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Abstract

This paper describes the propagation of an edge crack in a semi-infinite triangu-
lar lattice, consisting of identical point masses connected by thermoelastic links.
A change of temperature, represented by a time-periodic series of high-gradient
temperature pulses, is applied at the boundary of the lattice. In order to make
the initial crack advance in the lattice a failure criterion is imposed, whereby
the links break as soon as they attain a prescribed elongation. The elongations
of the links are produced both by variation in temperature and by the elastic
waves generated at the boundary due to thermal shocks. The nonlinear simula-
tions presented in this paper show that the average speed of crack propagation
can be estimated from the dispersion curves of the lattice. Temperature and
inertia contributions to crack propagation are also investigated. The results of
this investigation show that the crack in the lattice stops at a certain distance
from the boundary, and this distance depends on the frequency and amplitude
of the applied temperature and on the threshold elongation. In addition, it
is found that inertia amplifies the elongations of the links, and thus the crack
advances further into the lattice if inertial effects are present.

Keywords: thermal striping, thermal shock, fracture, crack propagation,
elastic lattice, microstructure, nonlinear problem

1. Introduction

The main cause of failure in many engineering situations is the propagation
of a defect in a structural component due to the stresses generated by surface
temperature fluctuations to which it is exposed. Therefore, a great deal of
effort has been devoted to the study of how a crack advances in a continuum

∗Corresponding author
Email addresses: giorgio_carta@unica.it (G. Carta), I.S.Jones@ljmu.ac.uk (I.S.

Jones), mbrun@unica.it (M. Brun), nvm@liverpool.ac.uk (N.V. Movchan),
abm@liverpool.ac.uk (A.B. Movchan)

Preprint submitted to Elsevier March 14, 2013



subjected to thermal loading. The purpose of this paper is to examine the effect
of microstructure on crack propagation.

Temperature oscillations occurring at the surface of a structural component
may be generated by the incomplete mixing of cold and hot fluids flowing near
that component. This phenomenon is known in the literature as “thermal strip-
ing”, and it generally leads to structural failure by fatigue (Jones, 2005; 2006).
Thermal striping is likely to take place where heat can easily transfer from the
fluid to the solid component. For instance, it usually occurs in fast breeder
reactors cooled by liquid sodium, where large thermal gradients exist between
the sodium flows emerging from both the core and the breeder. It also occurs
in pressurised water reactors, where fluids at different temperature come into
contact (Jones, 2006).

Thermal striping in a continuum with an edge crack has been studied by
employing several analytical approaches, such as the frequency response method
(Jones and Lewis, 1994), the impulse response method (Jones and Lewis, 1996)
and asymptotic analysis (Movchan and Jones, 2006). In these approaches, the
thermal fatigue damage is assessed through the calculation of the fluctuation
of the Stress Intensity Factor (SIF) at the crack tip. This depends both on
the crack length and on the frequency of the applied temperature fluctuations
(see Movchan and Jones, 2006). The SIF is usually evaluated using the weight
function method (Bueckner, 1973; Jones, 1999). Nieves et al. (2011, 2012)
have shown that the SIF can be reduced if additional small perforations or
microcracks are present in the vicinity of the crack tip.

In situations where boundary temperature changes very rapidly in time, dy-
namic effects cannot be neglected, as firstly recognised by Danilovskaya (1950).
This phenomenon, known as “thermal shock”, may result in failure by fracture,
when the SIF exceeds a critical value. Gibiansky et al. (2005) determined the
asymptotic expression of the thermal stresses produced in a solid by a rapid in-
crease of the temperature imposed on the boundary. Further work was presented
by Zhelezina et al. (2006), who obtained the temperature and the thermal stress
distributions over a continuum subjected to a series of pulses at the boundary
and, successively, provided an asymptotic estimation of the SIF as a function of
the crack depth and time.

