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Abstract

Based on the the Hybird wave time-domain hypersingular integral equation-lattice Boltzmann 

method, the earthquake fault slip problem in the coseismic process under multi temporal-spatial scales 

and coupled electromagnetothermoforce fields have been studyed under parallel CPU-GPU system, the 

main achievement progress include:

1. An extended hypersingular intergro-differential equation (E-HIDE) method for modeling the 

3D interface crack problem in fully coupled electromagnetothermoelastic anisotropic 

multiphase composites under extended electro-magneto-thermo-elastic coupled loads through 

theoretical analysis and numerical simulations. Based on the extended boundary element 

method, the 3D interface crack problem is reduced to solving a set of E-HIDEs coupled with 

extended boundary integral equations, in which the unknown functions are the extended 

displacement discontinuities. Then, the behavior of the extended singular stress indices around 

the interface crack front terminating at the interface is analyzed by the extended main-part 

analysis. The extended stress intensity factors near the crack front are defined. In addition, a 

numerical method for a 3D interface crack problem subjected to extended loads is proposed, in 

which the extended displacement discontinuities are approximated by the product of basic 

density functions and polynomials. Finally, the radiation distribution of extended stress 

intensity factors at the interface crack surface are calculated, and the results are presented 

toward demonstrating the applicability of the proposed method.

2. A new and accurate way of theoretical and numerical description of the extended 3D fluid 

(electromagnetic and flow) driven crack progression in co-seismic slip under P- and S-waves

was reported. First, based on the viscous fluid flow reciprocal work theorem, the hybrid

hypersingular integral equation (HIE) method proposed by the author was defined by combined 

with the coupled extended wave time-domain HIE and the extended diffused interface phase 

field method. The general extended 3D fluid flow velocity wave solutions are obtained by the 

extended wave time-domains Green’s function method. The 3D extended dynamic fluid driven 

crack modeling under fully coupled electromagnetothermoelastic P- and S-wave and flow field 

was established. Then, the problem is reduced to solving a set of extended hybrid HIEs coupled 

with nonlinear boundary domain integral equations, in which the unknown functions are the 

general extended flow velocity discontinuity waves. The behavior of the general extended 

singular stress indices around the crack front terminating is analyzed by hybrid time-domain 
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main-part analysis. The general extended singular pore stress waves (SPSWs) and the extended 

dynamic stress intensity factors (DSIFs) on the fluid driven crack surface are obtained from 

closed-form solutions. In addition, a numerical method for the problem is proposed, in which 

the extended velocity discontinuity waves are approximated by the product of time-domain 

density functions and polynomials. The extended DSIFs and general extended SPSWs are 

calculated, and the results are presented toward demonstrating the applicability of the proposed 

method.

3. Introduces a hybrid hypersingular integral equation � lattice Boltzmann method (HHIE�LBM) 

for analyzing extended 3D flow driven pore � crack networks problem in various porosity 

composites. First, the extended hybrid electronic � ionic, thermal, magnetic, electric and force 

coupled fields’ pressure and velocity boundary conditions for HHIE�LBM model is established, 

and the closed form solutions of extended distribution functions are given. Second, an extended 

3D flow driven pore � crack networks problem in various porosity composites is translated into 

a coupled of HHIE�LBM equations. Third, the extended dynamic stress intensity factors 

(EDSIFs) are calculated by using the parallel numerical technology and the visualization 

results are presented. Last, the relationship between the EDSIFs and the differential porosity 

are discussed, and several rules have been found, which can be utilized to understand the 

extended fluid flow mechanism in various porosity composites and analyze the extended fluid 

flow varying mechanism on coseismal slip.

Keywords: Hypersingular Integral equation; Lattice Boltzmann Method; Parallel 

CPU&GPU;Extended coseismic fault mechanisum; Multi temporal-spatial scales; Coupled 

electromagnetothermoforce fields.
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Chapter 1:Mixed-mode stress intensity factors of 3D interface crack 
in fully coupled electromagnetothermoelastic anisotropic multiphase 

composites

Abstract
This contribution presents a extended hypersingular intergro-differential equation (E-HIDE)

method for modeling the 3D interface crack problem in fully coupled electromagnetothermoelastic 

anisotropic multiphase composites under extended electro-magneto-thermo-elastic coupled loads 

through theoretical analysis and numerical simulations. First, based on the extended boundary 

element method, the 3D interface crack problem is reduced to solving a set of E-HIDEs coupled 

with extended boundary integral equations, in which the unknown functions are the extended 

displacement discontinuities. Then, the behavior of the extended singular stress indices around the 

interface crack front terminating at the interface is analyzed by the extended main-part analysis. 

The extended stress intensity factors near the crack front are defined. In addition, a numerical 

method for a 3D interface crack problem subjected to extended loads is proposed, in which the 

extended displacement discontinuities are approximated by the product of basic density functions 

and polynomials. Finally, the radiation distribution of extended stress intensity factors at the 

interface crack surface are calculated, and the results are presented toward demonstrating the 

applicability of the proposed method.

Keywords: 3D interface crack; Boundary element method; Fully coupled 

electromagnetothermoelastic anisotropic multiphase composites; Hypersingular intergro-

differential equation method; Extended stress intensity factors.

1. Introduction
The development of piezoelectric/piezomagnetic composites has its roots in the early work of 

(Davis, 1974, Jordan and Eringen, 1964a,b; Tinkham, 1974; Vandenboomgaard, et al., 1976a,b).

Nowadays, electromagnetothermoelastic coupled multiphase composites (EMTE-CMCs) have 

wide range applications in science and engineering such as space planes, supersonic airplanes, 

rockets, missiles, nuclear fusion reactors and submarines. Fully coupled 

electromagnetothermoelastic anisotropic multiphase composites (FC-EMTE-AMCs) are special 

EMTE-CMCs consisting of two constituent parts whose composition change continuously along

one direction. The microstructure is usually heterogeneous and the dominant failure mode is the 

crack initiation and propagation from the inclusions. The oscillation singularity as well as 

overlapping of crack surfaces near the crack tip makes it much more difficult exactly to solve the 

equations compared with the cases of the ordinary cracks in EMTE-CMCs. 
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In the field of common materials, using line integral and finite element method, Khandelwal and 

Chandra Kishen (Khandelwal and Chandra Kishen, 2008) predicted the stress intensity factors 

(SIFs) for 2D interface crack problem under arbitrary thermal loading in dissimilar materials. 

Pindra, et al., (Pindra, et al., 2008) studied the deformation of the front of a semi-infinite 3D 

interface quasistatically propagating crack problem in an infinite heterogenceous elastic body. 

Based on finite element method, the effect of interaction between an interfacial crack and a 

microcrack in ceramic/aluminum bi-materials is analyzed by Belhouari et al., (Belhouari, et al.).

In the field of multiphase composites,  Singh, et al., (Singh, et al., 2008) analyzed 2D anti-plane 

permeable interface crack problem under combined out of plane mechanicals and in-plane 

electrical loads for two bonded dissimilar graded piezoelectric half-space, and obtained the 

relationship between SIFs and material parameters. With boundary element method, Zhao, et al., 

(Zhao, et al., 2008) studied arbitrary planer interface crack in 3D transversely isotropic 

magnetoelectroelastic bimaterials.  Correa, et al.,(Correa, et al.) analyzed fibre-matrix interface 

crack growth in composites under transverse compression by boundary element method. With finite 

element method, Mankour, et al.,  (Mankour, et al.) analyzed the 2D interface crack between two 

dissimilar isotropic elastic materiasls (ceramic/metal). Using the integral transform, singular 

integral equation methods and the theory of residues, a 2D crack crossing the interface of 

functionally graded layered structure was studied analytically by Guo and Noda (Guo and Noda, 

2008) , and  the variations of the SIFs with nonhomogeneity constants are depicted when the crack 

moves from one layer into another layer. 

However, relatively little work has been done on 3D interface crack problem in fully coupled 

electromagnetothermoelastic anisotropic multiphase composites. This seems to be due mainly to 

the present limitations on practical methods (such as accurate and efficient mathematical modeling) 

and on theoretical aspects (accurate 3D formulations of dislocation shielding and image force). 

These problems require a general and accurate theoretical method. The hypersingular integral 

method combined with the finite-part integral method (Zhu and Qin, 2007; Erdogan, 1978;

Ioakimidis, 1982; Qin and Tang, 1993), provides an efficient method for analyzing this kind of 3D 

crack propagation problem.

In the present paper, based on  the previous work (Zhu and Qin, 2008a,b; Zhu and Qin, 2007a,b), a

extended hypersingular intergro-differential equation (E-HIDE) method for modeling 3D interface 

crack problem in FC-EMTE-AMCs under extended fully coupled loads (the mechanical load, the 

electrical load, the magnetic load and the thermal load) is proposed for the first time. First, based 

on the extended boundary element method and extended boundary conditions, the 3D interface 

crack problem in FC-EMTE-AMCs is reduced to solving a set of E-HIDEs coupled with extended 

boundary integral equations, in which the unknown functions are the general extended 

displacement discontinuities (the displacement discontinuity, the electric discontinuity, the 
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magnetic discontinuity, and the thermal discontinuity). Then, the behavior of the general extended 

singular stress indices (the stress index, the electric density index, the magnetic density index, and 

the thermal density index) around the interface crack front terminating at the crack surface is 

analyzed by the extended main-part analysis method of E-HIDEs. The extended stress intensity 

factors (the stress intensity factors , and , the electric intensity factor , the magnetic 

intensity factor , and the thermal intensity factor ) are thus defined. In addition, a numerical 

method of solving the E-HIDE for 3D interface crack in FC-EMTE-AMCs subjected to extended 

coupled loads is proposed, in which the extended displacement discontinuities are approximated by 

the product of the extended basic density functions and polynomials. Finally, the radiation 

distribution of extended stress intensity factors for fully coupled electromagnetoelastic fields at the

interface crack surface are analyzed as functions of crack shape, spatial location and materials 

parameters. The relationship between extended stress intensity factors and the electro-magneto-

thermo-elastic coupling effects is analyzed. The numerical results are then presented toward 

demonstrating the applicability of the proposed method.

2. Basic equations 
The linear governing equations and constitutive relations (Aboudi, 2001; Perez-Aparicio and Sosa, 

2004) can be expressed by tensor forms 

(1)

In the present paper, summation from 1 to 3 over repeated lowercase, and of 1 to 6 in uppercase su

bscripts is assumed, and a subscript comma denotes the partial differentiation with respect to the ex

tended coordinates (i.e., or ). 

In addition, the combined constitutive equation is written as

(2)

The definitions of , , , , , , , , , , , , , , , , , , ,

, , , , , , , , and  are given in the reference Zhu and Qin (Zhu and Qin, 2007a,b).

3. Hypersingular integral equation for an arbitrary 3D crack 
Consider the FC-EMTE-AMCs containing a 3D stochastic crack as shown in Fig.1. A fixed global 

rectangular Cartesian system (i=1,2,3) is chosen. Assume that the stochastic crack 

is subjected to remote the mechanical loads , the electrical loads , the magnetic 

loads and the thermal loads , respectively. The local rectangular Cartesian system 

are chosen, the stochastic crack is assumed to be in the  plane and normal to the axis, the 

angle between the fixed  global  axis and local Cartesian is defined as .
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Fig.1.1. an arbitrary 3D crack in fully coupled electromagnetothermoelastic anisotropic multiphase composites

Using the EMTE form of the Somigliana identity, the extended displacement, , at interior 

point is expressed as

   (3)

where is the domain occupied by the FC-EMTE-MCs,  is the external boundary, is the 

extended elastic tractions on boundaries, and are the fundamental solutions.

Using constitutive Equation (2), the corresponding extended stresses, , is expressed as

(4)

Let the source point p be taken to the boundary and represented by P, applying the extended 

impermeable boundary conditions on the dislocations surfaces

(5)

where superscripts + and – denote the upper and lower dislocation surface, respectively. The

hypersingular integral equations can be obtained as

(6)
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(7)

(8)

where , , and can obtained from the solution for the loads of the solids...

4. Hypersingular intergro-differential equations for 3D interface crack

When and , the crack is located in the interface of  FC-EMTE-MCs , and the 
crack type is become a interface crack, as shown in Fig.2.

