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In this paper, we investigate the formation of
band-gaps and localisation phenomena in an elastic
strip nearly disintegrated by an array of transverse
cracks. We analyse the eigenfrequencies of finite,
strongly damaged, elongated solids with reference
to the propagation bands of an infinite strip with
a periodic damage. Subsequently, we determine
analytically the band-gaps of the infinite strip by
using a lower-dimensional model, represented by
a periodically-damaged beam in which the small
ligaments between cracks are modelled as ‘elastic
junctions’. The effective rotational and translational
stiffnesses of the elastic junctions are obtained from
an ad hoc asymptotic analysis. We show that, for
a finite frequency range, the dispersion curves for
the reduced beam model agree with the dispersion
data determined numerically for the two-dimensional
elastic strip. Exponential localisation, boundary layers
and standing waves in strongly damaged systems are
discussed in detail.

1. Introduction
Localisation around defects in solids is of high importance
in mathematical models of elastic Bloch waves as well
as in practical applications of engineering designs.
Localisation phenomena, in particular trapped modes
appearing near defects, can occur in elastic structures
with defects, cracks or discontinuities such as beams
[1], plates [1–3] and micro-structured media [4–7]. In
addition, the dynamic response of elongated solids with
a distribution of crack-like defects is used in the practical
evaluation of properties of composite body armour as
well as protection sheets and windscreens of armoured
vehicles.
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The earlier papers [8] and [9] present an efficient algorithm for the analysis of localised modes
around crack-like defects distributed periodically in a bi-material delaminating system. A special
feature of the problem is the singular perturbation analysis in the region around a crack, and
the reduction to a lower-dimensional approximation. Higher-order terms in the asymptotics are
studied in [10], which allow for a higher accuracy in the description of the dispersion properties
of Floquet-Bloch waves existing within the periodic system with longitudinal cracks.

In the present paper, we are interested in the dynamic response of nearly disintegrating
systems. Examples include elongated solids containing transverse cracks which have grown to
the extent that the solid is close to disintegration into several disjoint subsets. Such models also
arise in the engineering designs of long bridges, pipelines and conveyors as well as in slender
systems such as skyscrapers. More specifically, several bridges and viaducts are designed as
series of simply supported spans, sustained by piers. In correspondence of each pier, the spans
are connected only by the upper deck. Therefore, the junction at the pier behaves like a cracked
section where the ligament is represented by the depth of the upper deck. An example of such
structure is shown in Fig. 1.

Figure 1. Railway viaduct in Piacenza, Italy (image taken from the website http://www.tensacciai.it, accessed on

31/01/2014). The structure is 5070 m long and consists of 150 prestressed concrete, simply supported spans. (Online

version in colour.)

We note that a static singularly perturbed problem for a disintegrating elongated elastic solid
containing a transverse crack is studied in [11] and [12] for longitudinal and transverse loads,
respectively. These works present the derivation of a lower-dimensional model and an effective
junction condition, which serves as the condition of decay for the boundary layer occurring in
the vicinity of the cracked region. A comparison with numerical results relevant to the calculation
of the first eigenfrequency of a simply supported plate with a crack in the middle section shows
that the asymptotic model in [12] behaves well for deep cracks, while the model proposed in [13]
works better for small cracks.

The dynamic behaviour at high frequencies of a diffusively damaged structure may exhibit
surprising features. Fig. 2a includes an instance of a damaged bridge, which can be modelled
as an elongated solid weakened by transverse cracks, as sketched in Fig. 2b. Fig. 2c shows
typical eigenmodes of the elongated solid. The eigenmodes at the top and bottom of the figure
are localised near one end of the structure and are characterised by a different decaying rate,
while the eigenmode at the middle of the figure presents a typical standing wave pattern.
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Standing waves and localisation in strongly damaged systems possess new features and require
a substantial additional effort with respect to static computations. In this paper, we identify and
study standing waves leading to localisation phenomena. We also show that damaged structures
exhibit band-gaps, and we derive analytical estimates for the frequency ranges of such band-gaps.

