
Review of Elasticity Equations
Linear, homogeneous, isotropic material 

behavior.



3D Isotropic Stress/Strain Law
Three-dimensional Hooke’s Law: stress/strain relationships for an 

isotropic material
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As you recall, an isotropic body can 
have normal stresses acting on each 
surface: σx

 

, σy

 

, σz

When the only normal stress is σx

 
this causes a strain along the x-

 
axis 

according to Hooke’s Law
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3D Isotropic Stress/Strain Law

Note, that a tensile stress in the x direction, produces a negative strains in 
the y and z directions This is called the Poisson effect.

These negative strains are 
computed via:

where:

E
 

is Young’s Modulus 
ν

 
is Poisson’s ratio
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3D Isotropic Stress/Strain Law

Since the material is isotropic, application of normal stresses in the x, y, and z 
directions generates, a total normal strain in the x direction:
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3D Isotropic Stress/Strain Law

The total normal strains in the y and z directions can be 
determined in a similar manner:
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3D Isotropic Stress/Strain Law

Rearranging the above equations and yields 3 equations relating normal 
stresses and strains :

These equations can also be written in matrix notation: {σ}=[D]{ε}
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Shear Stress/Strain Relationships

Hooke’s law also applies for shear stress and strain: τ=Gγ
 

where G is the 
shear modulus, τ

 
is a shear stress, and γ

 
is a shear strain. For 3-D this 

results in a further 3 equations.
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Stress-Strain Relationships
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3D Stress-Strain Matrix
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Strain-Displacement

(u,v,w) are the x, y and z 
components of displacement
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Stress Equilibrium Equations
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Two-dimensional Elements  Plane Stress/Strain 
Stiffness Equations



Two-dimensional Elements

1.

 

Thin 2D
 

elements .
2.

 

Two coordinates to define position.
3.

 

Elements connected at common nodes and/or along common 
edges.

4.

 

Nodal compatibility enforced to obtain equilibrium equations
5.

 

Two basic types
1.

 
Plane stress

2.
 

Plane Strain



Introduction to 2-D Elastic Stress Analysis

Two-dimensional stress analysis allows the engineer to determine 
detailed information concerning deformation, stress and strain, 
within a complex shaped two-dimensional elastic body.

Assumptions
Deformations and strains are very small
Material behaves elastically – stress and strain are related 
by Hooke’s Law.
Hooke’s Law is a matrix equation relating 3 normal 
stresses and one shear stress to 3 normal strains and one 
shear strain
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Introduction to 2-D Elastic Stress Analysis

2-D Stress analysis allows the engineer to model complex 2-D elastic 
bodies by discretizing

 
the geometry with a mesh of finite elements.

Modeled as



Introduction to 2-D Stress 
Analysis 

2-D planar elements are used to model complex 2-D geometries. They 
must connect at common nodes to form continuous structures. They

 are extremely important in the following analysis types:

Plane Stress Plane Strain Axisymmetric



Two-dimensional 
State of Stress and Strain



Plane Stress

Plane Stress, is defined to be a state of stress in which the normal 
and shear stresses perpendicular to the x-z plane are zero, the y-

 thickness is very small, and the constraints (Rx,Rz) and loads act 
only in the x-z plane and throughout the y-thickness. 

•σz

 

= 0

• τxz

 

= 0, τyz

 

=0

•
 

‘thickness’, y dimension, is very 
small compared to x and z dimensions

•Loads act only in the x-z plane and 
throughout the y-thickness
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Plane Stress Problem:
Plate with a Hole
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Stress-Strain Relationships
For Plane-Stress:

 
σz

 

= 0, τxz

 

= 0, τyz

 

=0
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Plane StressPlane Stress
 Stress-Strain Matrix

[ ] ( )

1 0
ED 1 0

1
10 0

2

⎡ ⎤
⎢ ⎥ν
⎢ ⎥

= ν⎢ ⎥− ν ⎢ ⎥− ν
⎢ ⎥
⎣ ⎦

}{]D[}{or}]{D[}{ 1 σεεσ −==



Plane Strain
Plane Strain, is defined to be a state of strain in which 

the normal strain in the y-direction, εy

 

and the shear 
strains, γxy

 

and γyz

 

are zero. Note, the y-thickness of 
the body is very large, and constraints and loads act 
in x-z plane throughout thickness.

•The ‘thickness’, y-dimension of the body is 
very large (“infinite”). Loads and 
constraints act only in the x-z plane through 
a unit y-thickness

•
 

Forces are defined as force per unit y-
 length

•A plane stress state, where y is a very 
large value, does not approximate plane 
strain conditions!