Fig.1.2. an arbitrary 3D interface crack in fully coupled electromagnetothermoelastic anisotropic multiphase composites

Using the Eq. (4) and boundary conditions Eq.(5), the hypersingular intergro-differential equations 

for 3D interface crack for FC-EMTE-MCs can be reduced to

(9)

(10)

(11)

5. Extended singularity and extended stress intensity factors near the crack front 
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In the interest of investigating the singularity of the crack front, consider a local coordinate system 

defined as , in which the -axis is the tangent line of the crack front at point , the -axis 

is the internal normal line of the crack plane, and the -axis is the normal of the crack. Then the 

extended incremental displacement discontinuities gradient of the crack surface near a crack front 

point  can be expressed as

(12)

where is non-zero complex constant related to point , and are represents the singular 

indices at the crack front. Consider a small semi-circle domain on the dislocation surface that 

includes point . Using the main-part analytical method given by(Zhu and Qin, 2007a,b; Qin and 

Tang, 1993), the singular indices are obtained as 

(13)

where , , are equivalent shear module and equivalent Poisson's ratio, respectively. 

The extended stress intensity factors are defined as

(14)

(15)

(16)

(17)

(18)

where r is the distance from point p to the dislocation front point .

6. Numerical method
In the procedure outlined above, the main bulk of the numerical work lies in the evaluation of the 

Eqs.(9-11). As we known, the most difficult parts are the hypersingular integral for those parts will 

decided the accurate of the numerical results.  Note that the kernel functions  are of Gauss-

Chebyshev type and may be relative easily be evaluated. The extended displacement discontinuities 

unknown functions can be written as

(19)

where  can be defined as follows

(20)

(21)
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(22)

and , are unknown constants. Substituting Eq.(19) into Eqs.(9-

11), a set of algebraic equations for unknown can be obtained

(23)

The non-dimensional extended stress intensity factors of the 3D interface crack front  are 

defined as

(24)

(25)

7. Numerical results and discussion
In this section, the numerical results and discussions described in this paper are used in analyzing 

3D interface rectangle crack problem under fully coupled electromagnetothermoelastic fields. The

non-dimensional independent material constants are listed in Tab.1 in the reference Zhu and Qin 

(Zhu and Qin,  2007a). Consider a 3D rectangular interface crack subjected to the mechanical 

loads , the electric loads  and the magnetic loads  in infinity.

7.1 Convergence of numerical solutions

In the case of crack shape ratio is b/a=1, the collocation points are , the stress 

intensity factors  at crack surface as a function of coordinate ( ) are shown in Tab.1 

and compared with those given by (Qin and Noda, 2003; Wang and noda, 2001; Zhu and Qin, 

2007a). Due to the symmetry, only the numerical results of stress intensity factors  for 

( ) and ( ) are given. The simulated results show 

that  on ( ) side decrease with increasing ( ) when

( ), but increase with increasing ( ) when 

( ). reach a maximum value when ( ), and 

reach a minimum value when ( ). 
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Table.1.1. Convergence of SIFs for  and at ( ), ,

      ( ) 0/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

(Zhu and Qin, 2007) 0.7536 0.7464 0.7374 0.7244 0.7067 0.6829 0.6512 0.6092 0.5503 0.4493

(Qin and Noda, 2003) 0.7534 0.7462 0.7379 0.7255 0.7072 0.6821 0.6497 0.6090 0.5521 0.4464

(Wang and noda, 2001) 0.7534 0.7465 0.7376 0.7245 0.7066 0.6828 0.6512 0.6086 0.5492 0.4536

(Zhu and Qin, 2007) 0.8781 0.8710 0.8617 0.8479 0.8290 0.8039 0.7700 0.7232 0.6576 0.5541

(Zhu and Qin, 2007) 0.9903 0.9809 0.9686 0.8506 0.9263 0.8944 0.8526 .07978 .07240 0.6020

In the case of , the numerical results of dimensionless stress intensity factors with 

increasing the polynomial exponents are given in Tab.2 for different number of collocation points, 

It is shown that the results are convergent, and the collocation point number 20  20 and the 

polynomial exponents M=N=13  are enough for satisfied result precision in this case. 

In general, too large polynomial exponents can’t give reliable results. The polynomial exponents M,

N depend on the collocation point number. For the polynomial exponents M=N=15, the results of

the collocation point number 20 � 20 are not good, but the ones of the collocation point number 30

� 30 are satisfied.

Table.1.2. Convergence of SIFs for and at ( ),

      ( ) 0/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

m=n=13 0.7536 0.7467 0.7377 0.7246 0.7066 0.6829 0.6521 0.6105 0.5496 0.4405
m=n=11 0.7532 0.7463 0.7373 0.7242 0.7062 0.6825 0.6518 0.6102 0.5493 0.4403
m=n=9 0.7539 0.7470 0.7380 0.7249 0.7069 0.6832 0.6524 0.6107 0.5498 0.4407

m=n=13 0.0121 0.0119 0.0117 0.0114 0.0110 0.0105 0.0099 0.0089 0.0077 0.0059
m=n=11 0.0120 0.0119 0.0117 0.0114 0.0110 0.0105 0.0098 0.0089 0.0077 0.0058

m=n=9 0.0118 0.0117 0.0114 0.0112 0.0108 0.0103 0.0096 0.0087 0.0076 0.0057

m=n=13 0.0000 0.1998 0.3097 0.4096 0.5095 0.6293 0.7492 0.8891 1.0489 1.1987

m=n=11 0.0000 0.1998 0.3097 0.4096 0.5194 0.6393 0.7592 0.9090 1.0589 1.1987
( 100)

m=n=9 0.0000 0.2098 0.3097 0.4196 0.5294 0.6493 0.7892 0.9390 1.0888 1.1987

7.2 Varying with the material parameter 

When material parameter changed, it is the case of a 3D surface crack in two different materials 

interface. Now the polynomial exponents are taken as M=N=13, and the collocation point number 

is 20  20.  Figs 3 and 4 give the stress intensity factors and as a function of and

for different ratios of b/a. When crack shape b/a fixed, increase as the  increases, while 

decrease with increasing .this is the important results for interface crack on FC-EMTE-MCs 

interface.
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Fig.1.3. Dimensionless stress intensity factor varying with ,  and b/a ( , )

Fig.1.4. Dimensionless stress intensity factor  varying with ,  and b/a ( , )

7.3 Comparison with the 2D cases
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As we discussed in the previous work, we know when crack shape ratio b/a=8, it is the case of a 2D

surface crack in two different materials interface. Now the polynomial exponents are taken as 

M=N=13, and the collocation point number is 20  20. Tab. 3 gives the stress intensity factor 

for different when b/a=8.

Table1..3. , , for at ( ), ,

0/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11

0.9958 0.9866 0.9747 0.9574 0.9336 0.9024 0.8616 0.8067 0.7262 0.5820

0.1747 0.1728 0.1696 0.1658 0.1600 0.1524 0.1428 0.1294 0.1122 0.08480.02

0.0000 0.0890 0.1334 0.1773 0.2205 0.2622 0.3013 0.3350 0.3507 0.3576

0.9949 0.9857 0.9738 0.9565 0.9327 0.9016 0.8609 0.8060 0.7255 0.5815

0.3459 0.3421 0.3358 0.3282 0.3168 0.3017 0.2828 0.2562 0.2222 0.16790.04

0.0000 0.1738 0.2604 0.3461 0.4305 0.5121 0.5886 0.6549 0.6870 0.6995

0.9931 0.9840 0.9721 0.9548 0.9311 0.8999 0.8593 0.8045 0.7242 0.5804

0.5104 0.5049 0.4955 0.4844 0.4676 0.4452 0.4173 0.3782 0.3279 0.24780.06

0.0000 0.2505 0.3751 0.4989 0.6206 0.7384 0.8494 0.9458 0.9958 1.0112

0.9902 0.9811 0.9692 0.9520 0.9283 0.8973 0.8568 0.8022 0.7221 0.5787

0.6667 0.6594 0.6472 0.6326 0.6107 0.5815 0.5450 0.4939 0.4282 0.32360.08

0.0000 0.3160 0.4735 0.6297 0.7836 0.9327 1.0731 1.1964 1.2658 1.2821

0.9858 0.9768 0.9650 0.9479 0.9243 0.8934 0.8531 0.7987 0.7190 0.5762

0.8119 0.8030 0.7882 0.7704 0.7437 0.7082 0.6637 0.6015 0.5215 0.39410.1

0.0000 0.3689 0.5527 0.7354 0.9154 1.0900 1.2557 1.4013 1.4927 1.5053

To analyze the 2D interface crack more clearly, Figs. 5 and 6 give the stress intensity factor as a 

function of   and b/a for different . From Figs.5 and 6 we observe that the stress intensity 

factors  and increases with the increase of b/a for fixed value of .
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Fig.1.5. Dimensionless stress intensity factor varying with  and b/a ( , )

Fig.1.6. Dimensionless stress intensity factor varying with  and b/a ( , )
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Figs 7 and 8 give the stress intensity factor as a function of   and b/a for changing from 0 

to 1. We observer from Fig.7 that dimensionless stress intensity factors  increases with b/a for 

fixed value of  and decrease with  for fixed value of b/a. While it can be found in Fig.8 that the

increase with both  and b/a.

Fig.1.7. Dimensionless stress intensity factor varying with and 

(( , , )
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Fig.1.8. Dimensionless stress intensity factor varying with and 

( , , )

7.4 General cases

For general cases, the polynomial exponents are taken as M=N=13, and the collocation point 

number is 20  20 for the following results. When the solid is subjected to the extended

loads ,  and  in infinity, the stress intensity factors along the crack front meeting at the 

interface is of mixed mode II&III. Tab.5 gives the maximum stress intensity factors and

for different ratios of a/b and at crack front points ( a,0) and (0, b), respectively. 

Table.1.5. Dimensionless stress intensity factors and varying with and . ( , )

SIF ( a,0) (0, b)

b/a=1 b/a=2 b/a=4 b/a=8 b/a=1 b/a=2 b/a=4 b/a=8

0.02 0.7536 0.9062 0.977 0.9958 0.0121 0.0155 0.0171 0.0175

0.04 0.7517 0.9048 0.976 0.9949 0.0239 0.0306 0.0338 0.0346

0.06 0.7486 0.9023 0.974 0.9931 0.0351 0.0452 0.0499 0.0510

0.08 0.7441 0.8985 0.9709 0.9902 0.0458 0.0589 0.0651 0.0667

0.1 0.7381 0.893 0.9664 0.9858 0.0556 0.0716 0.0793 0.0812
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Figs.9 and 10 give the dimensionless stress intensity factors and along the crack front 

at the interface for the different composites parameter ( ) and geometrical shape parameters 

( and ), respectively.

Fig.9. Dimensionless stress intensity factor varying with , and ( , )

It can be found from Fig.9 that, when  and  are fixed, with the crack shape ratio b/a, 

increasing from 1 to 8, the dimensionless stress intensity factors increase. With the increase of 

b/a the numerical results convergence to a stable value, which is the same as that determined from 

the results of  an 2D interface crack problem (b/a 8). When b/a and  are fixed, with the 

material parameter , decreasing from 0.1 to 0, the dimensionless stress intensity factors 

increase. With the decrease of the numerical results convergence to a stable value, which is 

the same as that determined from the results of a 3D crack in fully coupled 

electromagnetothermoelastic multiphase composites.  When b/a and  are fixed, with the 

,varying from -1 to 1(Due to the symmetry, only the part of [0,1] is plotted), the 

dimensionless stress intensity factors  increase when increasing from -1 to 0, while 

decrease when decreasing from 0 to 1, the  maximum value is reached when =0. 
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Fig.10. Dimensionless stress intensity factor varying with , and ( , )

From Fig.10, we can obtain that, when  and  are fixed, with the crack shape ratio b/a, 

increasing from 1 to 8, the dimensionless stress intensity factors increase. With the increase 

of b/a the numerical results convergence to a stable value, which is the same as that determined 

from the results of  an 2D interface crack problem( when b/a 8). When b/a and  are fixed, 

with the material parameter , increasing from 0 to 0.1, the dimensionless stress intensity factors 

increase. When b/a and  are fixed, with the ,varying from -1 to 1(Due to the 

symmetry, only the part of [0,1] is plotted), the dimensionless stress intensity factor 

increase when increasing from -1 to 0, while decrease when decreasing from 0 to 1, 

the  maximum value is reached when =0. 

8. Conclusions
In the present article, a 3D interface crack in FC-EMTE-AMCs under fully coupled electro-

magneto-thermo-elastic loads was investigated by extended hypersingular intergro-differential 

equation method This method has been proposed here for the first time. The following conclusions 

can be drawn from our results: 
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Using the principles of extended finite-part integrals and the extended main-part integrals method, 

the 3D interface crack problem is analyzed through a set of E-HIDEs coupled with boundary 

integral equations. Based on the E-HIDEs, the behaviors of extended stress singularities near the 

crack front are obtained by the extended main-part analysis of two dimensional hypersingular 

integrals, and the extended singular orders are analyzed.

A numerical method for treating the 3D interface crack problem subjected to extended loads is proposed,

and the radiation distribution of dimensionless extended stress intensity factors for multiple coupled 

fields at the crack surface have been calculated. Furthermore, the changing rule between the changing 

rule between  the extended stress intensity factors between the crack geometry and material 

parameters have been analyzed. 

