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Multi-scale Analyses of 3D Woven
Composite Based On Periodicity

Boundary Conditions

X. F. WANG,* X. W. WANG, G. M. ZHOU AND C. W. ZHOU

College of Aerospace Engineering, Nanjing University of Aeronautics and

Astronautics, Nanjing 210016, P.R. China

ABSTRACT: In this article, two-scale 3D finite element (FE) models, the
microscopic repeated unit cell (RUC) model for yarn, and mesoscopic-repeated
unit cell model for woven composite, are presented to predict the effective stiffness
properties of 3D woven orthogonal interlock composites. The micro-RUC model
for the yarn is based on a hexagonal array of fibers. Undulation of the yarns in the
novel 3-D meso-RUC for the woven composite is described by Hermit-spline
function. The periodic boundary conditions are applied to the two-scale models
during the 3D FE analysis in order to ensure that both the displacement and stress
are continuous on the boundary surfaces. Specimens are manufactured with house-
made resin transfer molding (RTM) equipment and simple tensile experiment
is performed. It is found that the predicted yarn properties by the micro-RUC agree
well with data computed by equations with a suitable parameter determined
by experiment and the predicted effective stiffness properties of 3-D woven
composites by the meso-RUC are also in good agreement with the test data. Thus
the correctness of the established multi-scale models and analysis method are
verified.

KEY WORDS: 3D woven composite, multiple scale analyses, periodic boundary
conditions, experiment.

INTRODUCTION

T
HE 3D WOVEN composite is a spatial net-shape fabric, formed by interlacing binding
threads in the thickness direction to join layers of warp and weft together, and cured

with matrix under certain condition. The material is more advantageous than the plane
woven laminated composite for its high damage tolerance, high impact resistance, and
low fabrication cost. Consequently, 3D woven composite material has been widely used
in aerospace, automobile, marine, and defense industries.
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The often-used 3D woven composites include those of orthogonal interlock and angle
interlock typically as shown in Figure 1, although there are many forms with the variations
of interlock depth in thickness direction of warp yarn.

For effective use and design of 3D woven composites, one should understand their
mechanical behavior clearly. Several models [1,2] have recently been suggested to predict
their mechanical properties. The micro-mechanical model and analysis method for 3D
woven composites are, however, distinctly different from those for plane woven laminates.
The studies have been focused on the following two aspects: one is the description of the
micro geometric structure of the model and the other is the analysis method adopted.

As to the micro geometric structure, attention is focused on the shape of cross-section of
the yarns and undulating tracks of longitudinal yarns. Based on the conjecture that warp
and weft were tightly contacted, the micro geometry structures were obtained [3–6]
by assuming the shapes to be reticular, elliptic, racetrack, or sinusoidal. Yang [7] used
cubic polynomial to simulate the track of warp and weft, and predicted the stiffness for the
cross-bend plate.

As to the analysis methods, two categories can be classified, analytical methods and
numerical ones. Most analytical models are based on the classical laminate theory (CLT).
Elastic properties were obtained by averaging the stiffness constants integrated along
crimple yarns [3–5,7–9]. Yi and Ding [10] proposed a four sub-unit cell model for textile
composites, namely warp, filling, stuffer, and binder, and simulated the stress–strain
relationship by a method termed as the effective response comparison technique. Zhou
et al. [6] suggested a unit cell composed of two phases of 3D woven composites and
obtained the elastic properties by using the Galerkin method. The above-mentioned
analytical methods cannot provide details of the microstructure and micro stresses of the
composites such as the interactions between conjunct yarns. Accurate prediction of micro-
stress distribution may have significant effect on the strength predictions since
damage largely depends on local stress characteristics in each phase of composites.
There were several numerical models proposed recently for analysis of 3D braided
composites, such as the binary model by Coxet et al. [11], in which fiber yarns
were simulated by bar elements and effective matrix by brick elements, and 3D FE models
[12,13], where brick elements were used. However, the application of numerical method
to 3D woven composites is relatively few. This might partly be attributed to the complexity

(a)

(c) (d)

(b)

Figure 1. 3D woven constitutions: (a), (b) orthogonal interlock; (c), (d) angle interlock.
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in construct an appropriate RUC model and in application of correct periodic boundary
conditions.