Some aspects of crack propagation, observed experimentally, cannot be de-
scribed by continuous models, but can instead be predicted if the material is
assumed to be characterised by a discrete microstructure (Marder and Gross,
1995; Fineberg and Marder, 1999). In recent years a great deal of attention
has been paid to discrete media, in particular to lattices. For instance, Slepyan
(2001, I-III) studied the propagation of a semi-infinite crack in infinite uni-
form (both square and triangular) lattices and developed an analytical model
from which the speed of crack propagation in the steady-state regime can be
predicted. An analogous model for heterogeneous lattices was presented by
Nieves et al. (2013). Colquitt et al. (2012) compared the effects of a boundary
sinusoidal thermal loading in a continuum to those in the equivalent lattice, dis-
covering that the temperature fields in the two different media are very similar,
however the SIF in a continuum is larger than the corresponding quantity in
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a lattice. Colquitt et al. (2012) also studied numerically the dynamic propa-
gation of a crack in a heterogeneous triangular lattice under mechanical loads.
They found that the average speed of crack propagation can be related to the
dispersion curves obtained from the analytical model of Nieves et al. (2013).

The aim of the present paper is to study the dynamic propagation of an edge
crack in a semi-infinite triangular lattice subjected to thermal loading. As in
Zhelezina et al. (2006), temperature pulses with high gradient are imposed on
the boundary of the medium. Here the medium is represented by a lattice (and
not by a continuum, as in Zhelezina et al. (2006)). Colquitt et al. (2012) applied
sinusoidal temperature oscillations on the lattice boundary and investigated only
the steady-state conditions of the thermoelastic problem. Here the transient
regime is considered and crack propagation in the medium is examined. From
this study, two important results are obtained. The first one is that it is possible
to estimate the speed of crack propagation in the case of thermal loads (in
addition to mechanical loads, as in Colquitt et al. (2012)). The second one is
that a large enough threshold elongation may lead to crack arrest in the lattice.

The layout of the paper is the following. In Section 2, the problem is for-
mulated in detail. In Section 3, the speeds of crack propagation for different
situations are obtained through a numerical procedure and they are then com-
pared with the theoretical values derived from the analytical model developed by
Slepyan (2001, III). In Section 4, the effects of temperature and inertia on crack
propagation are analysed separately. In Section 5, some concluding remarks are
presented. Finally, in AppendixA the solutions of the thermal problems in a
continuum and in a lattice are provided and compared.

2. Description of the problem

In this paper, mode I crack propagation in a two-dimensional semi-infinite
elastic lattice under thermal loading is investigated. The thermal loading is
produced by a change of temperature applied on the boundary.

The lattice consists of a triangular array of point masses m connected to
each other through massless links of length l, cross-sectional area A, stiffness
µ = E A/l (where E denotes Young’s modulus), coefficient of thermal expansion
α and thermal diffusivity κ. The lattice is of infinite extent in x2-direction and
semi-infinite in x1-direction, as shown in Fig. 1a. It also contains an edge crack
of initial length L0.

2.1. Governing equations

The semi-infinite lattice can be described as an array of point masses, linked
by massless elastic thermally-conducting links and located at discrete positions
x(p) = lAp, where p = (p1, p2)T ∈ Z2 is the multi-index and

A =

(
1 1/2

0
√

3/2

)
. (1)
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Figure 1: (a) Semi-infinite triangular lattice with a finite edge crack of length L0. (b)
Schematic drawing of the finite lattice modelled in the numerical simulations, which approxi-
mates the semi-infinite lattice in (a). Adiabatic boundary conditions and Perfectly Matched
Layers (PMLs) are introduced in the model. Γ is the domain of width B and height H, while
γl, γr, γt, γb and γc are the left, right, top, bottom and crack boundaries, respectively.

The motion of every mass in the interior of the lattice is governed by the
following equations:

m
∂2u(p, t)

∂t2
= µ

N(p)∑
n=1

{an · [u(p + qn, t)− u(p, t)]an}+ FT(p, t) for t > 0; (2a)

u(p, t) = 0 for t = 0; (2b)

∂u(p, t)

∂t
= 0 for t = 0. (2c)

In the equations above, u(p, t) denotes the elastic displacement at time t of
the particle identified by the multi-index p, qn stands for the generic node
connected with a link of length l to node p (hence |x(qn) − x(p)| = l), N(p)
is the total number of nodes connected to node p, and an is the unit vector
that defines the direction of the link from p to qn. In addition, the body force
FT(p, t) represents the thermal load, which will be derived from the uncoupled
thermal problem discussed below. The boundary of the lattice and the sides of
the crack are assumed to be traction-free.