Figure 2. (a) Example of an elongated damaged structure: rail bridge over Westmoreland Road, Bath, UK (image taken

from Google Maps Street View, website: https://maps.google.com/, retrieved on 31/01/2014); (b) schematic representation

of a finite strip with equispaced cracks; (c) eigenmodes of the finite strip corresponding to three different frequencies

(increasing from the bottom to the top of the figure), obtained from a finite element simulation in Comsol Multiphysics

(version 4.3). (Online version in colour.)

The structure of the paper is as follows. In Section 2 we present the two-dimensional model
of an elastic strip damaged at regular distances. We describe both a finite and an infinite periodic
structure, and we derive numerically their dynamic responses. Section 3 is dedicated to the lower-
dimensional model, which consists of a beam with periodic elastic connections that simulate the
cracked sections. We revise the asymptotic method leading to the reduced model and then analyse
the dispersion properties of the system obtained by means of the transfer matrix formalism.
Simple analytical expressions for the frequency intervals of the propagation bands as a function
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of the damage parameters are provided. Finally, we determine the dynamic range of applicability
of the reduced model by comparison with the two-dimensional model of Section 2. Final remarks
in Section 4 conclude the paper.

2. Two-dimensional strip model
We consider an elastic strip with a diffuse damage, represented by transverse cracks distributed
at equal distances in the direction of the strip length. For the strip with finite dimensions, we
determine numerically eigenfrequencies and eigenmodes for different values of the strip length.
Then, we show that the frequency response of the finite strip is connected with the dispersion
properties of a periodic strip of infinite length.

(a) Eigenfrequencies of the finite strip
A strip of finite dimensions is sketched in Fig. 3a. The length and the height of the strip are
indicated by L and h, respectively. The distance between cracks is denoted by l. In the example of
Fig. 3a, the strip is made of five identical units (or cells) of length l. One of these cells is drawn on
an enlarged scale in Fig. 3b, where ρε is the depth of the cracked section.

Figure 3. (a) Finite elastic strip with equispaced transverse cracks, that consists of five repeating cells; (b) detail of a

repetitive cell. In the figures, Ω represents the interior domain of the strip, ∂Ω is its traction-free boundary (in solid line),

while ∂Ωp indicates the ends of the strip where Floquet-Bloch conditions are applied (in dashed line).

We assume that the strip is elastic and that the boundaries are traction-free. Accordingly, the
time-harmonic governing equations for the strip are the following:

µ∇2U(x) + (λ+ µ)∇∇ ·U(x) + ρω2U(x) = 0 inΩ; (2.1a)

σ(n)[U](x) = 0 on ∂Ω. (2.1b)

Here, x is the position vector, U is the displacement vector, λ and µ are Lamé coefficients, ρ is
the mass density, ω is the radian frequency and σ is the traction vector associated with the unit
outward normal n. Furthermore, Ω and ∂Ω are the interior and the traction-free boundary of the
strip, respectively, as indicated in Fig. 3a.
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By performing finite element computations in Comsol Multiphysics (version 4.3) to solve
numerically Eqs. (2.1), we find the eigenfrequencies and eigenmodes of finite strips with different
lengths. The values of the eigenfrequencies and the shapes of some eigenmodes are shown in
Fig. 4, where the number of cells varies from 2 to 10. We point out that we have disregarded
the eigenfrequencies corresponding to longitudinal motion, which are not relevant in this work.
Also, the crosses on the horizontal axis of Fig. 4 represent rigid-body motions, which are not of
particular interest.

Figure 4. Eigenfrequencies of finite strips possessing different lengths. The horizontal dashed lines represent the

boundaries of the band-gaps for the infinite periodic strip, while the propagation bands are shown in grey colour on

the sides of the diagram. Some eigenmodes of the finite strips are also reported in the figure. The following set of

parameters has been used for the computations: Young’s modulus E = 200GPa, Poisson’s ratio ν = 0.3, mass density

ρ= 7800 kg/m3, length of the repeating cell l= 2m, strip height h= l/10 = 0.2m, depth of the cracked section

ρε = h/5 = 0.04m. (Online version in colour.)