Although a number of models are available for predicting mechanical properties of
3D woven composites, each model has its limitations. For example, all CLT-based models
under-predict the shear modulus because of the rule of mixtures assumption intrinsic
to CLT. Furthermore, textile composites have a feature of an inherent structural
hierarchy in a variety of length scales, i.e. (a) the fiber diameter scale, (b) the yarn-diameter
scale, (c) the meso-repeated unit cell scale, and (d) the macro-structural component scale.
It is desirable to start from the micro-geometry and to obtain the behavior of the
composite structure step by step by performing the multi-scale analysis [14]. Although
the microscopic behaviors of fiber yarns can be predicted by equations with suitable
parameters, the parameters need to be determined by experiments. The aim of this work
is to develop more accurate two-scale 3D finite element models for 3D woven orthogonal
interlock composites. Based on the properties of two basic constituents of the composite,
fiber and matrix, the yarn properties are first obtained through FE analysis on the micro-
RUC model. Next, the mechanical properties of the composite are obtained through
analysis of a meso-RUC model, representing the geometry of the warp and weft yarns
with higher fidelity to the actual composite. A key to success of the multi-scale analysis is
the application of accurate periodic boundary conditions to the micro- and meso-scale
RUCs, which ensure that both the displacement and tractions are continuous on the
boundary surfaces. The predicted results by the current method are compared with either
analytical or experimental data of the yarns and the 3D woven composites and they are
in good agreement.

PERIODIC BOUNDARY CONDITIONS

Xia et al. [15,16] have developed an explicit unified form of periodic boundary
conditions and used it in FEM analyses of RUCs for unidirectional and angle-ply
laminates. Since the 3D woven composite materials can also be envisaged as a periodical
array of RUCs, the periodic boundary conditions will be adopted in this analysis. For
the sake of completeness it is shortly summarized in the following.

The displacement field for a periodic structure can be expressed as:

uiðx1, x2, x3Þ ¼ �"ikxk þ u�i ðx1, x2, x3Þ ð1Þ

where xk is the Cartesian coordinate of a material point and �"ik are the average strains
over the RUC. The first term on the right-hand side represents a linear distributed
displacement field, and the second term on the right-hand side, u�i ðx1, x2, x3Þ, is a periodic
function from one RUC to another.

Since the periodic array of RUCs represents a continuous physical body, two
continuity conditions must be satisfied at the boundaries of neighboring RUCs.
One condition is that the displacements must be continuous; it implies that each
RUC in the composite has the same deformation mode and that there is no separation
or overlap between neighboring RUCs. The other condition implies that the traction
distributions at the opposite parallel boundaries of a RUC must be the same. In this
manner, individual RUCs can be assembled as a physically continuous body.

Multi-scale Analyses of 3D Woven Composite 1775
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Equation (1) meets the first requirement. However, it cannot be directly applied to the
boundaries because the periodic part, u�i ðx1, x2, x3Þ, is generally unknown.

It is noticed that for most RUCs the boundary surfaces always appear in parallel pairs.
Displacements on a pair of parallel opposite boundary surfaces (with their normal along
the Xj axis) can be written as:

u jþ
i ¼ �"ikx

jþ
k þ u�i ð2Þ

u j�
i ¼ �"ikx

j�
k þ u�i ð3Þ

where index ‘jþ’ means along the positive Xj direction and ‘j-’ means along the negative Xj

direction, respectively.
Since u�i ðx1, x2, x3Þ is the same at the two parallel boundaries, the difference between the

above two equations is:

u jþ
i � uj�i ¼ �"ikðx

jþ
k � xj�k Þ ¼ �"ik�xjk: ð4Þ

The right hand side of Equation (4) becomes constant with specified �"ik, since �xjk are
constants for each pair of the parallel boundary surfaces. Equation (4) can be readily
applied as the nodal displacement constraint equation in finite element analysis.

It is assumed that the average mechanical properties of a RUC are equal to the average
properties of a particular composite. The average stresses in a RUC are defined by:

��ij ¼
1

V

Z
V

�ij dV ð5Þ

where V is the volume of the repeated unit cell.
The 3D woven orthogonal interlock composite is assumed to be orthotropic and

linearly elastic. In a matrix notation form, the constitutive relation of this material can
be written as:

�"f g ¼ S½ � ��f g ð6Þ

where [S] is the compliance matrix. Once ��ij of a RUC are obtained for given �"ij by
Equation (5), the Sij can be determined by Equation (6). Then, the engineering elastic
constants of the material can be computed from the Sij.

