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This paper presents an anharmonic lattice statics analysis of 180� and 90� domain
walls in tetragonal ferroelectric perovskites. We present all the calculations and
numerical examples for the technologically important ferroelectric material

15 PbTiO3. We use shell potentials that are fitted to quantum mechanics
calculations. Our formulation places no restrictions on the range of the
interactions. This formulation of lattice statics is inhomogeneous and accounts
for the variation of the force constants near defects. The discrete governing
equations for perfect domain walls are reduced using symmetry conditions. We

20 solve the linearized discrete governing equations directly using a novel method in
the setting of the theory of difference equations. We calculate the fully nonlinear
solutions using modified Newton–Raphson iterations.

1. Introduction

Ferroelectrics are polar crystals whose spontaneous polarization vector can be
25 switched by an applied electric field or an external mechanical stress. These materials

have many potential applications in micro-actuators and micro-sensors. The
phenomenon of ferroelectricity was discovered in 1921 [1] and since then has been
the subject of many theoretical and experimental investigations. Ferroelectricity is a
result of the fairly complicated competition of short-range repulsive forces that

30 favour the paraelectric state (high symmetry cubic phase) and long-range
Coulombic forces that favour the ferroelectric state (low symmetry phase) [2].
Recent applications of ferroelectrics, especially MEMS applications, have attracted
much attention in understanding the fundamentals of ferroelectrics. For recent
reviews see [3–5].

35 It is known that many properties of ferroelectrics are controlled by domain walls,
which are two-dimensional defects. This is not surprising as many of the interesting
properties of solids, in general, are controlled by defects and their evolution.
Macroscopically, a domain wall can be understood as a surface of discontinuity in
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polarization (polarization per unit volume) and deformation gradient. However, they
40 have an atomistic structure which determines their energy and mobility, and there-

fore, understanding the atomic structure of ferroelectric domain walls is important.

A vast majority of atomistic analyses of domain walls conducted to date are numer-

ical in nature and contain severe restrictions on the size of the computational

domain. The present work provides an alternative semi-analytical approach based
45 on lattice statics that overcomes some of the limitations inherent to computational

techniques. In particular, the present approach enables consideration of infinite

regions, thus furnishing solutions that are free of spurious finite-cell effects.
There are two types of domain walls in the tetragonal ABO3 perovskites: 90

� and

180� domain walls. Examples are shown in figure 1. Note that the 90� domain walls
50 shown in this figure are head-to-tail. This means that the domain wall is free of

surface charges. In this paper, we study only head-to-tail 90� domain walls as they

have a lower energy compared to other types of 90� domain walls. For more details

on different properties of BaTiO3 and PbTiO3 the reader may refer to [6, 7].
Stemmer et al. [8] measured the width of 90� domain walls in tetragonal PbTiO3

55 to be 1:0� 0:3 nm and the energy per unit area of the wall to be 50 mJm�2. Floquet

et al. [9] measured the width of 90� domain walls in tetragonal BaTiO3 to be 4–6 nm.

Foeth et al. [10] measured the thickness of 90� domain walls in PbTiO3 to be

1:5� 0:3 nm and 2:1� 0:7 nm using HREM and WBTEM, respectively. Recently,

Shilo et al. [11] studied the structure of 90� domain walls in PbTiO3 by measuring the
60 surface profile close to emerging domain walls and then fitting it to the soliton-type

solution of LGD theory. Using this technique they observed that the domain wall
thickness is about 1.5 nm but with a wide scatter. They associated this scatter to

point defects. Although there is some scatter in the experimental data available in the

literature, there is a consensus on domain walls being atomically sharp.
65 The structure of ferroelectric domain walls in the continuum scale has been

investigated using Landau–Ginzburg–Devonshire theory (LGD) (see [12–14] and

references therein). While these calculations are useful to understand the overall
structure, they are limited in their ability to capture the structure of atomically

sharp ferroelectric domain walls.

180° domain wall

90° domain wall

Figure 1. 180� and 90� domain walls.
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70 Lawless [15] performed an atomistic analysis of 180� domain walls in BaTiO3

using a point-dipole model by making a series of simplifying assumptions: the elastic

energy (due to changes in lattice parameters) is neglected, only Ti-Oa (Oa in Slater’s

notationy) bonds are considered and only the magnitude of the polarization vector

varies across the domain wall. He considered the 180� domain walls perpendicular to
75 the experimentally observed h100i and h110i directions and analysed four possible

domain walls two of which are Ba-centred and the other two are Ti-centred. Finally,

he showed that the Ba-centred wall ð100Þ has the minimum energy.
There have also been several ab initio analyses of ferroelectric domain walls in

recent years (see [16–19] and references therein). Meyer and Vanderbilt [16] showed
80 that 180� and 90� domain walls in the tetragonal PbTiO3 have comparable widths

and that the energy barrier for movement of 90� domain walls is extremely small.

They discussed different possibilities for 180� and 90� domain walls. There are two

types of 180� domain walls: Pb-centred and Ti-centred, which result from twinning

on PbO- and TiO2-planes, respectively. They showed that a Pb-centred domain wall
85 has a lower energy than a Ti-centred domain wall and hence it is the preferred wall

structure.z For 90� domain walls there are two possibilities: Pb-Ti-O- or O-O-centred

domain walls. Here by an O-O-centred domain wall we mean that the reference

(starting) configuration is obtained by twinning on an O-O type (101) plane.

Meyer and Vanderbilt observed that the relaxed configuration lies between these
90 two limits. They obtained the profiles of polarization change across the domain

wall and calculated the domain wall energies. They also observed that the energy

of a 90� domain wall is one-fourth of that of a 180� domain wall. In their computa-

tions, Meyer and Vanderbilt had to consider a completely periodic system in order to

be able to perform their quantum mechanical calculations. The same superficial
95 periodicity is assumed in all the existing molecular dynamics simulations of ferro-

electrics. This is potentially a severe limitation in ferroelectrics because of the pre-

sence of long-range electrostatic interactions.
In this paper, we present an anharmonic lattice statics study of 90� and 180�

domain walls. Lattice statics has been widely used to study harmonic crystals. The
100 method was introduced by Matsubara [20] and Kanazaki [21]. For more details and

history the reader may refer to [22–24] and references therein. Our starting point is

an atomistic model of ferroelectric materials based on shell-type atomistic potentials

that have been fit to quantum mechanics. Our method is capable of studying infinite

domains, and thus does not require any artificial cut off or periodicity. Therefore, we
105 are able to study an isolated domain wall.