The eigenmodes corresponding to the eigenfrequencies indicated by grey dots exhibit
localisation, while those obtained from the eigenfrequencies coloured in black do not have
decaying amplitudes. The latter eigenfrequencies increase in number as the number of cells is
increased; however, they remain confined within specific ranges of frequency. In the next section,
we identify such frequency ranges from the study of the dispersion properties of a periodic strip.
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(b) Dispersion properties of the periodic strip
We examine a strip of infinite length, consisting of a periodic array of cells, one of which is shown
in Fig. 3b. The top and bottom boundaries of the cell and the sides of the crack are traction-free,
while the vertical sides of the cell are subjected to Floquet-Bloch conditions. The equations of
motion of the infinite periodic strip result to be:

µ∇2U(x) + (λ+ µ)∇∇ ·U(x) + ρω2U(x) = 0 inΩ; (2.2a)

σ(n)[U](x) = 0 on ∂Ω; (2.2b)

U (x1, x2) = U (x1 − l, x2) eikl on ∂Ωp. (2.2c)

In the equations above, Ω is the interior domain of the cell, ∂Ω is its traction-free boundary,
while ∂Ωp indicates the ends of the cell where Floquet-Bloch conditions are imposed (see Fig. 3b).
Furthermore, k stands for the wavenumber.

We solve Eqs. (2.2) numerically by developing a finite element model in Comsol Multiphysics.
In particular, we determine the dispersion curves plotted in Figs. 5a and 5b, which refer to a larger
and a smaller value of the cracked section depth ρε, respectively. We stress that the numerical
data shown in Figs. 5a and 5b are relative to transverse waves and are independent of the
strip thickness. In fact, the finite element code also provides the dispersion curves relevant to
longitudinal waves; however, the latter are not reported in the figures for clarity’s sake.

Figure 5. Dispersion curves of the infinite periodic strip for ρε/h= 1/5 (a) and ρε/h= 1/100 (b), obtained from the

finite element software Comsol Multiphysics. The propagation zones are indicated in grey colour on the right of the figures.

As for Fig. 4, we have taken E = 200GPa, ν = 0.3, ρ= 7800 kg/m3, l= 2m, h= l/10 = 0.2m.

From Figs. 5a and 5b it is apparent that the damage generates bands of non-propagation (band-
gaps), which are not present in the intact elastic system. The size of the band-gaps increases at
higher level of damage, namely as the depth of the cracked cross-section ρε is decreased.

It is interesting to observe that, though the strips considered in Figs. 5a and 5b are nearly
disintegrating since ρε is small, waves of high frequencies can still propagate in such structures.
This is quite a counterintuitive result. Furthermore, by comparing Figs. 5a and 5b we note that
the main effect of reducing the depth of the cracked section is to drop the first dispersion curve,
which becomes flatter as ρε is decreased. On the other hand, the higher dispersion curves are not
significantly modified by a change in ρε.
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The limits of the band-gaps of Fig. 5a are represented by horizontal dashed lines in Fig. 4, in
which the same value of ρε has been taken into account. We observe that all the eigenfrequencies
of the finite strips with different lengths indicated by black dots in Fig. 4, which are relevant
to non-localised modes, lie within the propagation bands of the periodic structure (a similar
conclusion was drawn in [14] for mono-coupled systems and in [15] for the analysis of a real
bridge structure). On the contrary, the eigenmodes corresponding to the eigenfrequencies falling
outside the propagation bands of the periodic structure, indicated by grey dots in Fig. 4, are
localised near a boundary. Thus, we have shown that it is possible to identify the attainable ranges
of the eigenfrequencies of the finite structure by studying the dispersion properties of the infinite
periodic structure.

The periodic structure exhibits standing waves at the limits of the band-gaps, where the
dispersion curves are flat (∂ω/∂k= 0). The lowest eight modes relative to these standing waves, as
in Fig. 5b, are plotted in Fig. 6. Modes (a), (c), (e) and (g) show a slope discontinuity at the cracked
section, while modes (b), (d), (f) and (h) present a relative displacement in correspondence of the
damaged section.