MULTI-SCALE RUC MODELS

As explained in the Introduction, two types of RUC models have been developed.

Micro-RUC Model of Yarns

Yarns are considered as unidirectional fiber reinforced composite which is idealized
as periodic array of fibers in the matrix with fiber volume fraction equal to the
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packing density. A great deal of mechanical models, such as rectangular cross-section
model [16,17], column model [18], and hexagonal model [19], has been studied. Among
them, the hexagonal model is widely quoted for modeling transversely isotropic material.
Since the periodical boundary conditions, Equation (4), cannot be used easily in the
hexagonal model, a rectangular micro-RUC model containing the hexagonal model is
adopted herein as shown in Figure 2. Thus, the periodical boundary conditions can be
easily applied during finite element analysis.

Meso-RUC of 3D Woven Composite

The 3D woven orthogonal interlock composite is considered in this paper. The warp
interlocks with two layers of weft in thickness direction (Figure 3). The warp and the
weft are both 480Tex S-glass fiber with the linear densities of 480 g/km. The density of
yarns in the fabric is characterized by the number of ends and picks per centimeter PWa

and PWe with values of 10 and 3.5, respectively. The thickness of the composite is 4mm
consisting of seven layers of warp and six layers of weft. The micro-picture of a typical
cross-section of the 3D woven composite in the warp and weft direction (Figure 4) shows
that weft yarns are slightly wavy and the warp yarns bent at the interact area, but all
other parts are straight lines because of the pull force of the textile machine.

(a) (b)

Figure 2. Fiber distribution pattern: (a) fiber distribution and (b) micro-mechanical model of yarns.

Figure 3. Photo of fabric.
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Three assumptions are made in construction of geometry of the meso-RUC model:

. The weft yarns are considered as straight bundles of fibers.

. The warp and weft yarns have the same shape and area of cross-section and the shape
of cross-section of yarns stay unchanged along their tracks.

The idealized micro architecture of the 3D woven composite material is shown in
Figure 5.

Figure 3 shows that warp yarns contact closely to each other due to the high warp
density. Therefore, it is assumed that the width of the cross-section of yarns, a, equals
1/PWa, and the height of the cross-section of yarns, b, can be determined by the thickness
of the composite and the total numbers of layers of warp and weft yarns. Even if the width
and height of the cross-section of yarns are known, however, the shape of the cross-section
of yarns still cannot be exactly described. In order to describe the shape, the Hermit-spline
curve is adopted herein, since the 3D crimp model has been widely used in analyses
of plain-woven composites.

The typical binding form of warp and weft yarns is shown in Figure 6. It is assumed
that the warp yarns and the weft yarns are contacted closely. Then the inclined angle �
of the straight part of warp yarns can be determined geometrically. The shape of the
cross-section of yarns is supposed to be symmetric with two parts, a rectangle and two

(a) (b)

AN1
Measure list

=38.684˚

N023 N023
2000.000 2000.000

5040-20X 5040-20X
mm mm

Figure 4. Photos of the composite: (a) warp direction and (b) weft direction.

Weft Warp Matrix

Figure 5. The idealized micro-architecture.
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curved triangles. The curved side of the shape, e.g., P0P1 in Figure 6, can be described
by a Hermit-spline curve expressed by:

PðtÞ ¼ P0 � F0ðtÞ þ P1 � F1ðtÞ þ P
0

0 � G0ðtÞ þ P
0

1 � G1ðtÞ ðt 2 ½0,1�Þ ð7Þ

where P0 and P1 are the two end points, namely points of (x0, 3b/2) and (a/2, b); P
0

0 and P
0

1

are the tangential vectors at the two ends with values of (1, 0) and (cos�, �sin�); t is a
parameter varying from 0 to 1. Base functions of Hermit-spline are:

F0ðtÞ ¼ 2t3 � 3t2 þ 1

F1ðtÞ ¼ �2t3 þ 3t2

G0ðtÞ ¼ tðt� 1Þ2

G1ðtÞ ¼ t2ðt� 1Þ

9>>>=
>>>;
: ð8Þ

Given coordinates of two end points, a fairly smooth curve can be produced due to the
geometric invariant of triplicate Hermit-spline function. The remaining undetermined
variable is x0, abscissa of P0 varying between 0 to a/2. In the present model, the shape
is adjusted by changing x0 to make the area enclosed by A–P0–P1–C, the shaded area
shown in Figure 6, a quarter of actual cross-section area of impregnated yarns. In this way,
the shape of the cross-section of yarns is uniquely determined and the trace of warp is
also obtained.