In our lattice statics analysis, we start with a reference or trial configuration that

contains a domain wall, and look for an equilibrium close to it. The reference con-

figuration is obtained by patching together two half crystals with appropriate relative

rotations. We linearize the equilibrium equations about this state and solve these
110 equations semi-analytically by requiring the solutions to be bounded at infinity. The

anharmonic or nonlinear solutions are obtained by iteration.

yOa is O3 in our notation.
zOur lattice statics calculations are in agreement with this.

Analysis of ferroelectric domain walls in PbTiO3 3
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This paper is organized as follows. Section 2 discusses shell potentials for

modelling polarizability. Section 3 presents a detailed lattice statics analysis of

180� domain walls. Construction of discrete governing equations, their linearization
115 and solution techniques are explained. This then follows by some numerical exam-

ples for PbTiO3. In Section 4 we study the same problems for 90� domain walls.

Finally, conclusions are given in Section 5. In the appendix, some issues in systems of

charges like long-range forces, etc. are discussed. The method of Wolf et al. [25] is

critically reviewed for shell potentials and is numerically studied for PbTiO3.

120 2. Total energy of a ferroelectric solid

2.1. Shell models

Ferroelectric perovskites have a fairly complicated electronic structure and bonding,

which include covalent bonds, but individual atoms may also be ionized and polar-

ized due to distortions in their electron orbitals. Therefore, ferroelectrics are often
125 modelled using shell potentials originally introduced by Dick and Overhauser [26].

In shell models [27–29] it is assumed that an atom is composed of a core, which

consists of the nucleus and the inner electrons and a massless shell, which consists of

the valence electrons. In shell models, the total energy of the system is assumed to

have the following form

E ¼ Eshort�range þ Elong�range þ Ecore�shell: ð1Þ

130 The short-range interactions are between the massless shells and in general not all
shells contribute to this energy. The long range interactions are Coulomb interac-

tions. The third part of the energy is the energy of interaction of core and shell of the

same atom.
135 It is assumed that the short-range energy is pairwise and is equal to

�ðjxI i � xJ j
jÞ for atoms I(i ) and J( j ) for some given scaler-valued function �.

Consider a multilattice L with N species and let i2Z
3 denote the unit cell index

and I2f1, . . . ,Ng denote the sub-lattice number. Consider the I(i ) atom: its core

has position xI i and charge QI ic) while its shell has position xI is and charge QI ic).
140 Thus, the total short-range energy of the system can be written as

Eshort�range ¼
1

4

XN

I, J¼1

X

i, j

�ðjxI i � xJ j
jÞ: ð2Þ

The core-shell energy is only a function of core and shell positions and has the
following form

Ecore�shell ¼
XN

I¼1

X

i

�ðQI c,QI isÞ, ð3Þ

145 for some function �.

4 A. Yavari et al.
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The long-range energy is the Coulombic energy and is a function of both charges

and positions of cores and shells and can be written as

Elong�range ¼
1

4

XN

I, J¼1

X

i, j

n
�ðjxI i � xI jsj,QI c,QI jsÞ

þ�ðjxI i � xJ j
j,QI c,QJcÞ þ�ðjxI i � xJ j

sj,QI c,QJ j
sÞ

þ�ðjxI is � xJ j
j,QI is,QJcÞ þ�ðjxI is � xJ j

sj,QI is,QJ j
sÞ

þ�ðjxJ i
� xJ j

sj,QJc,QJ j
sÞ

o
, ð4Þ

where a general function � is assumed in order to include modified shell potentials
150 if necessary. It is assumed that core and shell of an atom do not interact electro-

statically. The total energy can be written as

E ¼
1

4

XN

I, J¼1

X

i, j

�ðjxI i � xJ j
jÞ þ

XN

I¼1

X

i

�ðQI c,QI isÞ

þ
1

4

XN

I, J¼1

X

i, j

n
�ðjxI i � xJ j

sj,QI c,QJ j
sÞ þ�ðjxI i � xJ j

j,QI c,QJcÞ

þ�ðjxI i � xI jsj,QI c,QI jsÞ þ�ðjxI is � xJ j
j,QI is,QJcÞ

þ�ðjxI is � xJ j
sj,QI is,QJ j

sÞ þ�ðjxJ i
� xJ j

sj,QJc,QJ j
sÞ

o
: ð5Þ

Note that this energy should be minimized subject to charge conservation constraint,
which reads

X

I

X

i

ðQI c þQI isÞ ¼ 0: ð6Þ

155 Throughout this work we assume that all charges are fixed.
The potential we use for PbTiO3 is a classical shell model developed in [27–29].

In the potential of Sepliarsky et al. [27] (we call it the SC potential from here on) the

short-range interactions are between shells of the pairs Pb-O, Pb-Ti and O-O, with
160 the following forms

Pb� Ti, Pb�O, Ti�O : VIJðrÞ ¼ aIJ þ bIJrð Þe
� r
�IJ , ð7Þ

O�O : V33ðrÞ ¼ a33e
� r
�33 þ

c33
r6

, ð8Þ

where aIJ, bIJ, �IJ, c33 are material properties. The core-shell coupling is anharmonic
165 but isotropic with the following form

VIðxI
i
c, xI

i
sÞ ¼

1

2
c2IjxI

i
� xI isj

2
þ

1

24
c4IjxI

i
� xI isj

4: ð9Þ

Analysis of ferroelectric domain walls in PbTiO3 5
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2.1.1. Governing equilibrium equations. We obtain the governing equilibrium equa-
tions for xI i and xI is by minimizing the energy (5) with respect to these two variables.
The governing equilibrium equations are

�E fxI i, xI isg
� �

¼ 0) D1E ¼ D2E ¼ 0: ð10Þ

170 Or

fðxI i, xI isÞ ¼ 0 8i ¼ 1, 2, . . . , I ¼ 1, . . . ,N, ð11Þ

gðxI i, xI isÞ ¼ 0 8i ¼ 1, 2, . . . , I ¼ 1, . . . ,N, ð12Þ

175 where

fðxI i, xI isÞ ¼ D1EðxI
i, xI isÞ, ð13Þ

gðxI i, xI isÞ ¼ D2EðxI
i,xI isÞ: ð14Þ

2.1.2. Linearized equilibrium equations. We now linearize the governing equa-
180 tions (11) and (12) about a reference configuration B0 ¼ ðxI

i
0, xI

i
s0Þ as follows

fðxI i0, xI
i
s0Þ þD1fðxI

i
0, xI

i
s0Þ � ðxI

i
� xI i0Þ

þD2fðxI
i
0, xI

i
s0Þ � ðxI

i
s � xI is0Þ

þ o kxI i � xI i0k, kxI
i
s � xI is0k

� �
¼ 0, ð15Þ

gðxI i0, xI
i
s0Þ þD1gðxI

i
0, xI

i
s0Þ � ðxI

i
� xI i0Þ

þD2gðxI
i
0, xI

i
s0Þ � ðxI

i
s � xI is0Þ

þ o kxI i � xI i0k, kxI
i
s � xI is0k

� �
¼ 0: ð16Þ

We emphasize that the reference configuration need not be in equilibrium, and
185 therefore we retain the zeroth order term. Thus

