is affected by the domain wall, i.e. those
layers of atoms that are distorted. One can use definitions
like the 99%-thickness in fluid mechanics and define the
domain wall thickness as the length of the region that
has 99% of the far field rigid translation displacement.
What is important is that no matter what definition is
chosen, domain wall “thickness” increases by increasing
temperature.

Recently, it has been observed that there may be local
normal and transverse polarizations near domain walls.
For example, Goncalves-Ferreira et al [30] observed local
polarizations near domain wall of CaTiO3 (nonpolar ma-
terial) parallel and perpendicular to the wall plane. In our
simulations, for both Pb and Ti-centered domain walls we
observe that polarization in c-direction switches within a
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Fig. 4: Free energy of the domain walls as a function of tem-
perature.

few lattice spacings in the vicinity of the domain wall and
the polarization normal to the domain wall is about 2%
of the polarization in the c-direction. In particular, we
see that normal displacements are 5.0% and 8.0% of their
corresponding c-displacements in the Pb and Ti-centered
domain walls, respectively. This agrees with the results of
Lee, et al. [28] who observed non-zero displacements nor-
mal to the domain wall. In their calculations, polarization
normal to the domain wall in the Pb and Ti-centered 180◦

domain walls are 2.5% and 1.75%, respectively, of the bulk
polarization.

In Fig. 4, we have plotted the free energy per unit
cell, F̄ = F/(N × a × c), where N is the number of re-
laxed unit cells and a and c are temperature-dependent
lattice parameters, for the two types of domain walls. In
agreement with Meyer and Vanderbilt [3], we observe that
Ti-centered domain walls have a higher static energy, how-
ever we see that they have a lower free energy and hence
are the preferred domain wall configuration at finite tem-
peratures.

Concluding Remarks. – In this work we obtained
the finite-temperature structure of Pb and Ti-centered
180◦ domain walls in PbTiO3 using a quasi-harmonic lat-
tice dynamics method. Our numerical results are in good
agreement with experimental measurements. We observed
a strong dependence of structure on temperature. In par-
ticular, 180◦ domain walls at T = 300K are three times
thicker than those at T = 0K. We also observed that free
energy is a decreasing function of temperature and free
energy of a Ti-centered domain wall is always lower than
that of a Pb-centered domain wall and hence Ti-centered
domain walls are more likely to be seen at finite tempera-
tures.
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