An assumption is made that there is enough number of layers so the effect of surface
yarns on the prediction is negligible. A rectangle block shown in Figure 5 can be selected
to be the meso-RUC for the 3-D woven composite. Figure 7 shows the details of warp
fibers and weft fibers in the RUC. Note that the neighboring warps have a shift of a half
width of the RUC (W as shown in Figure 6), the length of the RUC in the y-direction must
be equal to twice the width of the cross-section area of the yarn.

RESULTS AND DISCUSSIONS

Predicted Material Constants for Yarn

The fiber volume fraction of the impregnated yarns is 87% and material constants
of resin and fibers are listed in Table 1. A finite element model of micro-RUC for yarn

Weft

Warp

W

P

B

xP1

P   0

x0

q

z

b

A

o a/2

C

Figure 6. Typical binding form of warp and weft yarns.
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is shown in Figure 8 with a total number of 3220 elements and 6406 nodes. Eight-node
brick elements and six-node wedge elements are adopted. The mesh in the opposite
boundary surfaces of the micro-RUC is exactly the same for applying the periodic
boundary conditions, Equation (4), conveniently in FE analyses. The dimension of the
RUC is 10� 200� 346.4 and only one layer of element is required in the thickness
direction (x-direction, Figure 8).

To determine the compliance matrix, six independent macroscopic deformations listed
in Table 2 are considered. It is seen that either a single normal strain or a single shear strain
is applied in the analysis although other combinations of deformations could also be used
without altering the final results. For each case, the appropriate periodic boundary
condition is determined by Equation (4) first and then applied in the FE analysis as nodal
displacement constrained equations. For example, for case 5 in Table 2 the following
constrained equations are applied.

For each pair of corresponding nodes on the two boundary surfaces in the x-direction:

uxþx � ux�x ¼ 0; uxþy � ux�y ¼ 0; uxþz � ux�z ¼ 0: ð9aÞ

For all the corresponding nodes on the two boundary surfaces in the y-direction:

uyþx � uy�x ¼ 0; uyþy � uy�y ¼ 0; uyþz � uy�z ¼ 0:002� 346:4: ð9bÞ

And for all the corresponding nodes on the two boundary surfaces in the z-direction:

uzþx � uz�x ¼ 0; uzþy � uz�y ¼ 0:002� 200; uzþz � uz�z ¼ 0:

MSC NASTRAN software is used in the analysis and the boundary conditions are
applied by using the multi-point constraint (MPC) technique. Detailed stress distributions
can be obtained by the NASTRAN code case by case. As an example, Figure 9 shows the

x

z

y

Figure 7. RUC of the 3D woven composite.

Table 1. Elastic property of resin and fiber.

Materials E (GPa) t

S-glass fiber 86.0 0.20
Epoxy matrix 3.5 0.35
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von-Mises stress distribution together with the deformation of the micro-RUC of yarn for
case 5. It can be clearly seen that the boundary faces are no longer planes and that stresses
at the pair of opposite parallel boundaries are the same, i.e., the traction continuous
conditions are also satisfied besides the satisfaction of deformation continuous conditions.

The corresponding global stress vector to each applied global strain vector can be
computed by using Equation (5). Thus, Equation (6) can be expanded as a matrix
equation,

½f �"g1, . . . ,f �"g6� ¼ ½S �½f ��g1, . . . ,f ��g6� ð10Þ

and the compliance matrix [S ] can then be determined by:

S½ � ¼ ½f �"g1, . . . ,f �"g6�½f ��g1, . . . ,f ��g6�
�1: ð11Þ

Then all elastic constants can be acquired from the matrix [S ]. Part of elastic constants of
the yarns are listed in Table 3 and the elastic constants of yarns not listed are �21¼ 0.091,
�31¼ 0.091, �23¼ 0.296, and �32¼ 0.296. For comparisons, predictions based on the
other two methods [20,21] are also listed in Table 3. In both methods, E11 and �12 are
calculated from:

E11 ¼ EfVf þ Emð1� VfÞ

�12 ¼ �fVf þ �mð1� VfÞ:
ð12Þ

346.4

10

200

x

z y

Figure 8. Finite element model of yarns.