D1fðxI
i
0, xI

i
s0Þ � uI

i
þD2fðxI

i
0, xI

i
s0Þ � uI

i
s ¼ �fðxI

i
0, xI

i
s0Þ, ð17Þ

D1gðxI
i
0,xI

i
s0Þ � uI

i
þD2gðxI

i
0,xI

i
s0Þ � uI

i
s ¼ �gðxI

i
0, xI

i
s0Þ, ð18Þ

where

uI i ¼ xI i � xI i0, uI is ¼ xI is � xI is0: ð19Þ

190 For a given reference configuration, the above equations give a system of linear
difference equations for the discrete fields of core and shell position vectors.

2.1.3. Defective crystals and symmetry reduction. It may happen that a given defec-
tive crystal has a partial symmetry. Defective crystals can be classified into three

195 groups [30]: (i) with 1-D symmetry reduction (defective crystals with two-
dimensional translation symmetry), (ii) with 2-D symmetry reduction (defective
crystals with one-dimensional translation symmetry) and (iii) with no symmetry
reduction. Examples of (i), (ii) and (iii) are free surfaces, dislocations, and point

6 A. Yavari et al.
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defects, respectively. By convention, a perfect crystal is a defective crystal with 0-D
200 symmetry reduction, i.e., it can be reduced to a unit cell.

Assuming that the defective crystal L has a 1-D symmetry reduction, i.e. it can be

partitioned into two-dimensional equivalence classes, the neighbouring set Si (the set

of atoms that interact with atom i) is partitioned as

Si ¼
G

�2Z

GN

I¼1

SI�ði Þ, ð20Þ

205 where SI�ðiÞ is the equivalence class of all the atoms of type I and index � with
respect to atom i. As an example, for a free surface each equivalence class is a set of

atoms lying on a plane parallel to the free surface. Using this partitioning one can

write

X

j2Si

@2E

@xj@xi
B0ð Þðx

j
� x

j
0Þ ¼

X 0
1

�¼�1

XN

I¼1

X

j2SI�ðiÞ

@2E

@xj@xi
ðB0Þ x

I�
� x

I�
0

� �
, ð21Þ

210 where the prime in the first sum in the right-hand side means that the term
� ¼ 0, I ¼ i is omitted. We are interested in planar defects that have two dimensions

of translational symmetry. Therefore, we partition the lattice into planes perpendic-

ular to the defect (indexed by �), and carry out all sums first with � fixed and then

over all �. The linearized discrete governing equations can be written as

X 0
1

�¼�1

XN

I¼1

KiI�u
I�
þ �

X 0
1

�¼�1

XN

I¼1

KiI�

0

@

1

Aui ¼ fi, ð22Þ

215 where

KiI� ¼
X

j2SI �ðiÞ

@2E

@xj@xi
ðB0Þ, ð23Þ

fi ¼ �
@E

@xi
ðB0Þ þ Fi, ð24Þ

220

u
I�
¼ x

I�
� x

I�
0 ¼ x

j
� x

j
0 8j2SI�ði Þ, ð25Þ

and Fi is the external applied force on atom x
i. Unit cell displacement vectors are

defined as

Xn ¼

u
1
n

..

.

u
N
n

0

B@

1

CA: ð26Þ

Analysis of ferroelectric domain walls in PbTiO3 7
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225 Now the governing equations in terms of unit cell displacements are

X1

�¼�1

A�ðnÞXnþ� ¼ Fn n2Z, ð27Þ

where

A�ðnÞ2R
3N�3N,X�, Fn2R

3N: ð28Þ

This is a linear vector-valued ordinary difference equation with variable coefficient
230 matrices. The unit cell force vectors and the unit cell stiffness matrices are defined as

Fn ¼

F1n

..

.

FNn

0

BB@

1

CCA, A�ðnÞ ¼

K11� K12� � � � K1N�

K21� K22� � � � K2N�

..

. ..
.
� � � ..

.

KN1� KN2� � � � KNN�

0

BBBB@

1

CCCCA
n2Z: ð29Þ

Note that the equations (27) are of order infinity. One can make an approximation
and assume that each unit cell interacts only with its first m nearest-neighbour unit

cells. The resulting (approximate) difference equation is of order 2mþ 1. The
235 sequence of solutions to these difference equations approaches to the solution of

(27) as m!1 if a solution exists. Sensitivity of solutions to the choice of m should

be numerically studied given an interatomic potential.

2.2. Multilattices of ABO3 perovskites

In an ABO3 crystal, there are three species and five simple sublattices. Throughout
240 this analysis we adopt the following identification

A ¼ 1, B ¼ 2, O1 ¼ 3, O2 ¼ 4, O3 ¼ 5, ð30Þ

where O1, O2 and O3 are the three simple lattices of Oxygen. PbTiO3 is studied in its
tetragonal phase with lattice parameters a ¼ b ¼ 3.9053 Å and c ¼ 4.1514 Å. The

multilattice of ABO3 can be defined as

L ¼ x ¼ �1e1 þ �
2
e2 þ �

3
e3 þ pi, �1, �2, �32Z, i ¼ 1, . . . , 5

� �
, ð31Þ

245 where ei, pi are lattice and shift vectors, respectively. In this paper, we will use a shell
model, in which every atom has a core and a shell of electrons that can move

independently. This means that for defining the multilattice of cores and shells one

needs ten shift vectors. We thus use the following identification

fAc,As, . . . ,O3c,O3sg ¼ f1, 2, . . . , 9, 10g: ð32Þ

250 Problem definition. We seek to find the relaxed configurations of single 180�

and 90� domain walls in infinite lattices of PbTiO3. Figure 2 shows the two config-

urations schematically in terms of macroscopic polarization. It is assumed that the

far-field conditions are the bulk configurations. In particular, we do not assume any
255 periodicity.

8 A. Yavari et al.
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3. 180 � domain walls in PbTiO3

We now study the structure of 180 degree domain walls. Recall that these are planar
defects across which the polarization changes by 180 degrees.

The reference configuration is schematically shown in figure 3 for a 180� domain
260 wall. In this problem because of symmetry translation along the wall, it is sufficient

to obtain the atomic displacements only in two planes perpendicular to the domain
wall. A detailed structure of the reference configuration in these planes denoted by
planes (a) and (b) is shown in figure 4. We look for solutions that are periodic in

Figure 2. Single 180� and 90� domain walls in infinite crystals with the bulk far-field
conditions. Ps is the spontaneous polarization vector and R�p

4
and Rp

4
are rotation matrices.