In general, the extended SIFs not only depend on the crack geometry parameters, but also depend 

on the properties of the materials and the electro-magneto-elastic coupling effects.  The electric-

magnetic-elastic coupling fields and materials properties have a stronger influence on the extended 

SIFs than does the geometry parameters. Among these parameters, that of electric-magnetic-elastic 

coupling effect is the primary factor in determining the results of extended SIFs. 

Whenever there is an interface crack on the interface of FC-EMTE-AMCs, an analysis of the type 

described in this paper can be utilized in order to find the critical configurations under which the 

structure may be most vulnerable. In such cases, the strength predictions could be much more 

adequate and safe if these interface crack has been taken into account.
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Chapter 2 :Analysis of 3D fluid driven crack propagation problem
in co-seismic slip under P- and S-waves by hybrid hypersingular

integral method

Abstract
This work reports a new and accurate way of theoretical and numerical description of the extended 

3D fluid (electromagnetic and flow) driven crack progression in co-seismic slip under P- and S-

waves. First, based on the viscous fluid flow reciprocal work theorem, the hybrid hypersingular 

integral equation (HIE) method proposed by the author was defined by combined with the coupled 

extended wave time-domain HIE and the extended diffused interface phase field method. The

general extended 3D fluid flow velocity wave solutions are obtained by the extended wave time-

domains Green’s function method. The 3D extended dynamic fluid driven crack modeling under

fully coupled electromagnetothermoelastic P- and S-wave and flow field was established. Then, the 

problem is reduced to solving a set of extended hybrid HIEs coupled with nonlinear boundary 

domain integral equations, in which the unknown functions are the general extended flow velocity

discontinuity waves. The behavior of the general extended singular stress indices around the crack 

front terminating is analyzed by hybrid time-domain main-part analysis. The general extended 

singular pore stress waves (SPSWs) and the extended dynamic stress intensity factors (DSIFs) on

the fluid driven crack surface are obtained from closed-form solutions. In addition, a numerical 

method for the problem is proposed, in which the extended velocity discontinuity waves are 

approximated by the product of time-domain density functions and polynomials. The extended

DSIFs and general extended SPSWs are calculated, and the results are presented toward 

demonstrating the applicability of the proposed method.

Key words 3D fluid driven crack propagation mechanism; P- and S-waves; Extended hybrid

hypersingular integral equation; Extended dynamic stress intensity factor; General extended 

singular pore stress waves.
1. Introduction 

Strong earthquakes can have catastrophic effects on society, and therefore the precise prediction of 

large earthquakes is crucial for seismic hazard reduction. The genesis and occurrence of 

earthquakes and their subsequent effects involve complex physical processes. Studying these 

processes helps us understand the mechanics of earthquakes and the future physical state of the 

earth. Earthquake studies focus on the nucleation of rupture, thermo- and hydro-mechanical 

weakening of fault zones during seismic slip, fracture propagation through branched and offset 

fault systems, and relations between stress, seismicity, and deformation in or near continental and 

subduction fault systems. 
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Fluid driven fracture is a fundamental geophysical phenomenon operating in planetary interious on 

many scales, it plays a major role in chemical differentiation of the upper mantle and dynamic 

delayed triggering of earthquakes process. Because our ability to make direct observation of the 

dynamics and styles of fluid driven fracture is quite limited, our understanding of this phenomenon 

relies on theoretical models that use fundamental physical principles and available field data to 

constrain the behavior of fluid driven cracks at depth. 

In the aspect of Green function method, Bouchon and Aki [1] studied the radiation of elastic fields 

from complex seismic sources in layered media by wave-number discretization of the source wave

field. Bouchon [2] subsequently generalized the discrete wave number representation method into 

3D elastic wave propagation problems. The author later obtained Green’s functions for an elastic 

layered medium by using a double integral over frequency and horizontal wave number [3]. Aki 

and Richards [4] obtained a Green’s function for infinite isotropic media. Okada [5] obtained 

inclined shear and tensile fault surface displacements for points and finite rectangular sources. 

Sánchez-Sesma et al.[6] gave a compact form of a Green’s function for harmonic time dependence 

in an unbounded, homogeneous, isotropic elastic media, and computed the diffraction of P, SV, and 

Rayleigh waves in an elastic half-space. Liu and Huang [7] investigated the dynamic responses of a 

cracked elastic solid subjected to in-plane surface loadings by a hybrid method combining the FEM 

with a boundary integral equation. Fu and Bouchon [8, 9] studied discrete wave number solutions 

in piecewise heterogeneous media by a discrete wave number Green’s function. Zhang [10] used 

Green’s function to study the numerical simulation technique of long period strong ground motion 

at near-field. Using frequency domain traction BEM and the Green’s function method, 3D Green’s 

functions of a poroelastic half space subjected to an arbitrary buried loading was presented by Chen 

et al [11].

In the aspect of boundary element method, Tosaka and Onishi [12] presented 2D/3D 

incompressible viscous stead-state flow problem by boundary integral equations. Bush [13]

analyzed steady plane flow of an incompressible, viscous Newtonian fluid past a cylindrical body 

of arbitrary cross-section by boundary element method. Kakuda and Tosaka [14] analyzed unsteady 

Navier Stokes equations by BEM. Tosaka and Kakuda [15] presented three kinds of boundary 

element approaches for an unsteady flow problem of incompressible viscous fluid are presented. 

For embrittlement crack propagation rate in liquid metal problem, [16-18] suggested that the crack 

propagation rates are controlled by the fluid flow characterstics of the liquid metal in the crack. 

Clegg [19] consider another mechanism control crack propagation rate, and he suggested that most 

of the fluid losses occur in a narrow region near the crack tip.

In the field of crack propagation analysis, Iturrarán-Viveros et al.[20] studied the 3D open model 

crack problem under elastic waves based on the indirect boundary element method, and give some 
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numerical COD results of crack propagation under P-or S-waves. Tadeu et al. [21, 22] evaluated 

the 3D scattered wave field generated by the 2D empty crack problem.

However, relatively little work has been done on 3D extended fluid driven crack propagation. This 

seems to be due mainly to the present limitations on practical methods (such as CPU time and 

storage requirements) and on theoretical aspects (strongly singular domain integrals). This requires

general and accurate theoretical method.

In this paper, a new and accurate way of theoretical and numerical description of extended 3D 

dynamic fluid (electric, magnetic and flow) driven crack progression in co-seismic slip under P-and

S-waves was presented. 

First, based on the viscous fluid flow reciprocal work theorem, the hybrid hypersingular integral 

equation (HIE) method was defined by combined with coupled extended wave time-domain HIE 

method [23-26] and extended diffused interface phase field method. The general extended 3D fluid 

flow velocity wave solutions are obtained by extended wave time-domains Green’s function 

method. The 3D extended dynamic fluid driven crack modeling under fully coupled 

electromagnetothermoelastic P- and S-wave fields and flow field was established. 

Then, based on the extended hybrid HIE method, the problem is reduced to solving a set of

extended hybrid HIEs coupled with nonlinear boundary domain integral equations, in which the 

unknown functions are the general extended flow velocity discontinuity waves. The behavior of the 

general extended singular stress indices around the crack front terminating is analyzed by hybrid

time-domain main-part analysis. The general extended singular pore stress waves (SPSWs) and the

extended dynamic stress intensity factors (DSIFs) on the fluid driven crack surface are obtained 

from closed-form solutions.

In addition, a numerical method for the problem is proposed, in which the extended velocity 

discontinuity waves are approximated by the product of time-domain density functions and 

polynomials. The extended DSIFs and general extended SPSWs are calculated. The results are 

presented toward demonstrating the applicability of the proposed method.

2. Basic equations 
The extended nonlinear governing equations and constitutive relationships can be expressed by 

incremental tensor forms

(26)

In the present paper, summation from 1 to 3 over repeated lowercase, and of 1 to 6 in uppercase 

subscripts is assumed, and a subscript comma denotes the partial differentiation with respect to the 

extended coordinates (i.e., or ). The extended displacement waves, ,

can be written as follows:

(27)
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In addition, the extended incremental stress displacement and the extended dummy incremental 

body loads, and , are defined respectively by

(28)

(29)

where the Maxwell stress tensor is defined as

(30)

The elastoplastic creep incremental constitutive equations are written as 

(31)

The description of the electromagnetic phenomena is given by the Maxwell equation, including 

Gauss’ law, Faraday’s law of induction conservation of a flux, and Ampere’s law. These are 

represented respectively as follows:

(32)

The continuity equation for conservation of mass in inertial system can be show in the following 

(33)

The conservation of momentum (Newton’s second law) can be expressed as

(34)

The Navier-Stokes equations can be written as

(35)

Cahn-Hilliard-van der Waals form for the Helmoltz free energy can be written as

(36)

The transport equation of two phase tube can be written as

, (37)

where other parameters , , , , and  are listed in the Appendix B.

3. Mathematical modeling 

Consider a 3D fluid driven crack propagation problem as shown in Figure 1.1. A fixed geographic 

Cartesian system  is chosen. Assume that the slip surface  is subjected to ,  or ,

( ), and ( ). represent the hypocenter of the coordinate systems, while the nodal plane 

of P-wave  and  denote the extended slip plane and auxiliary plane, respectively. 
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Coordinates and  represent the fault strike and the fault slip, respectively. 

, , .

Figure 1.1. An extended 3D fluid driven crack propagation model on co-seismic slip under multiple 

fields

 General sketch of the slip   General model of 3D fluid crack Fluid flow model on crack 

surface

4. Boundary conditions

4.1 Weak coupled boundary conditions 

For permeable conditions, the normal extended incremental displacement rate and extended 

incremental potential rate should be continuous across the crack surface:

, , (38)

where the superscripts + and – denote the upper and lower crack surface, respectively. The 

proposed impermeable conditions on the crack faces are represented by the following relation:

(39)

4.2 Strong coupled boundary conditions 

The strong coupled boundary conditions for crack propagation in co-seismic slip under coupled 

multiple fields can be determined as

; ; ; ; ; (40)

The present article presents an analysis for crack propagation problems based on boundary 

conditions (14) and (15).
5. Boundary domain integral equations for viscous fluid flows

Based on the reciprocal work theorem for viscous fluid flow, consequently, the following boundary 
domain integral equation can be obtained,

(41)

The above equation is a general boundary domain integral equation valid for steady, unsteady, 
compressible and incompressible. The extended incremental traction wave, , on the boundary can 

be defined as

(42)

The extended incremental displacement discontinuity wave gradient is written as

(43)
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where and are the source point and the field point, respectively. The extended incremental 

displacement wave solutions in Eq. (16) can be rewritten as

(44)

6. General extended displacement wave solutions

Using the method[5, 26-37], the general extended displacement wave solutions under P- and S-

waves can be written as an explicit expression. .

(45)

(46)

(47)

the parameters and are listed in the Appendix A

7. Wave time-domain hypersingular integral equations 

Using the boundary conditions in Eqs. (14) and (15), and the main-part method given by [25], Eq. 

(19) can be reduced to

(48)

(49)

(50)

The above equations are the wave time-domain hypersingular integral equations for the 3D fluid 

driven crack propagation problem under fully coupled electromagnetothermoelastic P- and S-wave

fields. , and  can be obtained from the solutions for the loads of un-

cracked solids. The hypersingular kernel function  and Cauchy kernel function are given in 

Appendix C. It is shown that the time-domain hypersingular integral equations have structures that 

are similar to those studied by [38-40]. If the electromagnetothermoelastic weak boundary 

conditions are neglected, the above equations can be simplified to the following relations:

(51)

8. Crack propagation parameters
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In the interest of investigating the singularity of the crack front, consider a local coordinate system 

defined as , in which the -axis is the tangent line of the crack front at point , the -axis is 

the internal normal line of the crack plane, and the -axis is the normal of the crack. Then the 

extended velocity discontinuities gradient of the crack surface near a crack front point  can be 

expressed as

(52)

where are non-zero constants related to point , and  represents the singular indices at the 

crack front. The singular index can be determined by

, , , , , (53)

The extended dynamic stress intensity factors are defined as

(54)

, (55)

The extended singular pore stress waves field around the crack front can be expressed as follows: 

(56)

(57)

(58)
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(59)

where  ,the more detailed process are listed in the Appendix D.

9. Numerical procedure

A method proposed by [38, 41, 42] can be generalized for solving the hypersingular integral in Eqs. 