Table 2. Six applied strain cases.

ex ey ez cxy cyz czx

1 0.001 0 0 0 0 0
2 0 0.001 0 0 0 0
3 0 0 0.001 0 0 0
4 0 0 0 0.002 0 0
5 0 0 0 0 0.002 0
6 0 0 0 0 0 0.002
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The following formulae are used [20] to get the other three constants, namely:

E22 ¼
EfEmðVf þ �2ð1� VfÞÞ

EmVf þ Ef�2ð1� VfÞ

G12 ¼
GfGmðVf þ �12ð1� VfÞÞ

GmVf þ Gf�12ð1� VfÞ
ð13Þ

G23 ¼
Gm

1�
ffiffiffiffiffi
Vf

p
ð1� Gm=Gf 23Þ

where �2 and �12 are constants to be determined by experiments. These two constants
could be chosen as 0.5 for fiberglass composites [20]; however, they may depend on the
fiber volume fraction.

Table 3. Comparisons of material parameters of yarns.

Elastic constants E11 (GPa) E22 (GPa) E33 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) t12 t13

Present results 75.86 34.08 34.13 12.81 12.85 13.15 0.204 0.209
Analytical results 75.28 32.59 12.56 12.92 0.219
Halpin–Tsai results 75.28 34.27 13.29 14.09 0.219

MSC.Patran 12.0.044 28-Aug-05 00:43:51

Fringe:DEFAULT.SC1, Static Subcase: Stress Tensor, -(NON-LAYERED) (VONM)

Deform:DEFAULT.SC1, Static Subcase: Dispalcements, Translational

71.

64.

56.

48.

41.

33.

26.

18.

10.

71.

default_Fringe:
Max71.@Nd 17863
Min 10. @Nd 736

default_Deformation:
Max 4.00-001 @Nd 20

Y

Z

Figure 9. Deformation and von-Mises contour for case 5.
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In Reference [21], the remaining three elastic constants are calculated by the well-known
Halpin–Tsai equation:

M

Mm
¼

1þ ��Vf

1� �Vf
ð14Þ

where � ¼ ½ðMf=MmÞ � 1�=½ðMf=MmÞ þ �� and M is any one of the remaining elastic
constants, i.e., E22, G12, or �23; Mf is the corresponding elastic constants of fibers, Ef, Gf,
or �f ; and Mm is the corresponding elastic constants of matrix, Em, Gm, or �m. The value
of parameter � varying from zero to infinity depends on geometrical and loading
conditions. Typically, �¼ 1.3 for computing transverse elastic constants of fiberglass
composites.

From Table 3 it is found that the predicted results by current methods are in good
agreement with the empirical formula (Equations (12)–(14)). The predictions also show the
validity of the transversely isotropic assumption. Therefore, the correctness of the FE
model as well as the periodic boundary condition is verified. Since modifications by
experimental data are not required for the FE predictions, this is an advantage of the
present microanalysis over the existing micro-mechanical method and Halpin–Tsai
equations, which have parameters depending on constituents and geometrical structures
and being determined by experiment. In addition, the present method can also yield
accurate stress distributions within the yarn, thus providing the possibility for multi-scale
progressive damage analysis of textile composites.

Predicted Material Parameters for 3D Woven Composites

The complicated geometrical structure creates an obstacle on the FE mesh generation.
In the present analysis, a quarter model of the RUC of 3D woven composites is meshed
first due to the symmetry of the RUC, then reflected twice in the longitudinal and
transverse direction to build the entire FE model, shown in Figure 10. Three types of
elements, namely four-node linear tetragonal element, eight-node brick element, as well as
six-node wedge element, are used in the model. To achieve the strain and stress continuous
between yarns and matrix, the co-node technique is used during the meshing process. The
model contains 83,141 nodes and 298,876 elements. Similar procedures to yarns described
in detail previously are followed to determine the elastic constants of the 3D woven
orthogonal interlock composites. During the finite element analyses, six sets of periodic

x

z
y

(a) (b) (c)
x

z

y
x

z
y

Figure 10. Finite element meshes of a quarter of the RUC: (a) mesh of yarns; (b) mesh of matrix; and (c) mesh
of yarns and matrix.
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boundary conditions are considered. The compliance matrix and elastic constants are
then calculated from Equation (11).