Figure 3. Reference configuration used in analysis of a 180� domain wall.

Analysis of ferroelectric domain walls in PbTiO3 9
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directions along the domain wall. Therefore, we assume that all the atoms of the

265 same type that lie on a plane parallel to the domain wall have the same displace-

ments. Finally, due to the reflection symmetry of a 180 degree domain wall, we can

look at only Lr, the half lattice of ABO3, i.e., the half space of atoms that lie on the

right side of the domain wall including the atoms that lie on the wall. Lr can be

partitioned into ten pairwise disjoint sublattices, i.e.,

L
r
¼
[10

I¼1

LI: ð33Þ

Domainwall

plane(a)O2
O3

plane (b)
O1

Domain wall
xx

yy

B A

n

n

n+1

n+1n n+1
n n+1

n n+1

x

y

z

Plane (a)

Plane (b)

Domain wall
O1

O2

O3

A

B

Figure 4. Reference configuration for an A-centred 180� domain wall shown in the two
planes (a) and (b). Note that the reference configuration is invariant under the transformation
x!�x, y!�y, z! zðor� zÞ.

10 A. Yavari et al.
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270 Next, each LI is partitioned into subsets according to their distance from the domain
wall, i.e.,

LI ¼
[1

n¼0

LIðnÞ, ð34Þ

where

LIðnÞ ¼ x2LIjðx� pIÞ � êx ¼ na, n2N [ f0g
� �

, ð35Þ

275 and where ðx� pIÞ � êx is the component of x� pI perpendicular to the domain wall
and a is the lattice spacing.

The electrostatic energy between two charges i and j with relative distance r is

O 1=rð Þ and hence force is O 1=r2
� �

and stiffness is O 1=r3
� �

. Thus, unbalance forces are
280 represented by lattice sums in Z

3 with each term being O 1=r2
� �

, i.e., each force vector

is represented by a conditionally convergent lattice sum and hence one must specify

a ‘physically correct’ way of summing the lattice sum. This has been a problem

of interest in physics for a very long time. There are methods for calculating the

‘physically correct’ energy or force for such conditionally convergent lattice sums,
285 the most celebrated one being the classical Ewald method [31]. However, for a

nonperiodic problem Ewald-type techniques cannot be used. We use a direct-space

summation method introduced by Wolf and his co-workers [25]. There are some

subtleties in using this method and there are also some mathematical inconsistencies

in its original derivation that are discussed in detail in the Appendix.
290 Each substiffness matrix is defined by a lattice sum (see equation 23). In a domain

wall problem, one partitions the defective lattice into equivalent classes of atoms

lying on planes parallel to the domain wall. All the atoms (cores or shells) in a given

equivalence class displace together and hence it would be enough to calculate the

displacement vector of a representative from each class. Therefore, in calculating
295 substiffness matrices representative of a given class interacts with other equivalence

classes. This means that given a class, any substiffness matrix is a lattice sum in Z
2.

Because each term in the lattice sum is O 1=r3
� �

and is summed in Z
2, the substiffness

lattice sums are all absolutely convergent, i.e. the numerically calculated stiffness

matrix is insensitive to the way the lattice sum is calculated. For our numerical
300 calculations we use a 30� 30 square of charges in any equivalence class.

Harmonic solutions are insensitive to any larger choice of in-plane stiffness cut-off.
In the previous section, we showed how the linearized governing equations can

be written in terms of unit cell forces and displacements. There, we explained that the

linearized equations are of infinite order, in general. A ‘formal’ cut-off of unit cell
305 interactions (out-of-plane stiffness cut-off) resulted in a difference equation of order

2mþ 1 assuming that each unit cell interacts with its first m nearest neighbour unit

cells. One should note that, in general, one is not allowed to ignore higher-order

differences (or derivatives in a differential equation). In the domain wall problem,

unbalanced forces are always calculated exactly. Using an out-of-plane stiffness
310 cut-off m, one can solve the resulting finite-order difference equation. This would

give a sequence of solutions depending on m, say Xm

� �1
m¼1

. Our numerical tests show

that for m¼ 1 and m¼ 2 solutions are almost the same (they differ by less that 0:5%

Analysis of ferroelectric domain walls in PbTiO3 11
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and the anharmonic solutions are exactly the same). Thus, we choose m¼ 1 in all the

calculations as this results in stiffness matrices with the least possible ill-conditioning.
315 We can now obtain the governing equilibrium equations as described earlier.

In light of all the symmetry assumptions, we obtain a set of ordinary difference

equations. Proceeding to linearize them as also described earlier, we obtain vector-
valued ordinary difference equations with the following form

Xm

�¼�m

A�Xnþ� ¼ Fn n � mþ 1, ð36Þ

320
Xm

�¼�m

A�ðnÞXnþ� ¼ Fn n ¼ 0, 1, . . . ,m, ð37Þ

where Xn2R
30 is the displacement vector of unit cell n and Fn2R

30 is the unbalance
force vector for the same unit cell.

The matrices A� depend on the reference configuration and, in general, are not
325 symmetric [30, 32]. Boundary equations are the governing equations for the bound-

ary atoms. In this problem, a bulk atom is an atom that does not interact with any

atom on the wall or on the left side of the wall. All the other atoms are boundary
atoms. For interactions of order m, boundary atoms are atoms with indices

n2f1, 2, . . . ,mg.
330 We solve (36)–(37) under the assumption that kXnk <1 as n!1, i.e., the

crystal goes to the bulk structure away from the domain wall. See [30] for a detailed

discussion.
Treating the boundary unit cells separately is one of the main features of our

inhomogeneous lattice statics. It should also be noted that displacements of the
335 atoms on the left side of the wall are related to those of their corresponding atoms

on the right side of the domain wall as will be explained shortly. The discrete

boundary-value problem of a 180� domain wall is solved using a direct method
presented in [30]. We will see in our numerical calculations that the a-displacement

are an order of magnitude smaller than the corresponding c-displacements. Here
340 a-displacements are displacement components perpendicular to the domain wall

and c-displacements are displacements along the tetragonal c-direction, i.e. parallel
to the macroscopic polarization.

Note that because of symmetry, displacements are nonzero only in the tetragonal

c-direction and perpendicular to the domain wall, i.e., z-components of all displace-
345 ments are zero. Meyer and Vanderbilt [16] ignore the displacements perpendicular to

the domain wall. Here, we make no such assumption and fully relax the defective
system.