Figure 6. First eight modes (at increasing eigenfrequencies) relative to the standing waves (see Fig. 5b) at k= π/l

((a), (b), (e), (f)) and k= 0 ((c), (d), (g), (h)), provided by the finite element code. In this case, we have assigned to the

geometric and constitutive quantities the same values considered in Fig. 5b (ρε/h= 1/100). (Online version in colour.)

In concluding this section, we remark that we have solved numerically the two-dimensional
problems defined by Eqs. (2.1) and (2.2). In the next section, we investigate a lower-dimensional
model, which allows to derive analytically an efficient approximation of the dynamic properties
of the two-dimensional model.
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3. Asymptotic reduced beam model
In this section we study a reduced model, represented by a beam with cracked cross-sections
that are modelled as elastic junctions. The effective bending (rotational) and shear (translational)
stiffnesses of the elastic junctions are denoted as Kb and Ks, respectively. The beam is of infinite
length and the damaged cross-sections are located at regular intervals. A periodic segment of the
beam is sketched in Fig. 7.

Figure 7. Periodic cell of a beam with elastic connections. The distance along the beam axis between two consecutive

elastic connections is constant and equal to l. Kb is the bending stiffness, while Ks is the shear stiffness.

(a) Effective junction conditions
The notion of effective junction conditions was introduced in the book [16]. In the asymptotic
models involving boundary layers near singularly perturbed boundaries that encompass
connection of several bodies, these are equivalent to conditions of decay of boundary layers
away from the relevant junction region. Asymptotic analysis relevant to our model engages
effective bending and shear stiffnesses that were determined for the two-dimensional, nearly
disintegrating strip shown in Fig. 8. This technique has been applied to asymptotic models
of disintegrating solids in [11] for longitudinal loads and in [12] for flexural loads. In these
papers, the attention was devoted to static problems, while here we describe the corresponding
generalisation to the time-harmonic regime.

Two classes of boundary conditions for a bending problem are analysed: symmetric rotations
q at the boundaries (Fig. 8a) and antisymmetric displacements p at the two ends (Fig. 8b). For

symmetry, only the half domain Ωε =
{
x∈R2 : 0≤ x1 ≤ l, |x2| ≤ h/2

}
is considered. As far as

the bending problem with symmetric rotations is concerned, after the introduction of the scaled
spatial variables ξj = xj/ε, the displacement vector uε admits the asymptotic approximation [17]

uε ≈ ε−2u(0) + ε−1u(1) + u(2) + εu(3) + ε2U + Lε, (3.1)

where u(i) (i = 0,1,2,3) and U are functions of (x1, ξ2, t), while the boundary layer terms Lε are
functions of the scaled variables (ξ1, ξ2) and decay away from the singularly perturbed boundary
that also includes the junction region. The leading order term u(0) has the form (0, u

(0)
2 (x1) eiωt)

and satisfies the following differential equation:

h3

12

4µ(λ+ µ)

(λ+ 2µ)
u
(0)′′′′
2 (x1)− ρhω2u

(0)
2 (x1) = 0. (3.2)

The latter can also be derived as the solvability condition of a Neumann problem on the cross-
section of the strip for U, as discussed in [17]. Eq. (3.2) has the structure of a beam equation of
motion and requires four boundary conditions, which are determined from the analysis of the
conditions of decay for the corresponding boundary layers. The conditions at the right end of the
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Figure 8. Elastic strip subjected to symmetric rotations (a) and antisymmetric displacements (b) at the ends.

domain are:
u
(0)
2 (l) = 0; (3.3)

u
(0)′
2 (l) =−q. (3.4)

Correspondingly, as shown in [12] the remaining conditions at the left end have the form:

u
(0)′′′
2 (0) = 0, (3.5)

u
(0)′
2 (0)− 5− 2ν

6π(1− ν)

h3

ρ2ε
u
(0)′′
2 (0) = 0. (3.6)