(23) through (25) numerically. Making use of the behavior near the crack front, the extended 

incremental displacement discontinuity gradient’s unknown functions can be written as

(60)

 are unknown constants. A set of algebraic equations for the unknown can be 

obtained

(61)

where  are defined in the appendix D. The non-dimensional extended DSIFs around the 

3D crack propagation front and inner crack propagation front are defined as

(62)

(63)

(64)

(65)

(66)

(67)

10. Numerical solutions and discussions

In this section, the numerical solutions and calculations described in the present paper are used in 
analyzing a 3D rectangle fluid driven crack propagation mechanism under he mechanical loads ,

the electric loads , the magnetic loads and the thermal loads in infinity. The non-

dimensional independent material constants are listed in Table 2.1 and 2.2.

Table.2.1. Material constants for solid part

Table 2.2 Material constants and initial condition for fluid part

To facility the computing and comparing, we use non-dimensional quantities as follows:

, , , , (68)
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, , , ; (69)

, , , , (70)

, , , , (71)

10.1 Compliance of boundary condition and convergence of numerical solutions 

Figure 2.2 shows the compliance of the boundary condition along the crack surface it can be 

shown that the extended remaining incremental stress waves on the collocation points 

(KK=LL=20�20,) possess a stable value at the flaw surface (the blue region), though they increase 

sharply at the corner points (the red color region). The present numerical method for multiple 3D 

flaws is stable and convincing.

Fig.2.2 Extended remaining stress waves on the flaw surface when b/a=1, KK=LL=20�20

10.2 Extended dynamic stress intensity factor

The crack shape ratio is a/b=1, the polynomial exponents are , the collocation points 

are , the delay time arising from the hypocenter is , the delay time arising

from the seismic wave is , the near-field extended dynamic stress intensity factors are 

 , and the radiation distribution for P- and S-waves at the crack surface as a function 

of  , , are shown in Figures 2.3 through 2.15.

10.2.1 Dynamic stress intensity factors 

As shown in Figure 2.3, the crack is located on the  plane, the area surrounded by the red line 

is the crack surface,  (i=1, 2, 3) represents the greatest principal tension stress (the least 

compressive principal stress), the intermediate compressive principal stress, and the least principal 

tension stress (the greatest compressive principal stress) on the crack surface before the crack 

begins to propagate, respectively. The angle of internal friction, , is the orientation of the greatest 

principal stress tension axis to the  axis, , and is the coefficient of internal 

friction. 

Figure 2.3. Sketch map of the crack model for

In Figure 2.3a, the crack propagation direction is perpendicular to the crack plane  as shown 

by the arrows and  (in the  axis direction, open crack model). In Figure 2.3b, the crack
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propagation direction is to the crack plane  as shown by the arrows and  (in the  

axis direction, shear crack model). In Figure 2.3c, the crack propagation direction is parallel to the 

crack plane  as shown by the arrows and  (in the   axis direction, tear crack 

model).

It is well known that most earthquakes arise from mechanical instabilities that result from the 

sudden failure of the rock to sustain the shear stresses acting across a surface; the surface may be a 

pre-existing fault or a new facture caused by the failure. Figure 2.3 establishes a relationship 

between the failure model of co-seismic slip based on the Coulomb-Navier-Mohr theory of failure 

and the Anderson theory [44-46], and the fracture mechanics crack model based on the classical 

fracture theory [47-51].

10.2.1.1. 2D dimensionless DSIFs for P- and S-waves

Figure 2.4. Two dimensionless near-field radiation distributions for P- and S-waves

The 2D dimensionless near-field DSIFs radiation distribution for P- and S- waves as a function

of ,  and  are shown in Figure 2.4. Due to the symmetry, only the numerical results 

of DSIFs  for ( ) are given. The simulated results show that the DSIFs 

on sides decrease with increasing when , but increase with 

increasing when . DSIFs reach a maximum value when , and 

reach a minimum value when . Apart form these; there are two other important 

results. First, the DSIFs for ( is fixed) follow the same distribution 

principle as do those for ( is fixed). Secondly, the results of the numerical 

simulation curves are consistent with the data of co-seismic slip displacements for P-waves, as the 

are symmetrically distributed about the central axis, and reach the maximum value at ,

, and  in quadrants I, II, III, and IV, respectively [52].

From these figures it can be seen that the radiation of DSIFs  under S-waves is based on the 

same distribution principle as their distribution under P-waves but with a different symmetric angle. 

The DSIFs  reached the maximum value at , , , and  in 

quadrants I, II, III, and IV, respectively. The numerical simulation curves are also consistent with 

the corresponding results of co-seismic slip displacements for S- waves [52].

10.2.1.2. 3D dimensionless DSIFs for P-waves
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The numerical results in Figures 2.5 through 2.7 shows that  varies with  and  in the area 

 for P-waves. The DSIFs (Figure 2.5), (Figure2.6), and (Figure 2.7) based on 

the same method and the numerical/graphical representation have the pattern of a whirl of rose 

petals, but with different magnitudes at different locations ( ).

 The result is a symmetrical distribution about the axis. When is fixed, the DSIF  reaches the 

maximum value at , , , and  in quadrants I, II, III, and IV,

respectively. When is fixed, the DSIF  reached the maximum value at .

The crack location parameters and  have a stronger influence on the DSIFs than does the 

location parameter . Among these parameters,  is the primary factor in determining the 

results of the DSIFs .

When and  are fixed, the simulated results show that the DSIFs , and on

sides decrease with increasing  when , but increase with increasing 

when . The DSIFs reached the maximum value when , and 

reached the minimum value when .

Fig.2.5. 3D dimensionless near-field  radiation distribution for P- wave

Fig.2.6. 3D dimensionless near-field  radiation distribution for P- wave

Fig.2.7. 3D dimensionless near-field  radiation distribution for P- wave

10.2.1.3. 3D dimensionless DSIFs for S- waves

The numerical results in Figures 2.8 through 10 show that the  varies with  and  in the area 

 for S-waves. The DSIFs (Figure 2.8), (Figure 2.9), and (Figure 2.10) based on 

the same method and numerical/graphical representation have the pattern of a whirl of rose petals, 

but with different magnitudes at different locations ( ).

 The result is a symmetrical distribution about the axis. When is fixed, the DSIF  reached the 

maximum value at , , and  in quadrants I, II, III, and IV,

respectively. When is fixed, the DSIF  reached the maximum value at .
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Fig.2.8. 3D dimensionless near-field  radiation distribution for S- wave

Fig.2.9. 3D dimensionless near-field  radiation distribution for S- wave

Fig.2.10. 3D dimensionless near-field  radiation distribution for S- wave

It can be generally concluded that with changes in the variable from 0 to 2 , the DSIFs for

P-waves have a symmetrical distribution of in quadrants I, II, III, and IV, and reach four peak 

values at  , , and .

With the change of the variable from 0 to 2 , the DSIFs for S-waves also show a 

symmetrical distribution of  in quadrants I, II, III, and IV, and reach four peak values at  

, , and .

The DSIFs for P- and S-waves show a symmetrical distribution of  at  sides 

and   at  sides, respectively. It reached the maximum value at points (-1,0), (1,0), 

(0,-1), and (0,1), while it reached the minimum value at points (-1,-1), (-1,1), (1,-1) and (1,1). 

These means that reached maximum values at the crack side centre, while reached the 

minimum values at the horn of the crack. 

The crack location parameters and have a stronger influence on the DSIFs than does the 

location parameter . Among these parameters,  is the primary factor in determining the 

results of the DSIFs .

When and  are fixed, the simulated results show that the DSIFs , , and on

sides decrease with increasing when , but increase with increasing 

when . The DSIFs reached the maximum value when , and 

reached the minimum value when .

10.2.2Electric DSIF and Magnetic DSIF

10.2.2.1 2D dimensionless electric and magnetic DSIFs for P- and S-waves 

Fig.2.11. 2D dimensionless near-field and  radiation distribution for P- and S- wave

The radiation distribution of 2D dimensionless near-field electric DSIFs and magnetic DSIFs

 for P- and S- waves as a function of ,  and  are shown in Figures 2.11. Due to 
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the symmetry, only the numerical results of the DSIFs and  for ( )

are given. The simulated results show that the both and decrease with increasing 

when , but increase with increasing when  at sides,

when , the DSIFs and  reached the maximum value. Conversely, they reached 

the minimum value when . The DSIFs and for P-waves based on the same 

method and the numerical representation show the pattern of a rose curve, but with different 

magnitudes at different values of . Apart form these; there are two other important results. 

First, the DSIFs and for ( is fixed) follow the same distribution 

principle as do those for ( is fixed). Secondly, the results of the numerical 

simulation curves are consistent with the data of co-seismic slip displacements for P-waves. The 

DSIFs and are symmetrically distributed through the central axis and reach the maximum 

value at  , , and  in quadrant I, II ,III, and IV,

respectively [52].

These figures show that the radiation of DSIFs and  under S-waves is based on a different 

distribution principle than its distribution under P-waves. The DSIFs and reached the 

maximum value at , , and  in quadrants I, II, and IIII, respectively. The 

DSIFs  and for S-waves based on the same method and numerical representation show the 

pattern of a three leaf curve, but with different magnitudes at different values of .

10.2.2.2. 3D dimensionless electric and magnetic DSIFs for P-waves

Fig.2.12. 3D dimensionless near-field  radiation distribution for P- wave

Fig.2.13. 3D dimensionless near-field  radiation distribution for P- wave

The numerical results show that and varying with  and  in the area  for P-

waves are symmetrically distributed about the axis, and are based on the same method and 

numerical/graphical representation as a double-wag-whirl-radar curve have but different 

magnitudes at different locations ( ).

 When is fixed, the results reached the maximum value at , , , and 

 in quadrants I, II, III, and IV, respectively. When is fixed, the results reached the 

maximum value at .
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10.2.2.3. 3D dimensionless electric and magnetic DSIFs for S-waves 

Fig.2.14. 3D dimensionless near-field  radiation distribution for S- wave

Fig.2.15. 3D dimensionless near-field  radiation distribution for S- wave

The numerical results show that the (Figure 2.14) and (Figure 2.15) varying with  and 

 in the area  for S-waves are symmetrically distributed about the axis, and are based on 

the same method and numerical/graphical representation as a double-wag-whirl-radar curve, but 

with different magnitudes at different locations ( ).

 When is fixed, the results reached the maximum value 

at , , , and  in quadrants I, II, III, and IV,

respectively. When is fixed, the results reached the maximum value at .

In general, the crack location parameters and  have a stronger influence on the DSIFs and

than does the location parameter . Among these parameters, that of  is the primary 

factor in determining the results of DSIFs  and . When and  are fixed, the simulated 

results showed that DSIFs  and  on sides decrease with increasing 

when , but increase with increasing when . The DSIFs  and 

reached their maximum value when and reached its minimum value 

when .

10.2.3 Thermal 

10.2.3.1. 2D dimensionless thermal DSIFs for P- and S-waves 

Fig.2.16. 2D dimensionless near-field radiation distribution for P- and S- wave

The radiation distribution of 2D dimensionless near-field thermal DSIFs for P- and S- waves as 

a function of ,  and  are shown in Figures 2.16. Due to the symmetry, only the 

numerical results of the DSIFs for ( ) are given. The simulated results 

show that the  decrease with increasing when , but increase with increasing 

when  at sides. When , the reached the maximum value. 

Conversely, they reached the minimum value when . The for P-waves based on the 
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same method and the numerical representation show the pattern of a rose curve. Apart form these; 

there are two other important results. First, the for ( is fixed) follow the 

same distribution principle as do those for ( is fixed). Secondly, the results of 

the numerical simulation curves are consistent with the data of co-seismic slip displacements for P-

waves. The is symmetrically distributed through the central axis and reach the maximum value 

at  , , and  in quadrant I, II ,III, and IV,

respectively [52]. These figures show that the  under S-waves is based on a different 

distribution principle than its distribution under P-waves. The reached the maximum value 

at , , and  in quadrants I, II, and IIII, respectively. The for S-wave

based on the same method and numerical representation show the pattern of a three leaf curve, but 

with different magnitudes at different values of .

10.2.3.2. 3D thermal DSIFs for P-waves 

Fig.2.17. 3D dimensionless near-field  radiation distribution for P- wave

The numerical results show that varying with  and  in the area  for P-waves are 

symmetrically distributed about the axis, and are based on the same method and 

numerical/graphical representation as a double-wag-whirl-radar curve have but different 

magnitudes at different locations ( ). When is fixed, the results 

reached the maximum value at , , , and  in quadrants I, 

II, III, and IV, respectively. When is fixed, the results reached the maximum value at .