3.1. Anharmonic lattice statics analysis of 180� domain walls

Anharmonic lattice statics is based on the Newton–Raphson (NR) method for
350 solving nonlinear equations. The basic idea of NR method is to look at a quadratic

approximation to the nonlinear equations in each step. In modified Newton–

Raphson method, the Hessian matrix is not updated in each iteration and instead
the initial Hessian is used. Modified Newton–Raphson is slowly and linearly

12 A. Yavari et al.



*** T&F (2006 Style) [29.5.2007–5:16pm] [1–30] [Page No. 1]
{TANDF_FPP}TPHM/TPHM_A_241779.3d (TPHM) First Proof TPHM_A_241779

convergent and a large number of iterations should be performed to get good results.
355 In our lattice statics calculations this is an efficient method as the most expensive part

of the calculations is the computation of substiffness matrices (very slowly converg-

ing lattice sums). The discrete governing boundary-value problem for a 180� domain

wall has the following form:

Pm
�¼�mA�Xnþ� ¼ Fn, n � mþ 2ðm2NÞ

Pm
�¼�mA�ðnÞXnþ� ¼ Fn, n ¼ 1, . . . ,mþ 1

kXnk <1 as n!1:

8
><

>:
ð38Þ

360 with the following symmetry relations

Xk ¼ RX�kþ1 þ R
0
X�kþ2 k ¼ �mþ 1, . . . , 0, ð39Þ

where the matrices R and R
0 have the following forms,

R ¼
eR

eR

� �
, R

0
¼

eR0
eR0

� �
, ð40Þ

where

eR ¼ diagf0, �I, �I, 0, �Ig, eR0 ¼ diagf�I, 0, 0, �I, 0g, I ¼ diagf1, 1, 1g: ð41Þ

365 In the governing equations A�ðnÞ are the boundary stiffness matrices and explicitly
depend on n. For the first iteration the discrete boundary-value problem determining

X
1
¼ X

1
n

� �
is

Pm
�¼�mA�X

1
nþ� ¼ F

0
n, n � mþ 2ðm2NÞ

Pm
�¼�mA�ðnÞX

1
nþ� ¼ F

0
n, n ¼ 1, . . . ,mþ 1

kX
1
nk <1 as n!1 :

8
><

>:
ð42Þ

370 where

F
0
n ¼ Fn B0ð Þ, ð43Þ

and B0 is the starting configuration (reference configuration).
For the next step

B1 ¼ B0 þ X
1
n

� �
, F

1
n ¼ Fn B1ð Þ: ð44Þ

375 Now the discrete boundary-value problem determining X
2
¼ X

2
n

� �
is

Pm
�¼�mA�X

2
nþ� ¼ F

1
n, n � mþ 2ðm2NÞ

Pm
�¼�mA�ðnÞX

2
nþ� ¼ F

1
n, n ¼ 1, . . . ,mþ 1

kX
2
nk <1 as n!1:

8
><

>:
ð45Þ
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Similarly, the discrete boundary-value problem determining X
kþ1
¼ X

kþ1
n

n o
is

Pm
�¼�mA�X

kþ1
nþ� ¼ F

k
n, n � mþ 2ðm2NÞ

Pm
�¼�mA�ðnÞX

kþ1
nþ� ¼ F

k
n, n ¼ 1, . . . ,mþ 1

kX
kþ1
n k <1 as n!1,

8
><

>:
ð46Þ

where

Bk ¼ Bk�1 þ X
k
n

n o
, F

k
n ¼ Fn Bkð Þ: ð47Þ

380 It is to be noted that the matrices A� and A�ðnÞ are calculated with reference to B0
and remain fixed during all the iterations.

As we do not have control on the reference configuration, in some cases, it may
be reasonable to update the stiffness matrices to ensure positive-definiteness of the

385 discrete convolution operator. Because we expect to see localized distortions, the
matrices A� will not change and it would be enough to update the boundary stiffness
matrices. Now the kth iteration would have the following form

Pm
�¼�mA�X

kþ1
nþ� ¼ F

k
n, n � mþ 2ðm2NÞ

Pm
�¼�mA

k
�ðnÞX

kþ1
nþ� ¼ F

k
n, n ¼ 1, . . . ,mþ 1

kX
kþ1
n k <1 as n!1,

8
><

>:
ð48Þ

where

A
k
�ðnÞ ¼ A�ðnÞ Bkð Þ: ð49Þ

390 We will numerically compare the harmonic and anharmonic solutions in the next
subsection.

3.2. Numerical results

In this subsection, we report some numerical results for PbTiO3. We compared Pb
395 core harmonic displacements in both Pb-centred and Ti-centred 180� domain walls

for different ranges of interaction m of representative unit cells. We observed that the
shell potential is extremely localized. Harmonic solutions for m¼ 1 and m¼ 2 differ
by less than 0:5% and the corresponding anharmonic solutions are exactly the same.
Therefore, in all the numerical calculations to follow, we use m¼ 1.

400 Anharmonic displacements of Pb and O2 in a Pb-centred 180� domain wall are
shown in figure 5. Figure 6 shows the corresponding displacements for Ti, O1 and O3
cores and shells.

The anharmonic lattice statics iterations converged after 15 iterations assuming
that force tolerance is 0.05 eV/Å. It is seen that the domain wall thickness is about

405 1.0 nm in agreement with the ab initio calculations [16] . It is seen that core-shell
relative displacement of O3 is largest and thus O3 has the most contribution to
polarization. Beyond two lattice spacings away from the domain wall all the cores
and shells move rigidly and with the same amount, i.e., away from the domain wall
the displacement field is a rigid translation. To check the effect of cut-off of difference

410 equations, we compared the anharmonic lattice statics solutions for m¼ 1 and m¼ 2
and observed that their nonlinear solutions are exactly the same. Anharmonic
displacements of Pb and O2 cores and shells for a Ti-centred 180� domain wall

14 A. Yavari et al.
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are shown in figure 7. The corresponding displacements for Ti, O1 and O3 are shown
in figure 8. Again, it is seen that the domain wall thickness is about 1.0 nm.

415 In this figure, both a-displacements and c-displacements are shown. It is seen that
a-displacements are an order of magnitude smaller than c-displacements and hence
are negligible.

Harmonic and anharmonic polarization profiles for Pb-centred and Ti-centred
180� domain walls are shown in figure 9. The polarization is not defined unambigu-

420 ously in this scale and we have associated a polarization to each unit cell [33].
For a Pb-centred domain wall, the Pb and O2 displacements are averaged for each
unit cell. For a Ti-centred domain wall, the Ti, O1 and O3 displacements are aver-
aged for each unit cell.