For a dense enough lattice, the thermal problem can be conveniently approx-
imated by a finite difference scheme, in which the temperature T is evaluated
at the nodes and is assumed to vary linearly along the links. On the boundary,
the temperature is equal to the externally imposed temperature, which will be
denoted by Text. Without loss of generality, it is assumed that the ambient
temperature Tref = 0 and that it coincides with the stress-free temperature of
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the material. Therefore, the thermal problem in the lattice is defined as:

∂T (p, t)

∂t
=
κ

l2

N(p)∑
n=1

T (qn, t)−N(p)T (p, t)

 for x1(p) > 0, t > 0; (3a)

T (p, t) = Text(t) for x1(p) = 0, t > 0; (3b)

T (p, t) = 0 for x1(p) ≥ 0, t = 0. (3c)

The thermal load appearing in Eq. (2a) can be expressed through finite
differences as

FT(p, t) = µ l α

N(p)∑
n=1

{[T (qn, t)− T (p, t)] an} . (4)

2.2. Boundary temperature

The temperature imposed on the boundary of the lattice (located at x1 = 0)
is assumed to be uniform in the x2 direction, and it is represented by a time-
periodic series of rectangular pulses, as shown in Fig. 2. Thus, it can be
expressed by the following formula:

Text(t) =

∞∑
n=0

T0 [H(t− n θ)−H(t− n θ − τ)] , (5)

where t denotes time, τ is the duration of each pulse, θ is the time interval
between two consecutive pulses, H(·) represents the Heaviside step function and
T0 is the maximum value of the applied temperature. In the rest of the paper,
it will be assumed that θ = 4 τ .
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Figure 2: Time variation of the temperature imposed on the boundary x1 = 0 of the lattice
(with θ = 4 τ).

Heat flows through the lattice by means of the thermally conducting links.
The variation of temperature produces strains (and stresses) in the links. The
latter are amplified by the elastic waves generated at the boundary due to the
rapid variations of temperature, as in a continuum (Gibiansky et al., 2005;
Zhelezina et al., 2006).
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2.3. Numerical implementation

The thermoelastic problem is solved numerically in Comsol Multiphysics R©

(version 4.2) by approximating the semi-infinite lattice with a finite lattice of
width B and height H, shown schematically in Fig. 1b. In order to avoid
reflections at the boundaries (which obviously cannot occur in a semi-infinite
lattice), perfectly matched layers (PMLs) are implemented in the model by the
introduction of viscous dampers. The latter are designed such that waves are
absorbed before impinging on the boundaries. Moreover, rigid-body motion is
removed from the calculations.

The temperature variation in the links is introduced into Comsol Multi-
physics R© by means of the following analytic function of x1 and t:

T (x1, t) =

∞∑
n=0

T0

{
erfc

[
x1

2
√
κ∗(t− n θ)

]
H(t− n θ)

−erfc

[
x1

2
√
κ∗(t− n θ − τ)

]
H(t− n θ − τ)

}
,

(6)

where erfc(·) is the complementary error function. Eq. (6) represents the so-
lution of the heat conduction problem in a semi-infinite continuum of thermal
diffusitivy κ∗, with a perfectly thermally-conducting edge crack, exposed to the
boundary temperature (5). The derivation of Eq. (6) is discussed in detail in
Section A.1 of AppendixA. In this appendix it is also demonstrated that the
temperature distribution in the lattice, given by the finite difference scheme
(3), can be efficiently approximated by the temperature distribution (6) in the
continuum, provided that the thermal properties of the continuum correspond
to the homogenised thermal properties of the lattice. In particular, the thermal
diffusivity of the continuum κ∗ has to be taken equal to the homogenised ther-
mal diffusivity of the lattice links, i.e. κ∗ = κ

√
3 (see Colquitt et al. (2012)). A

continuum which is characterised by the homogenised properties of the lattice
will be henceforth referred to as “equivalent”.

The propagation of the crack is simulated in Comsol Multiphysics R© by
introducing a failure criterion. More specifically, it is assumed that a link will
break if it attains a threshold elongation, either in tension (stretching) or in
compression (shrinking) (this symmetric type of failure is typical of many metals,
in which the tensile strength is identical to the compressive strength). Buckling
is not taken into account. When a link reaches the threshold elongation, the
calculation is interrupted and the link is removed from the computations. The
calculation is then started again by using the displacement field in the lattice at
the breakage time as the initial condition for the subsequent analysis. This is
how crack propagation is implemented numerically. Due to the introduction of
a failure criterion, the thermoelastic problem in the lattice becomes nonlinear.