10.2.3.3. 3D thermal DSIFs for S-waves 

Fig.2.18. 3D dimensionless near-field  radiation distribution for S- wave

The numerical results show that the  varying with  and  in the area  for S-waves

are symmetrically distributed about the axis, and are based on the same method and 

numerical/graphical representation as a double-wag-whirl-radar curve, but with different 

magnitudes at different locations ( ). When is fixed, the results 

reached the maximum value at , , , and  in 

quadrants I, II, III, and IV, respectively. When is fixed, the results reached the maximum value 

at .
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In general, the crack location parameters and  have a stronger influence on the than does 

the location parameter . Among these parameters, that of  is the primary factor in 

determining the results. When and  are fixed, the simulated results showed that the  on 

sides decrease with increasing when , but increase with increasing 

when . The reached their maximum value when and reached its 

minimum value when .

10.3 General extended singular pore stress waves

Fig.2.19. Dimensionless  radiation distribution for P-and S- waves

Fig.2.20. Dimensionless  radiation distribution for P-and S- waves

Fig.2.21. Dimensionless  radiation distribution for P-and S- waves

The numerical results in Figures 2.19 through 2.21 shows that dimensionless singular pore stress 

waves  varieties with time for P-and S- waves. The decrease with increasing until the time 

is reached to 10s.

Fig.2.22. Dimensionless electric  radiation distribution for P-and S- waves

Fig.2.23. Dimensionless magnetic  radiation distribution for P-and S- waves

Fig.2.24. Dimensionless thermal  radiation distribution for P-and S- waves

The numerical results in Figures 2.22 through 2.24 shows that dimensionless extended singular 

pore stress waves , ,  varies with time for P-and S- waves. They decrease with increasing

until the time is reached to 10s.

From the figures, we can obtain that force field have strongest influence on the pore stress, electric 

field and magnetic field have a stronger influence on the pore stress than thermal field. although, 

the relationship between force field pore stress, electric field pore stress, magnetic field  pores 

stress and thermal field pore stress and time compliance with the same distribution principle. 

In engineering practice, we can use electric, magnetic and thermal abnormal information to predict 

and analyze the co-seismic slip in place of force/displace abnormal information, compared with 

force field, electromagnetic and thermal is more easily detected around the co-seismic slip.

Equation Section  111. Conclusions
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In the present article, a 3D fluid driven crack propagation mechanism on co-seismic slips under 

fully coupled electromagnetothermoelastic P- and S-wave fields was investigated by hybrid 

hypersingular equation method. This method has been proposed here for the first time. The 

following conclusions can be drawn from our results: 

Using the principles of extended wave time-domain finite-part integrals and the extended wave 

time-domain main-part integrals method, the 3D crack fluid driven propagation problem on co-

seismic slips for P- and S-waves has been analyzed through a set of hybrid hypersingular equations 

coupled with nonlinear boundary integral equations. 

Using the wave time-domain finite-part analysis method, the behavior of the general extended 

singular stress indices around the crack front terminating at the slip surface have been analyzed, 

and the general extended singular pore stress waves and the extended dynamic stress intensity 

factors have been obtained by a closed-form solution. 

A numerical method for treating the 3D fluid driven crack propagation problem subjected to 

extended fully coupled loads is proposed, and the radiation distribution of 2D/3D dimensionless 

near-field extended DSIFs and SPSWs for P- and S-waves at the crack surface have been 

calculated. The results show that the extended dynamic electric stress intensity factor  and the 

extended dynamic magnetic stress intensity factor have different changing rules than does .

The force field has strongest influence on the pore stress; electric field and magnetic field have a 

stronger influence on the pore stress than thermal field, although, they compliance with the same 

distribution principle.

In conclusion, an analysis of the type described in this paper can be utilized to help understand the 

extended electromagnetic fracture mechanism for any 3D crack propagation problem in co-seismic 

slip. In engineering practice, we can use electric, magnetic and thermal and water abnormal 

information to predict and analyze the co-seismic slip in place of force/displace abnormal 

information, compared with force field, electromagnetic and thermal is more easily detected around 

the co-seismic slip.
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Appendix A

 The displacement wave

 The electric field wave

 The magnetic field wave
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 The thermal field wave

 The mechanical load

,  the electrical loads

,  the magnetic loads

,  the thermal loads

 Flow rate

Viscosity of phase 

Viscosity of rate

 Diffusion coefficient of molecule

 Character unit length of molecule

Unite density of phase 

Surface tension of phase

 Temperature ration

 Character velocity of phase 

  Unit time of molecule

  Peclet number 

 Reynolds number

 Weber number

 Capillarity number

 Wetting number

 Fix lattice spacing    

 The density of the material particle at time  and position .

 Velocity field of the flow

 Flow potential

 The flow diffusion coefficient

 The flow source term

 The flow material property

 The flow pressure

The Kronecker delta

 The dynamic viscosity coefficient 

The rate of strain tensor

 The flow body force
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 The particle number density

 The molar fraction of component 

 The sum of the free energy densities the pure components 

 The free energy of mixing
  Boltzmann’s constant
   The interface width

  The absolute temperatures

  The critical temperatures

Chemical potentials,

 The normal pressure

,  The transverse pressures.

 Constant mobility with diffusion coefficient

 The phase dependent viscosity

The tensor coefficient dependent on the geometry of the boundary

   Fixed geographic Cartesian system

The slip surface

 The mechanical load 

or  The electrical loads

or The magnetic loads

or  The thermal loads

 The hypocenter of the coordinate systems

The extended slip plane

The auxiliary plane

The fault strike

The fault slip

 Mass density

 The extended displacement wave 

  The McAuley symbol

The Maxwell stress tensor

 Velocity of P- wave

 Velocity of S- wave
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 Field point or observation point

 Epicenter point or source point

 Time 

The delay times arising from hypocenter

The delay times arising from the seismic wave 

The distance between the source point and observation point

 The direction cosine of the field point

The kernel function of the general solution

The hypersingular kernel function

 The Cauchy kernel function

Appendix B

Equation Chapter (Next) Section 1Equation Chapter (Next) Section 2

, (B.1)

(B.2)

(B.3)

(B.4)

(B.5)

, , , , (B.6)
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(B.7)

, , , (B.8)

, , (B.9)

, (B.10)

, , (B.11)

Appendix C

Equation Section 3
(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)
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(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)
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(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

where ,

Appendix D

Equation Section 4
Consider a small semi-circular domain on the crack surface that includes point . Using the 

time-domain main-part analytical method [25], the following relations can be derived:

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

where r is the distance from point to the dislocation front point . Considering the relations in 

Eqs. (25-30), the following relations can be obtained: 

(D.7)

(D.8)

(D.9)

(D.10)

(D.11)
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(D.12)

 are defined as follows:

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

(D.22)

(D.23)
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Figure 2.1. A extended 3D fluid driven crack propagation model on co-seismic slip under multiple 

fields

 General sketch of  slip   General model of 3D fluid crack Fluid  flow model on crack surface
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Fig.2.2 Extended remaining stresses wave on the flaw surface when b/a=1, KK=LL=20�20
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a) Open crack model for 

b) Shear crack model for                                            c) Tear crack model for 

Fig.2.3. Sketch map of crack model for
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a) 

b) 

c)

Figure 2.4. Two dimensionless near-field radiation distributions for P- and S-waves
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Fig.2.5. 3D dimensionless near-field  radiation distribution for P- wave
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Fig.2.6. 3D dimensionless near-field  radiation distribution for P- wave
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 Fig.2.7. 3D dimensionless near-field  radiation distribution for P- wave
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Fig.2.8. 3D dimensionless near-field  radiation distribution for S- wave
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 Fig.2.9. 3D dimensionless near-field  radiation distribution for S- wave
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Fig.2.10. 3D dimensionless near-field  radiation distribution for S- wave
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d)

e)

Fig.2.11. 2D dimensionless near-field  and  radiation distribution for P- and S- wave
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Fig.2.12. 3D dimensionless near-field  radiation distribution for P- wave
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Fig.2.13. 3D dimensionless near-field  radiation distribution for P- wave
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Fig.2.14. 3D dimensionless near-field  radiation distribution for P- wave
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Fig.2.15. 3D dimensionless near-field  radiation distribution for P- wave
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Fig.2.16. 2D dimensionless near-field radiation distribution for P- and S- wave
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Fig.2.17. 3D dimensionless near-field  radiation distribution for P- wave
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Fig.2.18. 3D dimensionless near-field  radiation distribution for S- wave
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Fig.2.19. Dimensionless  radiation distribution for P-and S- waves
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Fig.2.20. Dimensionless  radiation distribution for P-and S- waves
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Fig.2.21. Dimensionless  radiation distribution for P-and S- waves
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Fig.2.22. Dimensionless electric  radiation distribution for P-and S- waves
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Fig.2.23. Dimensionless magnetic  radiation distribution for P-and S- waves
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Fig.2.24. Dimensionless thermal  radiation distribution for P-and S- waves
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Chapter 3:HHIE-LBM for extended 3D flow driven pore�crack
networks in various porosity composites

Abstract

This study introduces a hybrid hypersingular integral equation � lattice Boltzmann method 

(HHIE�LBM) for analyzing extended 3D flow driven pore � crack networks problem in various 

porosity composites. First, the extended hybrid electronic � ionic, thermal, magnetic, electric and 

force coupled fields’ pressure and velocity boundary conditions for HHIE�LBM model is 

established, and the closed form solutions of extended distribution functions are given. Second, an 

extended 3D flow driven pore � crack networks problem in various porosity composites is 

translated into a coupled of HHIE�LBM equations. Third, the extended dynamic stress intensity 

factors (EDSIFs) are calculated by using the parallel numerical technology and the visualization 

results are presented. Last, the relationship between the EDSIFs and the differential porosity are 

discussed, and several rules have been found, which can be utilized to understand the extended 

fluid flow mechanism in various porosity composites and analyze the extended fluid flow varying 

mechanism on coseismal slip.

Key words

Hypersingular integral equation method; Lattice Boltzmann method; Flow driven pore � crack 

networks; Stress intensity factor; Various porous composites.

1. Introduction 
Fluid driven fracture is one of important geophysical phenomenon, especially for seismic trigger 

events at seismogenic zone during inter � seismic period [1, 2]. Groundwater has an important role 

in the whole water resources system, with the increasing demand of the information on 

groundwater hydrology and hydraulics, the mechanism of fluid and fluid flow driven pore � crack

networks in the aquifer need special attention as the main resources of groundwater.

As one of the most popular fluid simulation method, lattice Boltzmann method has been widely 

applied in studying of fluid problem, and a lot of landmark achievements have been obtained [3-15].

On boundary condition aspect, [16] developed a hexagonal lattice gas model and modeling the 2D 

Navier-Stokes equation. [17] presented a cellular automaton model to simulate the process of 

seismogenesis. [11] proposed a supplementary rule for computing the boundary distribution, and 

presented 3D body-centered-cubic lattices are presented for Poiseuille flow. [12] developed a 

hydrodynamic boundary condition for lattice Boltzmann simulations. [10] proposed the pressure 

and velocity boundary for 2D/3D lattice Boltzmann BGK model.
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Extended Fluid (electronic-ionic, thermal, magnetic, electric and force) flow pore�crack network 

problem is an interdisciplinary issues, a lot of research results have been obtained in different fields 

of study. [18] simulated 2D falling drops under gravity for some range of Eotvos and Ohnesorge 

numbers. Based on the work in [19] , [20] addressed the problem of stress intensity factors statistics 

in a randomly cracked solid and found that SIF distribution follows the Gnedenko-Gumber

asymptotic rule. [21] deal with the solute transport in a single fracture with the combination of the 

lattice Boltzmann method and modified moment propagation method, and this study provide a new 

path of applying the LBM in solute transport simulation in fractures.

But there is little research about the extended 3D flow driven pore � crack networks problem in 

various porosity composites under multiple coupled electronic- � ionic, thermal, magnetic, electric 

and force fields.

In this paper, bases on the multiple scale fracture mechanics/physics theory[22-27], the hybrid 

hypersingular integral equation � lattice Boltzmann method (HHIE�LBM) proposed by the authors 

is defined by combined with extended hypersingular integral equation method [3, 4, 7, 8, 28-32]

and 3D lattice Boltzmann method [3, 4, 7, 8, 32], and one typical extended 3D flow driven pore �

crack networks model for various porosity composites is analyzed by using this method.

First, the extended hybrid multiple coupled D3Q27 lattice cubic is created and the extended hybrid 

electronic � ionic, thermal, electromagnetic (weak and strong coupled) and force coupled fields 

pressure and velocity boundary conditions for the HHIE�LBM model is established. 

Then, using the HHIE�LBM method, the extended 3D flow driven pore � crack networks problem 

in various porosity composites is translated into a set of coupled HHIE�LBM equations, in which 

the unknown functions are the extended displacement ratio discontinuities. 

Third, the extended dynamic stress intensity factors (EDSIFs) are calculated by using the parallel 

numerical technology and the visualization results are calculated. The results are presented toward 

demonstrating the applicability of the proposed method. 