Energy calculations show that energies are three orders of magnitude larger than
425 the ones ab initio calculations predict. A Ti-centred 180� domain wall has an energy

about 40% higher than that of a Pb-centred domain wall. Note that ab initio calcula-
tions predict that the energy of a Ti-centred domain wall is 30% higher than that of
a Pb-centred domain wall.
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Figure 5. Anharmonic displacements of Pb and O2 cores and shells for a Pb-centred 180�

domain wall (m¼ 1).

Analysis of ferroelectric domain walls in PbTiO3 15



*** T&F (2006 Style) [29.5.2007–5:16pm] [1–30] [Page No. 1]
{TANDF_FPP}TPHM/TPHM_A_241779.3d (TPHM) First Proof TPHM_A_241779

4. 90 � domain walls in PbTiO3

430 For the 90� domain wall problem, again it is enough to have the displacements only
in two planes. Two obvious possibilities for a 90� domain wall are ABO1-centred and
O2O3-centred domain walls. However, one can see that in both these reference
configurations all atoms have nonzero unbalanced forces and these can be consid-
ered only as two convenient reference configurations, i.e., nominal domain walls.

435 We start with the ABO1-centred 90� domain wall, although this is just a matter of
choice. The reference configuration for A cores and shells is shown in figure 10. Note
that this is a nominal domain wall and we are interested in finding the relaxed con-
figuration starting from this reference configuration. Also, note that the problem we
are trying to solve is a single 90� domain wall in an infinite lattice. Our numerical
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Figure 6. Anharmonic displacements of Ti, O1 and O3 cores and shells for a Pb-centred 180�

domain wall (m¼ 1).
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440 calculations show that the a-components (perpendicular to the wall) of forces are of

the same order as c-components. However, they decay to zero faster than c-component

of forces.
Reference configuration in two planes (a) and (b) (similar to what is shown in

figure 4 for 180� domain walls) is shown in figure 11. It is possible to reduce the
445 governing equations to a 1-D problem, i.e., for each atom type it is enough to have

the displacements of cores and shells only on a line perpendicular to the domain wall.

In this case the distance between planes of equivalent atoms is

‘ ¼ c sin �, � ¼ tan�1
a

c

� �
: ð50Þ

Unlike the 180� domain wall problem, there is no symmetry relation between forces
450 and displacements on two sides of the wall. This can be seen in figure 10.

This asymmetry implies that we have to solve the governing difference equations
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Figure 7. Anharmonic displacements of Pb and O2 cores and shells for a Ti-centred 180�

domain wall.
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for n2Z. Here we take advantage of the fact that we can partition the problem into

two half space problems with constant coefficient matrices in the governing

equations. The final solution will be obtained by matching the two solutions. Let
455 us assume that the Pb, Ti and O1 atoms lying on the domain wall have the index

n¼ 0. For range of interaction m we have the following bulk governing equations

Xm

�¼�m

A�Xnþ� ¼ Fn n � mþ 1, ð51Þ

Xm

�¼�m

�A�Xnþ� ¼ Fn n � �m� 1, ð52Þ

460 where A� and �A� are the stiffness matrices of the right and left sides of the domain
wall, respectively. There are 2mþ 1 indices (unit cells) for which governing equilib-

rium equations should be written separately. For m¼ 1 and m¼ 2 these are indices

n ¼ �1, 0, 1 and n ¼ �2, �1, 0, 1, 2, respectively. For the sake of clarity, we consider
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Figure 8. Anharmonic displacements of Ti, O1 and O3 cores and shells for a Ti-centred 180�

domain wall.
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the case m¼ 1 and then generalizing the results for an arbitrary range of interaction
465 m would be straightforward.

The bulk governing equations are

A�1Xn�1 þA0Xn þA1Xnþ1 ¼ Fn n � 2, ð53Þ

�A�1Xn�1 þ
�A0Xn þ

�A1Xnþ1 ¼ Fn n � �2: ð54Þ
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Figure 9. Harmonic and anharmonic polarization distributions for (a) Pb and (b) Ti-centred
180� domain walls.
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Figure 10. Reference configuration of (a) A cores and shells and (b) O2 cores and shells for a
ABO1-centred nominal 90� domain wall.
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470 The boundary equations are

n ¼ �1: A
ð�1Þ
�1 X�2 þA

ð�1Þ
0 X�1 þA

ð�1Þ
1 X0 ¼ F�1, ð55Þ

n ¼ 0 : A
ð0Þ
�1X�1 þA

ð0Þ
0 X0 þA

ð0Þ
1 X1 ¼ F0, ð56Þ

n ¼ 1: A
ð1Þ
�1X0 þA

ð1Þ
0 X1 þA

ð1Þ
1 X2 ¼ F1: ð57Þ

475 Note that for n¼ 0 the unit cell consists of only Pb, Ti and O1 atoms. The discrete
boundary-value problem can be solved by solving the backward and forward differ-

ence equations and matching them on the domain wall.
Unlike the 180� domain wall, the left and right sides of the wall are not symmet-

480 rically related. Thus, it would not be possible to fix any atom in the core region; any

such constraint would introduce constraint forces and will lead to unphysical

solutions. We overcome the translation-invariance issue of the governing equations

by relaxing a core region and rigidly translating the two half lattices. In each

iteration, unbalanced forces are calculated exactly while displacements of each unit
485 cell are calculated assuming that the adjacent unit cells are fixed. This scheme

converged after about two hundred iterations assuming that unbalanced force
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Figure 11. Position and numbering of different atoms in a 90� domain wall in two parallel
planes.
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tolerance is 0.05 eV/Å. We find that displacements are nonzero in a core of thickness
about 8 nm and the far-field translations are zero.

4.1. Numerical results

490 Here we present some numerical examples for PbTiO3. Figure 12 shows displace-
ments of Pb cores and shells. It is seen that unit cells n>10 and n < �10 have
negligible displacements and the nonzero displacements are seen mainly for
�7 � n � 7. This means that the domain wall thickness is about 5 nm. It is also
seen that the a-displacements are about five times smaller than the c-displacements.

495 Figure 13 shows the a- and c-displacements of Ti and O1 cores and shells.
The nonzero displacements are supported on a core region of thickness of about
5 nm. Figure 14 shows the a- and c-displacements for O2 and O3 cores and shells.
Note that the unit cell n¼ 0 does not have O2 and O3 atoms. Again, domain wall
thickness is about 5 nm.