The second derivative u
(0)′′
2 (0) represents the curvature at x1 = 0, while the first derivative

u
(0)′
2 (0) is equal to half of the rotation ∆ϕ at the junction. By using the relationship between

bending moment (per unit thickness) M and curvature u(0)′′2 (0), given by

M =
E h3

12(1− ν2)
u
(0)′′
2 (0), (3.7)

the rotational stiffness (per unit thickness s) K̄b =M/∆ϕ is found:

K̄b =
Kb
s

=
πEρ2ε

4 (5− 2ν) (1 + ν)
. (3.8)

We remind that E is Young’s modulus, while ν is Poisson’s ratio.
A similar procedure can be applied to the bending problem with antisymmetric displacements,

from which the following expression of the translational stiffness (per unit thickness) is derived
(see [12] for details):

K̄s =
Ks
s

=
πE

4 (1− ν2)

1

log
(
h
ρε

) . (3.9)

The analysis of [12] has illustrated that the expressions (3.8) and (3.9) provided a sufficiently
high accuracy for 0< ρε/h≤ 0.35. In the following sections, we will discuss Eqs. (3.8) and (3.9)
being applied to dynamic problems, in particular to describe the junction conditions of a periodic
beam subjected to flexural waves.
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(b) Dispersion properties of the asymptotic reduced model
We use the transfer matrix method to obtain the propagation and non-propagation zones for the
periodic beam with elastic connections. The transfer matrix is a mathematical tool that can be
efficiently implemented to analyse periodic media, both in electromagnetism (e.g. [18]) and in
elasticity (e.g. [19]). It allows to define the vector of generalised displacements and generalised
forces at the end of a periodic cell in terms of the same vector at the beginning of the cell.
Examples for mono-coupled elastic periodic structures can be found in [14,19–21]. In the present
case, the structure is a bi-coupled system, because there are two degrees of freedom, i.e. vertical
displacement and rotation. The corresponding generalised forces are bending moment and shear.
Therefore, the transfer matrix has dimensions 4x4 independently of the complexity of the periodic
cell. Different instances of bi-coupled periodic structures are investigated in [22,23]. In the case
examined in this paper, the transfer matrix can be written in compact form as

M = Mint (I + K) . (3.10)

Mint is the transfer matrix of an intact beam of period l [23]:

Mint =



cos(βl)+cosh(βl)
2

sin(βl)+sinh(βl)
2β

cos(βl)−cosh(βl)
2β2EJ

sin(βl)−sinh(βl)
2β3EJ

β[− sin(βl)+sinh(βl)]
2

cos(βl)+cosh(βl)
2 − sin(βl)+sinh(βl)

2βEJ
cos(βl)−cosh(βl)

2β2EJ

β2EJ[cos(βl)−cosh(βl)]
2

βEJ[sin(βl)−sinh(βl)]
2

cos(βl)+cosh(βl)
2

sin(βl)+sinh(βl)
2β

−β3EJ[sin(βl)+sinh(βl)]
2

β2EJ[cos(βl)−cosh(βl)]
2

β[− sin(βl)+sinh(βl)]
2

cos(βl)+cosh(βl)
2

,
(3.11)

where β = (ρAω2/EJ)1/4, ω is the radian frequency, while A and J are respectively the area and
the second moment of inertia of the beam cross-section. Furthermore, the matrix I appearing in
Eq. (3.10) represents the 4x4 identity matrix, while K is the “stiffness matrix” given by

K =


0 0 0 1

Ks
0 0 − 1

Kb
0

0 0 0 0

0 0 0 0

 . (3.12)

By imposing Bloch-Floquet conditions we find the dispersion relation, which is given by

det
(
M− eiklI

)
= 0, (3.13)

where k is the wavenumber.
If the stiffnesses Kb and Ks are chosen arbitrarily, the dynamic problem can be described by

three non-dimensional parameters:

φ= β l=
4

√
ρAω2

EJ
l; (3.14a)

κb =
Kbl

EJ
; (3.14b)

κs =
Ksl

3

EJ
. (3.14c)

φ is a non-dimensional parameter related to frequency, which will be henceforth referred to
as “frequency parameter”. κb and κs represent the normalisations of the junction stiffnesses
with respect to the flexural rigidity of the beam; they can be indicated as “effective damage
parameters”.