Convergence studies were carried out, which indicated that a time step of
0.02 τ is sufficiently small to get accurate results.
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2.4. Normalisation

The natural units of the system, for both the elastic and thermal problems,
are introduced. Firstly, two length scales are defined: the “elastic length”, which
is represented by the length of the lattice links l, and the “thermal length”, which
is given by lt =

√
κ∗ τ . The former is a characteristic property of the lattice,

while the latter is a measure of the size of the lattice region - close to the
boundary - where thermal diffusion is relevant. Secondly, the speed c = l

√
µ/m

is introduced. Finally, time and temperature are normalised, respectively, by
the duration of each pulse τ and by the amplitude of the boundary temperature
T0. Accordingly, all the quantities used in this paper are normalised as follows:(

x,u, B,H,L0, L, L
∗,∆l,∆lt,

1

ξ

)
= l

(
x̂, û, B̂, Ĥ, L̂0, L̂, L̂

∗,∆l̂,∆l̂t,
1

ξ̂

)
;(

t, θ,
1

ω̄

)
= τ

(
t̂, θ̂,

1

ˆ̄ω

)
; v = c v̂; ω =

c

l
ω̂;(

T, Tc, Tref ,
1

α

)
= T0

(
T̂ , T̂c, T̂ref ,

1

α̂

)
.

(7)

The normalised quantities are henceforth indicated with the “hat” symbol.
By using the normalisation (7) and Eq. (4), the elastic problem stated in

Eqs. (2) becomes:

∂2û(p, t̂)

∂t̂2
=

c2τ2

l2

N(p)∑
n=1

{
an ·

[
û(p + qn, t̂)− û(p, t̂)

]
an
}

+
c2τ2

l2
α̂ T0

N(p)∑
n=1

{[
T̂ (qn, t̂)− T̂ (p, t̂)

]
an

}
for t̂ > 0; (8a)

û(p, t̂) = 0 for t̂ = 0; (8b)

∂û(p, t̂)

∂t̂
= 0 for t̂ = 0. (8c)

The thermal problem (3) is changed into the following set of equations:

∂T̂ (p, t̂)

∂t̂
=

Λ2

√
3

N(p)∑
n=1

T̂ (qn, t̂)−N(p)T̂ (p, t̂)

 for x̂1(p) > 0, t̂ > 0; (9a)

T̂ (p, t̂) = T̂ext(t̂) for x̂1(p) = 0, t̂ > 0; (9b)

T̂ (p, t̂) = 0 for x̂1(p) ≥ 0, t̂ = 0. (9c)

Here Λ is the ratio between the thermal length and the elastic length, i.e. Λ =
lt/l.

Finally, Eqs. (5) and (6) become

T̂ext(t̂) =

∞∑
n=0

[
H(t̂− 4 n)−H(t̂− 4 n− 1)

]
(10)
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and

T̂ (x̂1, t̂) =

∞∑
n=0

{
erfc

[
x̂1

2Λ
√
t̂− 4 n

]
H(t̂− 4 n)

−erfc

[
x̂1

2Λ
√
t̂− 4 n− 1

]
H(t̂− 4 n− 1)

}
,

(11)

respectively.

3. Speed of crack propagation in the lattice

In this section, it is investigated how the initial crack of length L0, shown in
Figs. 1a and 1b, propagates in the lattice due to the temperature pulses applied
on the boundary. In particular, the speed of crack propagation is evaluated
numerically, and it is then compared with the theoretical value derived from
the dispersion diagram of the lattice given by Slepyan (2001, III).

3.1. Lattice and temperature properties

As in Slepyan (2001, III), the elastic properties of the lattice are assigned
unit values, i.e. l = 1 and c = 1. The width and height of the lattice are taken
as B̂ = 80 and Ĥ = 21

√
3/2, respectively.

The product α̂ T0 is fixed, given by α̂ T0 = −0.01, as α̂ is typically a small
quantity. Since α̂ > 0, then this implies that T0 < 0. A negative temperature
avoids a situation of potential crack closure.