In addition, the relationship between the EDSIFs and differential porosity are discussed, and 

several rules have been found, which can be utilized to help understand the extended fluid flow 

mechanism in various porosity composites and analyze the extended fluid flow varying mechanism 

on coseismal slip.

2. Basic equation 
In the present paper, summation from 1 to 3 over repeated lowercase, and of 1 to 7 in uppercase 

subscripts is assumed, and a subscript comma denotes the partial differentiation with respect to the 

extended coordinates.

The constitutive relationships can be written as

(24)
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The Gauss’ law, Faraday’s law and Ampere’s law can be written as

(25)

The continuity equation, the conservation of momentum and the Navier-Stokes equations can be 

written as

(26)

(27)

(28)

The Helmholtz free energy and transport equation can be written as

(29)

(30)

(31)

The electronic � ionic density, velocity and equilibrium distribution functions for incompressible 

and compressible model can be defined as [33-35]

(32)

(33)

(34)

(35)

where .

After we define the similar lattice velocity  and distribution function  (i=0, 18) at position 

and time  for the fluid flow, we can obtain the pressure and velocity boundary 

conditions for fluid flow problem (force field).  

The thermal flow density, velocity and equilibrium distribution function for incompressible and 

compressible model can be defined as

(36)
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(37)

(38)

(39)

where .

The strong couple electromagnetic density, velocity and equilibrium distribution functions for 

incompressible and compressible model can be defined as

(40)

(41)

(42)

(43)

where .

After we define similar the lattice velocity  and the distribution function  (i=0, 12) at position 

and time  for the electric fluid flow, we can obtained the similar pressure and velocity 

boundary conditions for electric fluid flow field. The extended magnetic density, velocity and 

equilibrium distribution functions for incompressible and compressible model are defined as

(44)

(45)

(46)

(47)

where
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3. Boundary conditions for multiple coupled fields

The extended hybrid cubic lattice D3Q27 model is defined by combined D3Q19 (electric � ionic 

field) model, D3Q19 (force field) model, D3Q15 (thermal field) model, D3Q13 (Maxwell 

equation-strong electromagnetic coupled field) model, D3Q13 (electric field) model and D3Q7 

(magnetic field) model for multiple coupled fields, the extended multiple coupled pressure and 

velocity condition and derive the extended distribution functions for every kind of possible case 

was established, see figure 3.1. 

Figure.3.1. Extended boundary for hybrid cubic Lattice D3Q27 multiple coupled fields

The brief presentations of the extended lattice velocity (i = 0~26) at position 

and time , and the distribution functions for hybrid D3Q27 model are given in table.1, where

( ) is coupled coefficient matrix (27�6�6). The extended 

electronic � ionic distribution functions  (i=0, 18), flow distribution functions  (i=0, 18), 

extended thermal distribution functions  (i=0, 15), the extended strong couple electromagnetic 

distribution functions  (i=0, 12), the extended electric distribution functions  (i=0, 12) and 

the extended magnetic distribution functions  (i=0, 7) are listed in Appendix A. More further 

information about  can be found in Reference[36].

Table.3.1. The lattice velocity (i=0~26) for the multiple coupled fields

3.1 Front-rear flow 

As shown in fiugure.3.1a, when the electronic � ionic flow direction is from front to rear, after 

streaming, the unknown distribution functions are  ( i = 26, 15, 19, 9, 3, 7, 24, 16, 21), on the 

contrary, after streaming, the unknown distribution functions are  (  i  = 22, 17, 23, 10, 4, 8, 20, 

18, 25). 

PC (pressure condition):

For the front inlet and rear outlet case, the  ( i=26, 15, 19, 9, 3, 7, 24, 16, 21) can be defined as

(48)

(49)
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(50)

(51)

(52)

(53)

(54)

(55)

(56)

For rear inlet and front outlet case,  ( i =22, 17, 23, 10, 4, 8, 20, 18, 25) can be defined as

(57)

(58)

(59)

(60)

(61)

(62)

(63)
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(64)

VC (velocity condition):

For the front inlet and rear outlet case,  (i=26, 15, 19, 9, 3, 7, 24, 16, 21), can be defined as 

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

For rear inlet and front outlet case,  ( i =22, 17, 23, 10, 4, 8, 20, 18, 25) can be defined as

(74)

(75)

(76)

(77)
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(78)

(79)

(80)

(81)

(82)

3.2 South-north flow

As shown in fiugure.3.1b, when the extended fluid flow direction is from south to north, after 

streaming, the unknown distribution functions are  (i=26, 12, 22, 15, 5, 17, 19, 11, 23), on the 

contrary, the unknown distribution functions are  ( i =20, 14, 24, 18, 6, 16, 25, 13, 21).

PC:

For the south inlet and north outlet case,  ( i = 26, 12, 22, 15, 5, 17, 19, 11, 23) can be defined 

as

(83)

(84)

(85)

(86)

(87)

(88)
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(89)

(90)

(91)

For the north inlet and south outlet case,  ( i =20, 14, 24, 18, 6, 16, 25, 13, 21) can be defined 

as

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

VC:

For the south inlet and north outlet case,  ( i = 26, 12, 22, 15, 5, 17, 19, 11, 23) are defined as
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(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

For north inlet and south outlet case,  ( i =20, 14, 24, 18, 6, 16, 25, 13, 21) are defined as

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)
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3.3 West-east flow

As shown in fiugure.3.1c, when the extended fluid flow direction is from west to east, after 

streaming, the unknown distribution functions are  (i=23, 11, 19, 8, 1, 7, 25, 13, 21), on the 

contrary, the unknown distribution functions are  ( i =22, 12, 26, 10, 2, 9, 20, 14, 24). 

PC:

For the west inlet and east outlet case,  (i=23, 11, 19, 8, 1, 7, 25, 13, 21) as defined as

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

For the east inlet and west outlet case,  ( i =22, 12, 26, 10, 2, 9, 20, 14, 24) are defined as,

(128)

(129)

(130)

(131)

(132)
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(133)

                       (134)

(135)

(136)

VC:

For the west inlet and east outlet case,  (i=23, 11, 19, 8, 1, 7, 25, 13, 21), are defined as

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

For the east inlet and west outlet case,  ( i =22, 12, 26, 10, 2, 9, 20, 14, 24) are defined as,

(146)

(147)

(148)
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(149)

(150)

(151)

(152)

(153)

(154)

4. Flow driven pore�crack network model 

As shown in figure 3.2, one typical extended 3D flow driven pore�crack networks model for 

various porosity composites is constructed through digitized technology by using the slices which 

were scan from the high resolution X-ray CT facility, which domain size is

( ). 

Figure.3.2. Flow driven pore-crack network model

4.1 HHIE�LBM equations for the flow driven pore�crack network problem 

Using the boundary conditions in Eqs. (13~83), and the main-part method given by [30, 36],  the 

flow driven pore�crack network problem in various composites can be translate in to a series 

HHIE-LBM equations, which the unknown functions is extended discontinue displacement ratio 

functions. After the complicated mathematical derivation, the closed-form formulation of the 

HHIE-LBM can be expressed as followings.

(155)

(156)

(157)



Chapter 3: HHIE-LBM for extended 3D flow driven pore�crack networks in various porosity composites

84

where m=4~6, , ,  ,  can be obtained from the solutions for the 

loads of un-cracked solids. The hypersingular kernel function  and Cauchy kernel function 

are given in [36]. It is shown that the time-domain hypersingular integral equations have 

structures that are similar to those studied by [37-39].

4.2 Pore��crack network propagation parameters

Consider a local coordinate system on an arbitrary crack front in pore-crack networks structure, 

defined as , in which the � axis is the tangent line of the crack front at point , the � axis 

is the internal normal line of the crack plane, and the � axis is the normal of the crack. Then the 

extended velocity discontinuities gradient of the crack surface near a crack front point  can be 

expressed as

(158)

where are non-zero constants related to point , and  represents the singular indices at the 

front of arbitrary pore/crack around the pore � crack networks, the singular index can be 

determined by

,  ,  ,  ,  ,  , (159)

The extended dynamic stress intensity factors are defined as

(160)

(161)

where the extended singular pore stress around the pore-crack network front can be see in the 

reference [36].

By using the extended multi-scale volume energy density theory [40-42], the extended volume 

energy density (ESED) function can be defined as,

(162)

where , and are multi-scale intrinsic permeability function coefficient, extended SIFs 

vector and multiple coupled coefficient matrix, respectively; and can be defined as following

(163)
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(164)

(165)

The more information about the coefficient matrix  can be found in reference[43]. The relationship 

between the fatigue criterion in facture theory and the Richter magnitude scale in geophysics theory can be 

established by using the extended volume energy density theory[40-42, 44, 45].

5. Numerical solution and discussion

The detail description about pressure and velocity condition on the flow driven pore�crack

networks model are shown in figure.3.3, the initial pressure is added to the top (inlet) and bottom 

(outlet), the initial velocity in z direction is 0.0005785, The pressure and velocity parameters, 

which are added on the simulate model at the initial time, are shown in the table.2.

Figure.3.3. Pressure and velocity boundary condition for the flow driven pore-crack network model 

Table.3.2. Pressure and Velocity condition to the model

5.1 Compliance of boundary condition and convergence of numerical solution

From figure 3.4, we can see that the velocity in x, y and z direction at 30000 time steps possess a 

stable value in the domain size, the present numerical method for multiple 3D flow driven pore �

crack networks is stable and convincing.

Figure. 3.4a Velocity in x direction under 30000 time steps.

Figure. 3.4b Velocity in y direction under 30000 time steps.

Figure. 3.4c Velocity in z direction under 30000 time steps

Figure 3.5 shows the velocity and density (pressure) as function of time step in the core domain, it 

is shown that the value of velocity and density increase with time step increasing, and increasing 

gradient is decrease with time step increasing, when time step is bigger than 30000, both velocity 

and density reach a stable value. This means that we can obtain enough accuracy and stable 

numerical results by using 30000 time steps, and it can be used as a reference value in engineering 

practice. 

     Figure.3.5a. Velocity in x direction as function of time steps. Figure.3.5b. Velocity in y direction as function of time steps.

Figure.3.5c. Velocity in z direction as function of time steps Figure.3.5d. Density as function of time steps.
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The memory and CPU resource, which is used under 30000 time steps, for the numerical 

simulation is shown in the table.3.3.

Table 3.3. Memory calculation and CPU time

5.2 Fluid velocity and flow distribution

The inlet pressure is 2.3127(minus z direction), the outlet pressure is 3.6873, the dynamic viscosity 

coefficient is 1/6, the initial fluid velocity in x, y and z direction are 0, 0 and 0.0025cm/s, 

respectively. The time steps is 80000, the inlet is minus z direction, the fluid velocities is 

, and the radiation distribution for pressure condition in the core area as a function of 

,  and are shown in Figures 6 through 8.

Figure. 3.6a  radiation distributions as function of z in oxy plane Figure. 3.6b  radiation distributions as function of y in oxz

plane

Figure. 3.6c  radiation distributions as function of x in oyz plane Figure. 3.7a  radiation distributions as function of z in oxy

plane

Figure. 3.7b  radiation distributions as function of y in oxz plane Figure. 3.7c  radiation distributions as function of x in

oyz plane

Figure. 3.8a  radiation distributions as function of z in oxy plane Figure. 3.8b  radiation distributions as function of y in oxz

plane

Figure. 3.8c  radiation distributions as function of x in oyz plane Figure. 3.9a  radiation distributions as function of z in oxy

plane
Figures 3.9, 3.10 and 3.11 show that the variation of flow in x, y and z direction with the position 

on the core area. The numerical solution agrees well with the analytic solution.

Figure. 3.9b radiation distributions as function of y in oxz plane Figure. 3.9c radiation distributions as function of x in oyz

plane

Figure. 3.10a radiation distributions as function of z in oxy plane Figure. 3.10b radiation distributions as function of y in oxz

plane

Figure. 3.10c radiation distributions as function of x in oyz plane Figure. 3.11a radiation distributions as function of z in oxy 

plane

 Figure. 3.11b radiation distributions as function of y in oxz plane Figure. 3.11c radiation distributions as function of x in 

oyz plane
From the results of figures 3.6 to 3.11, we can obtain that the changing rule of velocity and flow as 

function of pressure, initial velocity conditions.
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5.3 Compare with nuclear magnetic resonance method

In order to further verify the correctness of our numerical method, we compare our numerical 

results with nuclear magnetic resonance results. A relationship between HHIE�LBM units and SI 

units is developed by using non-dimensional Reynolds number as a conversion parameters. Nuclear 

magnetic resonance method is based on real measurements, this relationship allow us to compare 

velocity magnitude and direction results with those that can occur under real fields conditions for 

two cases (low case and high case) under compressible and incompressible assumption, 

respectively.  