11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

The unimodular transfer matrix M is characterised by two independent invariants, which are
expressed in terms of the frequency and effective damage parameters in Eqs. (3.14) as follows:

I1 = 2 [cos(φ) + cosh(φ)] +
φ

2

[(
1

κb
− φ2

κs

)
sinh(φ)−

(
1

κb
+
φ2

κs

)
sin(φ)

]
; (3.15a)

I2 =
1

2

[
4 +

φ4

κbκs
+

(
8− φ4

κbκs

)
cos(φ) cosh(φ)

]
+ φ

[(
1

κb
− φ2

κs

)
cos(φ) sinh(φ)−

(
1

κb
+
φ2

κs

)
sin(φ) cosh(φ)

]
.

(3.15b)

The invariants are useful to distinguish the ranges of frequency in which the waves propagate
(“propagation zones”) and where waves are evanescent (“non-propagation zones”). In [22] it
is shown that for bi-coupled periodic systems, such as beams, the propagation zones can be
classified into four types: the pass-pass zones, where two waves propagate without attenuation
in each direction; the pass-stop zones, where one wave propagates and the other wave decays
exponentially; the stop-stop zones, where both waves decay exponentially; and the complex
zones, which are special stop-stop zones that are characterised by complex conjugate eigenvalues
with non-unit modulus. These four zones are separated in the plane of the invariants I1 and I2
by the following three curves:

f1(I1, I2) : I2 = 2I1 − 2; (3.16a)

f2(I1, I2) : I2 =−2I1 − 2; (3.16b)

f3(I1, I2) : I2 =
1

4
I21 + 2. (3.16c)

f1 and f2 represent straight lines, while f3 is a parabola. By introducing Eqs. (3.15) into Eqs.
(3.16), we determine the boundaries of the propagation zones in the space defined by the three
non-dimensional parameters (3.14), which will be henceforth referred to as “physical space”.

By fixing the constitutive properties of the material (E, ν, ρ) and evaluating the stiffnesses
Kb and Ks by means of Eqs. (3.8) and (3.9), we reduce the non-dimensional parameters that
fully characterise the problem to two: the frequency parameter φ, defined by Eq. (3.14a), and the
ratio ρε/h. As a consequence, the physical space reduces to a plane. The propagation zones for
a particular choice of the material properties are shown in Fig. 9. In this diagram, the grey and
white regions represent the pass-stop and the stop-stop zones, respectively. We observe that there
are no pass-pass nor complex zones in the ranges of values considered.

We determine the dispersion curves from Eq. (3.13) for the cases ρε = h/5 and ρε = h/100,
which are plotted in solid thick black lines in Figs. 10a and 10b, respectively. In the same figures,
the solid grey lines represent the dispersion curves of an intact beam, which can also be derived
from Eq. (3.13) by taking Kb,Ks→∞.

We note that waves of any frequency can travel in an intact beam (see also [24], Section 3).
In such a case, the dispersion curves are straight lines in the (φ, k l) space. If the beam contains
cracks, instead, non-propagation bands appear. The upper limit of the lowest stop-stop band is
independent of the value of ρε and coincides with the lowest value that the dispersion curves of
an intact beam attain at k l= π; on the other hand, its lower limit decreases as the crack grows,
as expected on physical ground. As already detailed in Fig. 5, it is evident that the “amount of
damage” strongly influences the acoustic pass-band, while it has a less relevant effect on the
optical pass-bands.

(c) Efficiency of the asymptotic approximation
The dynamic properties of the two-dimensional strip model, derived numerically in Section 2,
can be predicted with good accuracy by the reduced beam model in a finite range of frequencies.

In Figs. 11a and 11b we compare the analytical dispersion curves, obtained from the transfer
matrix method applied to the periodic beam, with the numerical values provided by Comsol
Multiphysics for the periodic strip, for the cases ρε/h= 1/5 and ρε/h= 1/100 respectively.
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Figure 9. Physical plane representation of the propagation zones. Grey regions: pass-stop zones; white regions: stop-

stop zones. The limits of the propagation zones can also be obtained from the eigenfrequencies of the simple beams with

appropriate boundary conditions sketched on the right of the figure, as detailed in Section (d). (E = 200GPa, ν = 0.3,

ρ= 7800 kg/m3, h= 0.2m.)