• εz

 

= 0, γxz

 

= 0, γyz
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Plane Strain Problem:
Dam Subjected to Horizontal Load



⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

γ

ε
ε

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ν−νν
νν−ν
ννν−

ν−ν+
=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

τ
τ
τ
σ
σ
σ

ν−

ν−

ν−

0
0

0

00000

00000

00000
0001
0001
0001

)21)(1(
E

xy

y

x

2
)21(

2
)21(

2
)21(

xz

yz

xy

z

y

x

Stress-Strain Relationships
For Plane-Strain: εz

 

= 0, γxz

 

= 0, γyz
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Plane StrainPlane Strain
 Stress-StrainMatrix
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Stiffness Matrix 
Formulations

Stress-Strain Relationships

Strain-Displacements Relationships

Deformation-Displacement Relationships
(Shape Functions)

Minimum Energy Principle



Displacements and rotations of lines of an element in the x-y plane

Strain-Displacements 
Relationships
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Potential Energy 
Approach
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Element Type in 2D Analyses

Constant Strain Triangular (CST) Element (3 nodes)

Linear Strain Triangular (LST) Element (3 nodes)

Four Node Rectangular Element (4 nodes)

Four Node Quadrilateral Element (4 nodes)



Constant Strain Triangular 
(CST) Element

Element Type in 2D Analyses

Four Node 
Rectangular Element



Four Node Iso-parametric 
Quadrilateral Element

- Four-node iso-parametric finite element is one of 
the most commonly used elements.
- Eight unknowns: two displacements per each node.
- Iso-parametric: the same interpolation method is 
used for displacement and geometry.
- Mapping relation from physical element to 
reference element.
- Numerical integration



Iso-parametric Mapping
 Lagrange interpolation method (Shape functions)



Linear Functions

1.

 

Ensures compatibility between elements.
2.

 

Displacements vary linearly along any line.
3.

 

Displacements vary linearly between nodes.
4.

 

Edge displacements are the same for adjacent elements if 
nodal displacements are equal.



Isoparametric
 

mapping: interpolate the 
geometry using shape functions



Interpolation of Displacement



Displacement-strain relationship



Displacement-strain relationship
J is Jacobian matrix

Derivatives of shape functions with 
respect to coordinate directions are 
required. Since shape functions 
depend on ζ and η coordinates, chain 
rule of differentiation must be used



The Material Matrix



Finite Element Matrix Equation



Numerical Integration

- Numerical integration evaluates the integrals involved in the 
element stiffness matrix and distributed force.
- In the finite element literature, the Gauss quadrature is usually 
preferred because it requires fewer function evaluations as 
compared to other methods.
- In the Gauss quadrature, the integrand is evaluated at 
predefined points (called Gauss points). The sum of this 
integrand values, multiplied by appropriate weights (called 
Gauss weight) gives an approximation to the integral:



Gauss quadrature



Two-dimensional Gauss integration



General Meshing Guidelines
 and Accuracy



General Considerations in Meshing

When choosing elements and creating meshes for FEA 
problems users must make sure that

Chosen mesh size and density are optimal for the problem (to 
save computational time)
Chosen element types are appropriate for the analysis type 
performed (for accuracy)
Element shapes do not result in near singular stiffness matrices
Chosen elements and meshes can represent force distributions 
properly



Correct Choice of Elements

Choose element types that are appropriate for the 
loading and stress conditions of the problem
Make sure that the elements chosen capture all 
possible significant stresses that may result from the 
given loading, geometry, and boundary conditions

Slender beam; 
beam elements

Thick beam (shear present); 
quadrilateral plane stress or 
plane strain elements



Aspect Ratio

For a good mesh all elements must have a low aspect 
ratio

Specifically 

where b
 

and h
 

are the longest and the shortest sides of 
an element, respectively

b
h

2 4b
h
≤ −



Element Shape

Angles between element sides must not approach 0°
or 180°

Worse Better



Mesh Refinement

Finer meshing must be used in regions of expected 
high stress gradients (usually occur at 
discontinuities)
Mesh refinement must be gradual with adjacent 
elements of not too dissimilar size
Mesh refinement must balance accuracy with 
problem size

Discontinuities



Dissimilar Element Types

In general different types of elements with different 
DOF at their nodes should not share global DOF (for 
example do not use a 3D beam element in 
conjunction with plane stress elements)



Equilibrium and Compatibility

The approximations and discretizations generated 
by the FE method enforce some equilibrium and 
compatibility conditions but not others

Equilibrium of nodal forces and moments is always 
satisfied because of 

Compatibility is guaranteed at the nodes because of the 
way K is formed; i.e. the displacements of shared nodes on 
two elements are the same in the global frame in which the 
elements are assembled

=KU F



Equilibrium-Compatibility (cont’d)

Equilibrium is usually not satisfied across inter-element 
boundaries; however discrepancies decline with mesh 
refinement

1 2

along this boundary
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Stresses at shared nodes 
are typically averaged over 
the elements sharing the 
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Principal Stresses
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