Figure. 3.12 Lattice Boltzmann model (Lx=100mm, Ly=100mm, Lz=300mm)

Figure. 3.13 Nuclear magnetic model (Lx=100mm, Ly=100mm, Lz=107mm)

Figures 3.12 and 3.13 give the detail domain size and geometric shapes of LBM model and NMR 

model, respectively. In order to ensure that the domain size and geometric shapes parameter are 

identical, we subtracted a new domain 100x100x107(from 69 to 176 in z direction on oxy section) 

from the LBM model. The more detail information about the NMR model is listed in Appendix B.

Figure. 3.14 The contour of as the function of z in xoy plane

Figure. 3.15a The vector of as the function of z in oxy plane   Figure. 3.15b The contour of as the function of y in oxz plane

Figure. 3.15c The contour of as the function of x in oyz plane Figure. 3.16a The vector of as the function of z in oxy plane

Figure. 3.16b The vector of as the function of y in oxz plane Figure. 3.16c The vector of as the function of x in oyz plane

Figure. 3.17a The vector of as the function of z in oxy plane Figure. 3.17b The vector of as the function of y in oxz plane

Figure. 3.17c The vector of as the function of x in oyz plane

Figure 3.14 presents the contour of velocity between the LBM and NMR model. Figures 3.15, 3.16
and 3.17 present the vector of velocity between the LBM and NMR mode. From above results, 6, 
we can obtain that the vector of velocity in x, y and z direction through different numerical model 
(LBM and NMR) has the same result. 

Figure. 3.18a The vector of as the function of z in oxy plane for case I

Figure. 3.18b The vector of as the function of z in oxy plane for case II
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Figures 3.18 presents the direction of velocity in x, y and z direction between the LBM and NMR 

model for incompressible and compressible condition under differential initial pressure and 

velocity value ( case I refer to high initial condition and case II refer to low initial condition) . 

Figure. 3.19a The contour of as the function of x in oyz plane for case I

Figure. 3.19b The contour of as the function of x in oyz plane for case II

Figures 3.19 presents the magnitude of velocity in x, y and z direction between the LBM and NMR 

model for incompressible and compressible condition under differential initial pressure and 

velocity value.

Figures 3.20 presents the error analysis between incompressible and compressible condition under 

different initial pressure and velocity value (case I means high initial condition and case II means 

low initial condition).

Figure. 3.20 The error analysis of the LBM model for case I and case II

From figure 3.18 and 3.19, we can obtain that the vector of velocity in x, y and z direction through 

different numerical model (LBM and NMR) has the same result. From figure 3.20, we can see that 

when we use incompressible distribution function to simulate the fluid flow driven pore-crack

problem for porosity composites, the error is less than ±1.0E-3, the HHIE-LBM numerical method 

is proved correctness and reliability.

5.4 Intrinsic permeability and Reynolds 

Based on the Darcy’s law, the intrinsic permeability in LBM model and Physical model can be 

defined as following 

(166)

The more detailed description is listed in the Appendix C. Take the parameters in table. 3.4 into 

equation (90), we can obtain the value intrinsic permeability in the core model. Figures 3.21 to 3.22

show the LBM and physical and intrinsic permeability as function of x, y and z coordinate, 

respectively.
Table 3.4. Parameters for intrinsic permeability

                  Figure.3.21a Intrinsic permeability in x direction Figure. 3.21b Intrinsic permeability in y direction 

             Figure. 3.21c Intrinsic permeability in z direction Figure. 3.22a Intrinsic physical permeability in x direction 

  Figure. 3.22b Intrinsic physical permeability in y direction Figure. 3.22c Intrinsic physical permeability in z direction
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5.5 Extended stress intensity and special area

The numerical results in figure 3.23 shows that extended dimensionless extended stress intensity 

factors varying with x, y and z in the core area,  from the figure, we can find the most dangers 

position in the whole core area, and when the extended stress intensity factor reach the criterion

value the area will reach the destroy limit. The relatively specific danger areas are shown in the 

figure 3.24.
                                                                 Figure. 3.23a Dimensionless model III SIFs radiation distributions

Figure .3.23b Dimensionless model I SIFs radiation distributions

Figure. 3.23c Dimensionless model II SIFs radiation distributions

Figure. 3.23d Dimensionless electric SIFs radiation distributions

Figure. 3.23e Dimensionless magnetic SIFs radiation distributions

Figure. 3.23f Dimensionless thermal SIFs radiation distributions

Figure. 3.24a Critical areas according to model III SIFs   Figure. 3.24b Critical area according to model II SIFs

Figure. 3.24c Critical area according to magnetic SIFs   Figure. 3.24d Critical area according to electric SIFs

Figure. 3.24e Critical areas according to magnetic SIFs   Figure. 3.24f Critical areas according to thermal SIFs

We can also obtain the relationship between the DSIFs and variously porosity in figures 3.23 and

3.24. The danger area located at the lowest variously porosity areas, when the porosity is fixed, 

with the extended initial pressure and velocity increased, the extended pore�crack stresses 

increasing and researching the maximum value; when the extended initial pressure and velocity is 

fixed, with the porosity decreased, the extended pore-crack stresses increasing and researching the 

maximum value when porosity decreased to the value of 0.45. This results can help explain the 

experience results of fluid flow varying mechanism on coseismal slip in references [1, 2].

6. Concluding remarks

In the present article, a 3D fluid flow driven pore � crack network propagation mechanism in 

various porosity composites under fully coupled hybrid electronic � ionic, thermal, magnetic, 

electric and force fields was investigated by the hybrid hypersingular integral equation � lattice 

Boltzmann method (HHIE�LBM). This method has been proposed here for the first time, and the 

following conclusions can be drawn from our results: 

The extended hybrid multiple coupled D3Q27 lattice cubic is created and the extended hybrid 

electronic � ionic, thermal, electromagnetic (weak and strong coupled cases) and force couple 
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fields pressure and velocity boundary conditions for the HHIE � LBM is established. 

The HHIE � LBM is proposed by the authors, and based on the method; the extended 3D flow 

driven pore � crack networks problem in various porosity composites is translated into a set of 

coupled HHIE-LBM equations, in which the unknown functions are the extended displacement 

ratio discontinuities. 

The EDSIFs are calculated by using parallel numerical method and visualization results are 

calculated. The results are presented toward demonstrating the applicability of the proposed 

method. The relationship between the EDSIFs and differential porosity are discussed, and several 

rules have been found.

Last, the extended volume energy density function for determining the combine effect of the 

EDSIFs is derived, and it can be used to describe the pore � crack network propagation mechanism 

in various porosity composites (different crack scale) under multiple coupled fields (strong and 

weak case); it establish the relationship between the fatigue criterion in facture theory and the Richter 

magnitude scale in geophysics theory, which can be utilized to help understand the extended fluid 

flow mechanism in various porosity composites and analyze the extended fluid flow varying 

mechanism on coseismal slip. 
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Appendix A
A.1 BC for the electronic and ionic field

A.1.1. Front-rear flow 

PC: For the front inlet and rear outlet case, ( i = 15,9,16,3,7) can be defined as,

,

,

For the rear inlet and front outlet case,  ( i =17,10,18,4,8) can be defined as

,

,
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where

VC: For the front inlet and rear outlet case,  (i=15,9,16,3,7), can be defined as 

,

,

For the rear inlet and front outlet case,  ( i =17,10,18,4,8) can be defined as

,

,

where
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A.1.2. South-north flow

PC: For the south inlet and north outlet case,  ( i = 5,11,12,15,17) can be defined as 

,

,

For the north inlet and south outlet case,  ( i =6,13,14,16,18) can be defined as

,

,

where

VC:  For the south inlet and north outlet case,  ( i = 5,11,12,15,17) can be defined as

,

,

For the north inlet and south outlet case,  ( i =6,13,14,16,18) can be defined as
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, ,

,

where

A.1.3.West-east flow

PC:  For the west inlet and east outlet case,  (i=1,7,8,11,13) can be defined as

, ,

,

For the east inlet and west outlet case,  ( i =2,9,10,12,14) can be defined as,

where
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VC:  For the west inlet and east outlet case,  (i=1,7,8,11,13) can be defined as

, ,

,

For the east inlet and west outlet case,  ( i =2,9,10,12,14) can be defined as,

,

,

where

A.2. BC for the thermal field

A.2.1. Front-rear flow 

PC:  For the front inlet and rear outlet case,  ( i=3,7,9,12,14) can be defined as

, ,

,
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For the rear inlet and front outlet case,  ( i =4,8,10,11,13) can be defined as

, ,

,

where

,

VC:  For the front inlet and rear outlet case,  (i=3,7,9,12,14) can be defined as 

, ,

,

For the rear inlet and front outlet case,  ( i =17,10,18,4,8) can be defined as

, ,

,

where
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,

 , 

,

A.2.2. South-north flow

PC:  For the south inlet and north outlet case,  (i=5,7,10,11,14) can be defined as 

,

,

For the north inlet and south outlet case,  (i =6,8,9,12,13) can be defined as

, ,

,

where

, ,
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VC:  For the south inlet and north outlet case,  (i=5,7,10,11,14) can be defined as

,

,

For the north inlet and south outlet case,  (i =6,8,9,12,13) can be defined as

,

,

where

,

,

 ,

A.2.3.West-east flow

PC: For the west inlet and east outlet case,  (i=1,7,9,11,13) can be defined as

,

,
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For the east inlet and west outlet case,  ( i =2,8,10,12,14) can be defined as,

,

,

where

,

,

 , 

VC:
For the west inlet and east outlet case,  (i=1,7,9,11,13) can be defined as

,

,

For the east inlet and west outlet case,  ( i =2,8,10,12,14) can be defined as,
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,

,

where

 ,

,

,

A.3. BC for the strong coupled electromagnetic field

A.3.1.Front-rear flow 

PC:

For the rear inlet and front outlet case,  ( i =2,3,10,12) can be defined as

,

,

where

,

,

VC: For the front inlet and rear outlet case,  (i=1,4,9,11) can be defined as 
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,

,

For the rear inlet and front outlet case,  ( i =2,3,10,12) can be defined as

,

,

where

,

,

A.3.2.South-north flow

PC: For the south inlet and north outlet case,  (i=5,8,9,12) can be defined as

 , 

 , 

For the north inlet and south outlet case, ( i =6,7,10,11) can be defined as

 ,

 ,
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where

,

,

VC:

For the south inlet and north outlet case,  ( i = 5,8,9,12) can be defined as

,

,

For the north inlet and south outlet case,  ( i =6,7,10,11) can be defined as

 , 

,

where

,

,
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A.3.3.West-east flow

PC:  For the west inlet and east outlet case,  (i=1,3,5,7) can be defined as

,

,

For the east inlet and west outlet case,  ( i =2,4,6,8) can be defined as,

 , 

,

where

,

,

VC:  For the west inlet and east outlet case,  (i=1,3,5,7) can be defined as

 , 

,

For the east inlet and west outlet case,  ( i =2,4,6,8) can be defined as,

,

,

where



Chapter 3: HHIE-LBM for extended 3D flow driven pore�crack networks in various porosity composites

103

,

,

A.4. BC for magnetic field

A.4.1.Front-rear flow 

PC: For the front inlet and rear outlet case, can be defined as

For the rear inlet and front outlet case,  can be defined as

VC: For the front inlet and rear outlet case,  can be defined as 

For the rear inlet and front outlet case, can be defined as

A.4.2.South-north flow

PC: For the south inlet and north outlet case, can be defined as 
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For the north inlet and south outlet case,  can be defined as

VC: For the south inlet and north outlet case,  can be defined as

For the north inlet and south outlet case,  can be defined as

A.4.3.West-east flow

PC: For the west inlet and east outlet case,  can be defined as

For the east inlet and west outlet case,  can be defined as

VC: For the west inlet and east outlet case,  can be defined as

For the east inlet and west outlet case,  can be defined as

Appendix B

Figure B.1 The more detail description about the NMR model, equipment and experience illustrative diagram

Appendix C

,
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Figure.3.1. Extended boundary for hybrid cubic Lattice D3Q27 multiple coupled fields

Figure.3.2. Flow driven pore-crack network model
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Figure.3.3. Pressure and velocity boundary condition for the flow driven pore-crack network model 

Figure. 3.4a Velocity in x direction under 30000 time steps.
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Figure. 3.4b Velocity in y direction under 30000 time steps.