500 5. Summary and concluding remarks

We have presented detailed lattice statics calculations for 180� and 90� domain walls
in tetragonal PbTiO3. Our treatment of lattice statics is different from other treat-
ments in the literature in that it does not rely on a knowledge of force constants and
a fixed number of nearest-neighbour interactions; instead all is needed is an inter-

505 atomic potential. Our technique can be used for any collection of atoms and is not
restricted to lattices. The lattice statics analysis starts from a reference configuration,
which is a nominal defect structure. The discrete governing equations are

n

Figure 12. a- and c-displacement components for Pb cores and shells in a 90� domain wall.
n¼ 0 corresponds to atoms lying on the domain wall in the reference configuration.
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systematically constructed and then are linearized with respect to the reference con-
figuration. The resulting discrete governing equations are linear vector-valued partial

510 difference equations. Using the symmetry of the defective crystal the governing
partial difference equations are reduced. In the case of domain walls, the partial
difference equations can be reduced to ordinary difference equations. The resulting
vector-valued ordinary difference equations with non-constant coefficient matrices
are solved using a novel method developed in this paper (see also [30]).

515 For domain walls the reference configuration is decomposed into equivalence
classes, which are infinite sets of atoms of the same type lying on a plane parallel to

n

n

Figure 13. a- and c-displacement components for Ti and O1 cores and shells in a 90� domain
wall. n¼ 0 corresponds to atoms lying on the domain wall in the reference configuration.
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the domain wall. The governing equations are written in terms of interactions
of these equivalence classes and this leads to substiffness matrices defined in terms
of some lattice sums. We have carefully studied convergence of these lattice sums.

520 Our numerical studies show that shell potentials are extremely localized and this is
consistent with previous numerical and experimental studies of ferroelectric domain
walls that had suggested atomically sharp domain walls.

We have shown that fully nonlinear solutions can be calculated using a modified
Newton–Raphson iteration. The idea is to keep the initial stiffness matrices and

n

n

Figure 14. a- and c-displacement components for O2 and O3 cores and shells in a 90�

domain wall. Note that in our numbering there are no O2 and O3 cores and shells with
index n¼ 0 and this is why the graphs are broken at n¼ 0.
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525 update forces by modifying the reference configuration. In other words, having the
first harmonic solution, the reference configuration is modified by superimposing the

discrete harmonic displacement field. The new forces are calculated and the scheme is
repeated until convergence is accomplished. Convergence of this scheme requires
a stable reference configuration. Our reference configurations for both Pb-centred

530 and Ti-centred 180� domain walls are stable as the iterations converged. We studied

the structure of 90� domain walls in PbTiO3 and fully relaxed a single domain wall in
an infinite lattice. We observe that a 90� domain wall is about 5.0 nm thick.

We studied stiffness matrices in the reference configurations of 180� and 90�

domain walls and observed that substiffness matrices on the right and left sides
535 of the domain walls are different. This makes the application of discrete Fourier

transformation difficult. The harmonic solutions of a homogenized lattice, i.e.,
those obtained using the average stiffness matrices differ from those of the nonhomo-
geneous lattice by about forty percent. However, the final nonlinear solutions are
exactly the same. This shows that using the homogenized lattice is a good approxima-

540 tion. We observe very sharp domain walls in the order of 1 nm and 5 nm for 180� and
90� domain walls, respectively. This is in qualitative agreement with the ab initio
calculations of domain walls in PbTiO3 and also with the recent experimental obser-
vations. We emphasize that in our method we do not assume any artificial periodicity

and analyse single 180� and 90� domain walls.
545 The methods and accomplishments of this paper can be summarized as follows.

. The discrete governing equations of a defective multilattice are systematically
constructed with no restrictions on the range of interactions.

. The (nonlinear) discrete governing equations are linearized about an arbitrary
reference configuration and not necessarily about the bulk crystal.

550 . The order of the governing vector-valued partial difference equations are
systematically reduced exploiting the symmetry of the defective multilattice.
In the case of domain walls, the discrete governing equations are reduced to
vector-valued ordinary difference equations.

. This paper formulates the problem of domain walls as a discrete boundary-
555 value problem. The discrete boundary-value problem of a single 180� domain

wall in an infinite crystal is solved analytically.
. The fully nonlinear solutions are obtained by using modified Newton–Raphson

iterations.
. Several numerical examples are given for PbTiO3. We observe that 180� and

560 90� domain walls are about 1 nm and 5 nm thick, respectively.

The method developed here has several potential applications. For example, this

method can be used in understanding the interaction of different types of defects, e.g.,
effect of oxygen vacancies on domain wall structure. This method can also be used in
studying more complicated defects like steps in 180� domain walls. An interesting

565 extension of this method is to consider the effect of finite temperatures on defect

structure, i.e., a generalization of lattice dynamics for defective crystals. This would
be particularly important as molecular dynamics simulations, even if available for
a defective system, are not reliable for low temperatures. These would be the subject
of future work and will be discussed in future communications.
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575 A. Long-range forces

As ferroelectric perovskites are ionic crystals, Coulombic interactions play a key role

in determining their structure and equilibrium configurations. Unlike all the existing

methods, in this paper we do not assume any periodicity and consider a single defect

in an infinite crystal. Therefore, the calculation of the energy, forces and stiffnesses
580 should be studied carefully. In this appendix, we briefly discuss the standard methods

of calculating the energy and force for Coulombic interactions and some recent

developments for nonperiodic systems and numerically show that care must be

taken in the case of nonperiodic systems.
Long-range forces are forces that come from Coulombic interactions. The usual

585 practice is to first assume a periodic system and find an expression for the energy of a

unit cell using Ewald summation technique and then find the force vectors by taking

the appropriate partial derivatives. However, the problems we study in this paper are

not periodic, and we have to explore other methods. We use a method proposed by

Wolf and his coworkers [25], and examine it against the Ewald summation in the
590 following.

In a recent paper, Wolf et al. [25] studied the Madelung problem, i.e., the diver-

gence associated with the r�1 term in the Coulomb potential of condensed ionic

systems, by direct summation. Earlier Wolf [34, 35] had observed that the effective

Coulombic potential of ions in condensed systems is short-ranged and falls off as r�5.
595 Based on this and similar observations by others, Wolf et al. [25] developed a numer-

ical method for calculating the Madelung energy by direct summation in direct space.