Figure 10. Dispersion curves for an intact beam (solid grey lines) and for a damaged beam (solid thick black lines) with

ρε = h/5 (a) and ρε = h/100 (b). The horizontal lines are determined from the eigenfrequencies of the simple beams

depicted on the right of Fig. 9. (E = 200GPa, ν = 0.3, ρ= 7800 kg/m3, h= 0.2m.)

From Figs. 11a and 11b it can be seen that there is a very good agreement between the first three
analytical dispersion curves and the numerical findings. At higher frequencies, the discrepancy
between the two models increases. We stress the fact that two approximations are embedded into
the damaged beam model: the reduced one-dimensional model with respect to the continuous
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Figure 11. Non-dimensional frequency parameter φ versus normalised wavenumber k l for ρε/h= 1/5 (a) and ρε/h=

1/100 (b). The solid lines represent the solutions of Eq. (3.13) applied to the beam model, while the dots are the

numerical data calculated for the strip model (same as in Fig. 5, but in different coordinates). (E = 200GPa, ν = 0.3,

ρ= 7800 kg/m3, h= 0.2m.)

two-dimensional one, and the asymptotic approximation for the effective junction conditions.
Analogous computations for an intact beam show similar discrepancies between the continuous
and the structural beam model. These computations, not reported here for brevity, also indicate
that the validity frequency range of the one-dimensional model is wider as the slenderness of the
unit cell is increased. These results show that the effective junction conditions are efficient within
the frequency range where the beam model is valid.

(d) Standing waves. Analytical estimates of the band-gap boundaries
In this section we give simple analytical expressions for the limits of the band-gaps. These can be
obtained by computing the eigenfrequencies of simple beam models, whose boundary conditions
can be deduced from the standing waves reported in Fig. 6.

The standing waves obtained for k l= π at the lower limits of the stop-stop zones (Figs. 6a and
6e) are identical to the eigenmodes of a simple beam simply supported at one end and with a
rotational spring (of stiffness 2Kb) at the other end, that is sketched in Fig. 12a. In this figure, the
dashed lines represent the first two eigenmodes. The normalised eigenfrequencies of this simple
beam can be calculated from the following implicit equation:

cosh

(
φ

2

)[
4κb cos

(
φ

2

)
− φ sin

(
φ

2

)]
+ sinh

(
φ

2

)[
φ cos

(
φ

2

)]
= 0. (3.17)

We remind that φ is proportional to the square root of the frequency and it is a non-dimensional
quantity; therefore, we denote φ as “normalised eigenfrequency”.

On the other hand, the standing waves computed for k l= π at the upper limits of the stop-stop
zones (Figs. 6b and 6f) have the same shapes of the eigenmodes of a simple beam with a guided
support at one end and a translational spring (of stiffness 2Ks) at the other end, shown in Fig.
12b. The normalised eigenfrequencies of this simple beam can be determined from the following
equation:

cosh

(
φ

2

)[
−4κs cos

(
φ

2

)
+ φ3 sin

(
φ

2

)]
+ sinh

(
φ

2

)[
φ3 cos

(
φ

2

)]
= 0. (3.18)
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The first two eigenmodes are plotted in dashed lines in Fig. 12b.

 

Figure 12. Lowest two eigenmodes of simple beams with different boundary conditions. The corresponding normalised

eigenfrequencies are calculated by solving (a) Eq. (3.17), (b) Eq. (3.18), (c) Eq. (3.19) and (d) Eq. (3.20).