Figure 11 shows the von-Mises stress distributions plotted on the deformed meso-RUC
for case 1. The continuity conditions of deformation and tractions are satisfied strictly
in the present analysis. It is noted that the two boundary surfaces in the z-direction are
no longer planes after deformation, even though only the uniform global normal strain
is applied. The 3D FE technique can yield detailed accurate stress distributions. It is seen
that the warp yarns carry most of the applied load and stress concentration appears in the
intersection regions between the warp yarns and weft yarns.

Figure 12 shows the von-Mises stress distributions plotted on the deformed meso-RUC
for case 4. It should be pointed out again that the continuity conditions of deformation
and tractions are satisfied strictly and the boundary surfaces do not remain planes after
deformation for pure shear strain loadings, a phenomenon observed previously. The stress
concentration is more visible for the shear loadings. The maximum stress is in intersection
regions of neighboring warp yarns. The stress concentration is also presented in regions
between warp yarns and weft yarns and between the yarns and matrix.

The predicted elastic constants of 3D woven composites are listed in Table 4. To verify
the predicted results, a 3D woven composite was fabricated and test specimens were then
manufactured with a house-made resin transfer molding (RTM) equipment. Strain gauges
were mounted on the specimen along the longitudinal and transverse directions. Tensile
experiments were performed on the WDW-E2000 test machine and the longitudinal and

MSC.Patran 12.0.044 29-May-06 15:41:21

Fringe:DEFAULT.SC1, Static Subcase: Stress Tensor, -(NON-LAYERED) (VONM)

Deform:DEFAULT.SC1, Static Subcase: Displacements, Translational

9.33+001

8.50+001

7.66+001

6.83+001

6.00+001

5.16+001

4.33+001

3.50+001

2.66+001

1.83+001

9.98+000

1.65+000
default_Fringe:

Max 9.33+001 @Nd 404
Min 1.65+0.00 @Nd 21338

default_Deformation:
Max 5.04−001 @Nd 8431

YZ X

Figure 11. Deformation and von-Mises contour for case 1.
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transverse strains were recorded by strain gauges. Figure 13 shows the experimental setup.
Experiment results are listed in Table 5.

From Tables 4 and 5, it can be seen that the predicted longitudinal and transverse
moduli agree with the test data, although the predicted transverse modulus is a little
lower than the test value, while the predicted longitudinal module is a little higher than
the test result. The largest discrepancy between the prediction and test datum is in
Poisson’s ratio, the relative error is approximately 15%. The discrepancy between
predictions and experimental data might be attributed to the fact that the FE model
neglects the effect of surface yarns, which have lower volume fraction of warps and
higher volume fraction of wefts.

MSC.Patran 12.0.044 28-May-06 22:40:28
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1.59+001

8.75+000
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default_Fringe:

Max 8.00+001 @Nd 3821
Min 1.63+000 @Nd 42745

default_Deformation:
Max 5.42-001 @Nd 14133

Y Z
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Figure 12. Deformation and von-Mises contour for case 4.

Table 4. Parameters of 3D woven composite (unit: GPa).

Parameter E1 E2 E3 G23

FEM result 16.34 11.53 10.41 2.50
Parameter G31 G12 �12 �13
FEM result 2.07 2.53 0.124 0.319
Parameter �23 �21 �31 �32
FEM result 0.346 0.162 0.512 0.415
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CONCLUSIONS

Two-scale 3D finite element (FE) models, the micro-RUC, for the yarn and the meso-
RUC, are presented and used for predicting elastic moduli of 3D woven orthogonal
interlock composites by FE analysis. The novel geometrical model of 3D woven
orthogonal interlock composites is built based on the Hermit-spline function. The new
periodic boundary conditions ensuring deformation and stress continuity on the boundary
surfaces of RUCs of yarn and woven composite are used for the first time for analysis of
3D woven composites. The predicted results of yarns are in good agreement with data
computed by available equations with suitable parameters determined by experimental
data. The predicted properties of 3D woven composite are also in good agreement with
test data. It is an obvious advantage of the present method that the properties of
composites can be determined based purely on the properties of constituents and volume

Figure 13. Photo of experimental setup.

Table 5. Experimental data (unit: GPa).

E1 E2 �12 �21

16.14 12.85 0.108 0.147
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fraction of each constituent without introducing modification parameters, which need to
be calibrated from experiments. Since the present method can yield detailed stress
distributions in two scales, it thus provides the possibility for multi-scale progressive
damage analysis of textile composites. This work is currently being undertaken in our
research group.
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