Their idea is to consider spherical shells of increasing radii and calculate the electro-

static energy of corresponding neutralized spherical balls. It is assumed that the total

charge of a given spherical ball is concentrated on its boundary sphere instead of in
600 a layer of thickness equal to the length of the shift vector (for a multilattice of two

simple lattices like NaCl). For NaCl lattice, they numerically show that the sequence

of energies of the neutralized spherical balls approaches to the Madelung energy of

the infinite lattice in an oscillatory way. They show that neutralizing a spherical ball

is equivalent to radially projecting every charge inside the ball on the boundary
605 sphere with the opposite charge. It is important to note that their projection is not

unique; while putting the neutralizing charges anywhere on the sphere gives the same

Madelung energy, the forces (and higher derivatives of the energy) depend on the

position of neutralizing charges. Further, it is not clear to us why Wolf ’s projection

should give the correct forces. However, in all the existing numerical examples it
610 gives the correct answer.
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A1. Wolf ’s method

Let us briefly review the method introduced by Wolf et al. [25] for a classical

Coulombic potential. Consider a charge i with position vector xi (this could be a

core or a shell charge) and a spherical shell with radius Rc centred at xi. We consider
615 only those charges that lie inside the sphere. In general, the collection of charges

inside the sphere is not charge neutral. The energy of ion i for the cut-off radius Rc is

EiðRcÞ ¼
1

2

X

j 6¼i

jxijj < Rc

QiQj

jxijj
, ð58Þ

where xij ¼ xi � xj is the relative position vector. It should be noted that this energy
does not converge to the correct Madelung energy as Rc!1 because of the lack

620 of charge neutrality. Wolf et al. [25] resolve this problem by considering a sequence

of charge-neutralized spheres. It is assumed that the net charge is concentrated on the

boundary of the sphere. The neutralized potential can be written as

E
neut:
i ðRcÞ ¼

1

2

X

j

jxijj < Rc

QiQj

Rc

: ð59Þ

Note that this includes the term i¼ j. Also note that the net charge is

�QiðRcÞ ¼
X

j

jxijj < Rc

Qj: ð60Þ

625 Neutralizing a given sphere is equivalent to radially projecting each charge on the
sphere with the opposite sign.

Remark: Given two point charges qi and qj located at points xi and xj, respectively,

Wolf et al. [25] define a shifted Coulomb potential by

VshðrijÞ ¼
qiqj=rij � qiqj=Rc rij < Rc,

0 rij > Rc:

	
ð61Þ

630 They then rewrite the shifted potential as

VshðrijÞ ¼
qiqj=rij � limrij!Rc

qiqj=rij rij < Rc,

0 rij > Rc,

	
ð62Þ

which is a bit misleading as this should be written as

VshðrijÞ ¼
qiqj=rij � lim�!Rc

qiqj=� rij < Rc,
0 rij > Rc:

	
ð63Þ

635 In their equation (3.17) they argue that
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dVshðrijÞ

drij
¼ �

qiqj

r2ij
þ
qiqj

R2
c

rij < Rc: ð64Þ

This means that they implicitly assume in (62) that

d

drij
lim

rij!Rc

qiqj
rij

� �
¼ lim

rij!Rc

d

drij

qiqj
rij

� �
, ð65Þ

which is mathematically meaningless. Note that accepting (64) implies that for
640 rij < Rc

VshðrijÞ ¼
qiqj
rij
þ
qi qjrij=Rc

� �

Rc

, ð66Þ

i.e., for calculating force the projected charge for qj is qjrij=Rc. This means that in
Wolf’s method energy and force are calculated using two different auxiliary systems,

one with neutralizing charges �qj for energy and one for auxiliary charges qjrij=Rc

645 for force. One should also note that the energy is invariant with respect to any

rearrangement of neutralizing charges on the sphere of radius Rc.
Now considering the two separate auxiliary neutralized systems of charges, the

electrostatic energy of the charge i is

E
tot:
i ðRcÞ ¼

1

2

X

j 6¼i

jxijj < Rc

QiQj

jxijj
�
1

2

X

jxi jj<Rc

QiQj

Rc

: ð67Þ

650 The force (calculated by Wolf’s method) on charge i can be written as

f
i
¼ �

1

2

X

j6¼i

jxijj < Rc

@

@xi
QiQj

jxi jj
þ
1

2

X

j6¼i

jxijj < Rc

@

@xi
QiQj

jxi jj

� �

jxi jj¼Rc

: ð68Þ

A2. Damped Wolf’s method

We explain the damped Wolf’s method for the classical Coulombic potential and

numerically investigate its validity in terms of convergence of the energy and force
655 for tetragonal PbTiO3 using the SC classical shell potential. In the damped method

the complementary error function is used as the damping function. The only reason

for choosing this function, besides the required properties it has, is that this is the

same damping function used in the classical Ewald summation method. The energy

of the ith charge can be written as

E
i
¼

1

2

X

j6¼i

QiQj erfcð�jxijjÞ

jxijj
þ
1

2

X

j6¼i

QiQj erfð�jxijjÞ

jxijj
, ð69Þ

660 where � is a damping parameter and erfcðxÞ ¼ 1� erfðxÞ is the complementary error
function. Now the idea is to decompose the energy into two parts such that one part
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is negligible. The above decomposition does not have this property because the

second term becomes very large for large values of �. However adding the term
665 corresponding to i¼ j and subtracting it from the first term would make (69) what

we need. Thus

E
i
sphereðRcÞ �

1

2

X

j 6¼i

jxijj < Rc

QiQj erfcð�jxijjÞ

jxijj
�

�ffiffiffi
p
p Q2

i : ð70Þ

The energy of the neutralizing charges is

E
i
neutðRcÞ ¼

1

2

Qi�QiðRcÞ erfcð�RcÞ

Rc

: ð71Þ

670 Therefore, the energy for a cut-off radius Rc is

E
i
ðRcÞ ¼

1

2

X

lj 6¼i

jxijj < Rc

QiQj erfcð�jxijjÞ

jxijj
�
QiQj erfcð�RcÞ

Rc

� �

�
erfcð�RcÞ

2Rc

þ
�ffiffiffi
p
p

� �
Q2

i : ð72Þ

A3. Comparison between the Wolf and Ewald methods

We have performed the following numerical tests for tetragonal PbTiO3. The calcu-

lated unit-cell energy using Wold’s method, Ewald and the damped Wolf’s method
675 for different values of the damping parameter are compared in figure 15. It is inter-

esting that in the damped Wolf’s method the energy is very sensitive to the damping

parameter and there is a very small interval of � that gives the correct energy.

EEwald

E

Rc/a
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Damped wolf α = 0.01
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Damped wolf α = 0.03
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Damped wolf α = 0.1

Ewald

Figure 15. Unit cell electrostatic energy in PbTiO3 using Ewald, Wolf and damped Wolf
methods.
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The optimum values are � ’ 0:01. Wolf’s method does not have a good convergence
as the calculated energy does not converge to its correct values even for Rc ¼ 14a.

680 The other thing to note is that convergence is not oscillatory unlike that of the NaCl
lattice studied by Wolf and his co-workers.

Pb core forces calculated using Wolf, Ewald and damped Wolf are compared in
figure 16. Here a larger interval of � is acceptable and the optimum value is � ’ 0:2.
Wolf’s method is very slowly convergent and hence not practically useful.
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