Figure. 3.4c Velocity in z direction under 30000 time steps
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     Figure.3.5a. Velocity in x direction as function of time steps. Figure.3.5b. Velocity in y direction as function of time steps.
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Figure.3.5c. Velocity in z direction as function of time steps Figure.3.5d. Density as function of time steps.
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Figure. 3.6a radiation distributions as function of z in oxy plane Figure. 3.6b radiation distributions as function of y in oxz

plane

Figure. 3.6c radiation distributions as function of x in oyz plane

Figure. 3.7a radiation distributions as function of z in oxy plane
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Figure. 3.7b radiation distributions as function of y in oxz plane Figure. 3.7c radiation distributions as function of x in

oyz plane

Figure. 3.8a radiation distributions as function of z in oxy plane Figure. 3.8b radiation distributions as function of x in oyz

plane
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Figure. 3.8c radiation distributions as function of y in oxz plane Figure.3.9a radiation distributions as function of z in oxy

plane

Figure. 3.9b radiation distributions as function of x in oyz plane Figure. 3.9c radiation distributions as function of y in oxz

plane



Chapter 3: HHIE-LBM for extended 3D flow driven pore�crack networks in various porosity composites

115

Figure. 3.10a radiation distributions as function of z in oxy plane Figure. 3.10b radiation distributions as function of x in oyz

plane

Figure. 3.10c radiation distributions as function of y in oxz plane Figure. 3.11a radiation distributions as function of z in xoy 

plane
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 Figure. 3.11b radiation distributions as function of x in oyz plane Figure. 3.11c radiation distributions as function of y in 

oxz plane

.

Figure. 3.12 Lattice Boltzmann model (Lx=100, Ly=100, Lz=300)
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Figure. 3.13 Nuclear magnetic model (Lx=100, Ly=100, Lz=107)

Fiigure. 3.14 The contour of as the function of z in xoy plane
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Figure. 3.15a The vector of as the function of z in oxy plane

Figure. 3.15b The contour of as the function of x in oyz plane

Figure. 3.15c The contour of as the function of y in oxz plane Figure. 3.16a The vector of as the function of z in oxy plane

Figure. 3.16b The vector of as the function of x in oyz plane Figure. 3.16c The vector of as the function of y in oxz

plane
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Figure. 3.17a The vector of as the function of z in oxy plane Figure. 3.17b The vector of as the function of x in oyz

plane

Figure. 3.18a The vector of as the function of x in oyz plane for case I
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Figure. 3.18b The vector of as the function of x in oyz plane for case II
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Figure. 3.19a The contour of as the function of x in oyz plane for case I
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Figure. 3.19b The contour of as the function of x in oyz plane for case II
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Figure.3.20 The error analysis of the LBM model for case I and case II

Figure.3.21a Intrinsic permeability in x direction Figure. 3.21b Intrinsic permeability in y direction
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             Figure. 3.21c Intrinsic permeability in z direction Figure. 3.22a Intrinsic physical permeability in x 

direction

           Figure. 3.22b Intrinsic physical permeability in y direction Figure. 3.22c Intrinsic physical permeability in z direction
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                                                                 Figure. 3.23a Dimensionless model III SIFs radiation distributions

Figure .3.23b Dimensionless model I SIFs radiation distributions
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Figure. 3.23c Dimensionless model II SIFs radiation distributions

Figure. 3.23d Dimensionless electric SIFs radiation distributions
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Figure. 3.23e Dimensionless magnetic SIFs radiation distributions

Figure. 3.23f Dimensionless thermal SIFs radiation distributions
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Figure. 3.24a Critical areas according to model III SIFs   Figure. 24b Critical area according to model II SIFs

Figure. 3.24c Critical area according to magnetic SIFs   Figure. 24d Critical area according to electric SIFs

Figure. 3.24e Critical areas according to magnetic SIFs   Figure. 24f Critical areas according to thermal SIFs
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Figure A.1 The more detail description about the NMR model, equipment and experience illustrative diagram
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Chapter4: Correlation of reservoir and earthquake by fluid flow 

driven pore-network crack model

Abstract: Coulomb failure assumptions[1] is used to evaluate the earthquake trigger, and pore pressure [2-5]

parts reflect the effect of reservoir which closed to the earthquake slip. Fluid flow driven pore-network crack 

model[6] is use to study the reservoir and earthquake. Based on the parallel CPU computation and GPU 

visualization technology, the relationship between the water-drainage sluice process of the Zipingpu 

reservoir, stress triggers and shadows of 2008 Wenchuan Ms 8.0 earthquake and porosity variability of 

Longmenshan slip zone have been analyzed and the flow-solid coupled facture mechanism of Longmenshan 

coseismic fault slip is obtained. 

Key words

Zipingpu reservoir, 2008 Wenchuan earthquake, Coulomb failure stress diffusion, Pore stress diffusion, Fluid 

flow driven pore-network crack model

1. Introduction 

A number of factors may contribute to the generation or absence of post-impounding seismicity. 

Increased vertical stress due to the load of the reservoir and decreased effective stress due to 

increased pore pressure can modify the stress regime in the reservoir region. The combined effect 

of increased vertical load and increased pore pressure will have the greatest tendency to increase 

activity in regions where the maximum compressive stress is vertical[7]. Harsh K.Gupta et.al[8]

studied the behavior of earthquakes associated with over a dozen artificial lakes  and found that the 

tremors were initiated or their frequency increased considerably following the lake filling and that 

their epicenters were mostly located within a distance of 25 km from the lakes. 

Zipingpu key water control project is one of the most complex engineering projects in the world for 

its located on the most complex earthquake fault slips zone in the world (Maximum acceleration

value of seismic oscillation is equal to 0.20g[9]). Zipingpu reservoir is located on the Longmenshan 

earthquake fault slip (below 2km) and the distance between the reservoir and the 2008 Wenchuan 

Ms 8.0 earthquake initial source within 17 km (Fig.4.1.).
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Fig.4.1. Relatively position between Zipingpu reservoir and Earthquake source of Wenchuan Ms 8.0 earthquake 

(Zipingpu reservoir [E103°30�18�~E103°34�48�; N31°00�36�~E31°03�00�]; Yingxiu [N30°59�58.56�; E103°29�21.12�)

Longmenshan fault slip of 2008 Wenchuan Ms 8.0 earthquake is obtained by GPS & InSAR 

inversion technique[10](Fig.4.22.), it composed with two slips and cross-wised Zipingpu reservoir 

zone. The relationship between the pore stress accumulation of Zipingpu reservoir and the trigging 

and propagation of the Longmenshan coseismic fault slip because very important for it direction 

effect the dynamic real-time security evaluation and monitor of Zipingpu key water control project.

Fig.4.2. Relatively position between Zipingpu reservoir and Longmenshan fault slip of 

(Longmenshan fault slip zone [E103.45°~E103.5767°; N30.975°~E31.105°])

Some researches have study 2D coulomb stress caused by reservoir and its effect on the 

Longmenshan fault [11]. But the natural problem is rather complex than one scale 2D model, and 

little research about the 3D coulomb stress analysis under different scale has been done because of 

the current limitations both practical (computing time) and theoretical (3D flow driven pore-crack

network theory[6], multiple scale fracture mechanics/physics theory[12-17]) aspect.

In this paper, based on the previous work[6], the relationship between the pore stress accumulation 

on Zipingpu reservoir and the trigging and propagation mechanism of the Longmenshan coseismic 

fault slip on scale I and II  [Scale I: 30.976E_31.105E,103.45N_103.577N; Scale 
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II:30.7E_31.3E,103.05N_103.76N; Scale III:29E_33E,101N_105N; Scale IV: IN plate and EU plate] have been 

studied(Fig.3.), and the correlation of Zipingpu reservoir and 2008 Wenchuan Ms 8.0 earthquake by 

fluid flow driven pore-network crack model had been studied.

Fig.4.3. Multiple Scale virtual model of Zipingpu reservoir/Longmenshan coseismic fault slip

(A---Scale I; B---Scale II; C---Scale III; D---Relatively position reservoir/slip)

2. Basic equation 

In the present paper, summation from 1 to 3 over repeated lowercase, and of 1 to 7 in uppercase, 

basic strain equation for strain porous elastic media can be defined as

Where , , and  are represent as the total stress, pore pressure, total strain and fluid mass 

per unit volume of the medium. The parameters , , , , , , , are represent as the 

elastic shear modulus (same for drained ( =constant) and undrained ( =constant) condition), 

drained condition Poisson’s ratio, undrained condition Poisson’s ratio, the fluid mass content in the 

A B

C D
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unstressed state, mass density of the pore fluid, the mass flux rate per unit area, the permeability 

and constant which related to drained and undrained status, respectively. 

The equations of motion for a homogeneous, linear elastic and isotropic medium can be defined as

Where denote the component of the displacement at point P due to a unite impulsive 

force at position Q acting direction at time .

3. Physical model 

As shown in figure.4, Zipingpu key water control project is located on the upstream of Minjiang 

river, the maximum reservoir storage capacity is 11�109 m3, the adjustable reservoir storage 

capacity is 8�109 m3, the normal impounded level is 877m, the dam top altitude is 894m and the 

dam bottom altitude is 728m.The key water control project began Mar.3.2001, stop flow time is 

Nov.1.2002, storage time is Dec.1.2004 and completed at Dec.1.2006. The total pore stress 

accumulation time before Wenchuan Ms 8.0 earthquake (May.12.2008) is 3~4 years. In our 

physical model, we use the 15000 time steps (10 ts/day) to describe the effect of pore stress of 

reservoir to the Longmenshan fault slip. From the GPS&InSAR inversion technology, the 

Longmenshan earthquake fault slip is divided into 673 parts.

Fig.4.4. Physical Model Zipingpu reservoir and Longmenshan coseismic fault slip

A---Mesh grid of Zipingpu reservoir; B—Physical model of Zipingpu reservoir

C---Physical model of Longmenshan fault slip; D---Detail description of Longmenshan fault slip (composed of 673 parts)

4. Numerical process and discussion
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Figure.4.5 shows that the relationship between extended pore strain and stress on Zipingpu 

reservoir and Longmenshan coseismic fault slip on Scale I under 20000ts. The pore stress 

accumulation value level is 0.3Mp.

Fig.4.5. Extended pore strain and stress on Zipingpu reservoir and Longmenshan coseismic fault slip on Scale I

A---Reservoir pore strain in x direction; B--Reservoir pore strain in y direction;

C---Reservoir pore strain in z direction; D—Fault slip pore strain in x direction

E---Fault slip pore strain in y direction; F—Fault slip pore strain in z direction;

G---Fault slip pore stress; H---Fault slip flow stream trace;  I---Fault slip flow marks 

The relationship between extended pore strain and stress on Zipingpu reservoir and Longmenshan 

coseismic fault slip on Scale II under 20000ts is shown in figure.6. In these scale, we can obtained 

that in the penetration process, if we defined the fault slip as a fluid-saturated elastic porous media, 

then the vadose energy (caused by pore pressure and can flow to the fault slip tip) is variable with 

the undrained or drained zone, more energy is released under drained zone than undrained zone; If 

the fault slip is a stable creep rupturing process, the criteria energy (strain energy function factors) 

must increase with the speed of faults spreading.

When penetrate reach a stable stage, the fluid flow pore-network crack function became domain, 

with the time scale increasing, the micro solid-fluid interface will became weak and blur, the macro 

phenomenon is the porosity become larger, the strain energy can be released to the faults process 

decreased with the drained spreading increasing.

The reservoir loading and earthquake trigger relationship is depending on fault slip geometry and 

character, porosity variability of surrounding geological structure and time and size scale. To 

Zipingpu reservoir and 2008 Wenchuan earthquake case, porosity and time scale are the key 

factors.

A B C

D E F

G H I
I
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Fig.4.6. Extended pore strain and stress on Zipingpu reservoir and Longmenshan coseismic fault slip on scale II

5. Future work

Because the problem of correlation of reservoir and earthquake is so complex that we can’t give a 

general definite conclusion for all kind of cases by analyze this special case under little changed 

physical domain scales (Scale I and II) and time domain scales (20000ts). More analysis should be 

done on multiple physical domain scales and time domain scales. The future work will focus on 

two things,
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Using extended coulomb stress to analyze the flow-solid coupled facture mechanism of

Longmenshan coseismic fault slip under larger scale (figure4.7 and 4.8). This can provide a 

combined evaluation of the different effects that can influence reservoir/slip system, and can be 

further explored to compare the results with other results that have led to negative results [11].

Fig.4.7. Extended pore strain and stress on Zipingpu reservoir and Longmenshan coseismic fault slip on scale III

Fig.4.8. Extended pore strain and stress on Zipingpu reservoir and Longmenshan coseismic fault slip on scale IV

Studied Three gorges Dam problem by using same method under different time and physical scale 

(figure4.9). This can help us understand the general mechanism of reservoir and earthquake and 
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provide some basic theoretical and engineering suggestions to earthquakes associated with artificial 

lakes/dams.

Fig.4.9. Position of Three gorges Dam

 (Three gorges Dam Position [E110°54�36�~E111°06�36�; N30°48�36�~E30°53�24�])
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