The standing waves at k l= 0, determined at the beginnings of the stop-stop zones (Figs. 6c and
6g) and at the ends of the stop-stop zones (Figs. 6d and 6h), resemble the eigenmodes of the simple
beams drawn in Figs. 12c and 12d, respectively. The corresponding normalised eigenfrequencies
can be found from the following equations:

cosh

(
φ

2

)[
φ sin

(
φ

2

)]
+ sinh

(
φ

2

)[
4κb sin

(
φ

2

)
+ φ cos

(
φ

2

)]
= 0; (3.19)

cosh

(
φ

2

)[
φ3 sin

(
φ

2

)]
− sinh

(
φ

2

)[
4κs sin

(
φ

2

)
+ φ3 cos

(
φ

2

)]
= 0. (3.20)

From the above considerations, it can be concluded that the limits of the stop-stop zones can
be evaluated analytically from the eigenfrequencies of simple structures. This approach is easier
than solving the dispersion relation of a periodic structure. The normalised eigenfrequencies of
the beams sketched in Figs. 12a-12d are plotted in Figs. 9 and 10 in dashed, dotted, solid and
dot-dashed black lines, respectively. Especially Fig. 9 shows that the limits of the stop-stop zones
coincide with the solutions of Eqs. (3.17)-(3.20).

The transcendental equations (3.17)-(3.20) can be expanded in Taylor series for φ= 0 in order to
find an approximation to their exact solution. Accordingly, the first solution of equations (3.17)-
(3.20), which depends on either κb or κs, is approximated with high accuracy by, respectively:

φ1 = φ1(κb) = 2 4

√
6

κb
2 + κb

; (3.21a)

φ1 = φ1(κs) = 2
4

√
6

840 + 35κs −
√

105
√

6720 + 336κs + 11κ2s
336 + κs

; (3.21b)

φ1 = φ1(κb) = 2
√

3
4

√√√√
10

21 + 7κb −
√

7
√

53 + 30κb + 5κ2b

5 + κb
; (3.21c)

φ1 = φ1(κs) = 2
√

3
4

√
10

840 + 7κs −
√

35
√

20160 + 48κs + κ2s
720 + κs

. (3.21d)
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We plot the approximations (3.21a)-(3.21d) in dashed black colour in Figs. 13a-13d, respectively.
In the same figures, the solid grey lines represent the exact solutions obtained from Eqs. (3.17)-
(3.20), showing the excellent agreement with the approximated solutions (3.21). We point out that
we have considered a wider range of values for κs, since κs is generally larger than κb for a given
ρε. All functions increase monotonically with the stiffness on which they depend.

Figure 13. First normalised eigenfrequency, as a function of the corresponding normalised stiffness, of the beams

shown in Fig. 12. Dashed black lines: approximations derived from Eqs. (3.21a)-(3.21d); solid grey lines: exact solutions

determined from Eqs. (3.17)-(3.20).

4. Conclusions
In this paper, we have examined the propagation of transverse waves in a two-dimensional
elastic strip with distributed cracks. Numerical simulations concerning infinite periodic strips
have shown that band-gaps arise as a consequence of the cracks present in the structure, and the
limits of the band-gaps depend on the depth of the cracked sections. If, instead, the strips are
of finite length, the eigenfrequencies of non-localised modes fall within well identified frequency
intervals, coinciding with the pass-band of the periodic structure. The number of eigenfrequencies
of the finite structure in each pass-band is shown to increase linearly with the number of cells
composing the system.

In order to predict the positions and the sizes of the band-gaps for a strip with a periodic
damage, we have developed a lower-dimensional periodic beam model, in which the cracked
sections are represented by elastic junctions with a bending and a shear spring. The effective
rotational and translational stiffnesses are derived by means of an asymptotic analysis. A
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comparison with the numerical findings obtained from the two-dimensional model has shown
that the lowest band-gaps of the strip can be determined with a high level of accuracy from the
dispersion curves of the periodic beam.

The limits of the band-gaps coincide with the eigenfrequencies of simple beams, whose
boundary conditions have been deduced from the shapes of the standing waves of the elastic
strip. This result is very important in practice, since the determination of the eigenfrequencies of
simple beams is more straightforward than the solution of the dispersion relation of a periodic
structure.

The results of this work can be used to design systems with filtering properties, and to detect
and possibly estimate quantitatively the presence of cracks inside structural and mechanical
elements by means of non-destructive techniques.
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