The duration of each pulse is assumed to be τ = 1. Since the period of the
temperature pulses is θ = 4 τ , the fundamental radian frequency of the imposed
temperature is ˆ̄ω = π/2. The thermal length is assumed to be lt = 1, which
implies that Λ = 1.

Next, the initial length of the crack L̂0 needs to be chosen. If L̂0 is of the
same order of magnitude as the thermal length lt, the thermal diffusivity effects
cannot be ignored. For a continuum, Zhelezina et al. (2006) showed that the
stress waves generated by a series of temperature pulses applied on the boundary
consist of two terms, the first one representing a plane wave (which propagates
in the medium) and the second one corresponding to thermal diffusion (see
Eqs. (26) and (27) in that paper). The second contribution is of importance
near the boundary, in a region denoted as the “boundary layer”. These two
contributions can be identified also in a lattice, as will be shown in Section 4.
In the present section, attention is focused on the speed of crack propagation,
which will be related to the speed of the waves. Therefore, the position of the
crack tip is assumed to be located far enough from the boundary to disregard
the contribution of thermal diffusion. In particular, L̂0 is taken as L̂0 = 20.
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3.2. Analytical model for the assessment of the crack propagation speed

The average speed of crack propagation in the homogeneous lattice of Fig.
1a can be estimated by means of a linear model developed by Slepyan (2001,
III). This involves the reduction of the elastic problem of an infinite triangular
lattice with a semi-infinite crack to a Wiener-Hopf equation. The dispersion
relations, obtained from the poles and the zeros of the kernel of this equation,
can be used to evaluate the speed of crack propagation produced by a generic
harmonic load of a certain frequency. It is important to stress that Slepyan’s
approach assumes that the crack propagates with constant speed in a straight
line, i.e. with no crack branching.

There are three dispersion relations found by Slepyan (2001, III) for mode I
crack propagation:

• Rayleigh wave: ω̂ =

√
3−
√

3
∣∣∣sin (ξ̂/2)

∣∣∣ ; (12a)

• longitudinal wave: ω̂ =

√
3− cos (ξ̂/2)− 2 cos (ξ̂); (12b)

• optical branch: ω̂ =
√

6
∣∣∣cos (ξ̂/4)

∣∣∣ . (12c)

Here ω̂ and ξ̂ represent the fundamental radian frequency and the wavenumber,
respectively. The corresponding dispersion curves are reproduced in Fig. 3.
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Figure 3: Dispersion curves for the infinite homogeneous triangular lattice with a semi-infinite
crack, constructed according to Eqs. (12). At the fundamental radian frequency ˆ̄ω (indicated
by the horizontal black line), waves can propagate with phase velocities given by the slopes
of the grey rays.
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The horizontal line of Fig. 3 represents the fundamental radian frequency
of the applied temperature (ˆ̄ω = π/2). It intersects the dispersion curves at
a number of points, indicated by heavy dots, at which the group velocity is
positive. The reason for considering only the intersections corresponding to
positive group velocity comes from the fact that the energy source is located
behind the crack tip. The phase velocities v̂, identified by these intersections,
are the velocities of the only waves that can travel in the lattice. They are
represented by the slopes of the rays ω̂ = v̂ ξ̂, which are illustrated by dashed
grey lines in Fig. 3 (these rays are infinite in number, but only the first six have
been shown for clarity’s sake). These phase velocities can be used to estimate
the speed of crack propagation in the lattice, as discussed below.

3.3. Numerical results

The length of the crack L̂ during time t̂ is calculated by following the numer-
ical procedure described in Section 2.3. In accordance with Slepyan’s analytical
model, the crack propagates along a straight line. The position of the crack tip,
which identifies the length of the crack, is defined as the location along the x̂1
axis behind which all the links are broken; thus, a rupture of any link that is
not adjacent to the crack tip does not alter the crack length. The results for
different threshold elongations ∆l̂t are represented by solid black lines in Figs.
4a and 4b.

The velocity of each of the five crack tip trajectories illustrated in Figs. 4a
and 4b is not constant, because the considered problem is nonlinear. Further-
more, the simulation of the crack propagation is performed in the transient
regime, while the analytical model of Slepyan is based on the hypothesis of
steady-state conditions. Similar step-like crack propagation paths have been re-
ported in the paper by Colquitt et al. (2012) for the case of mechanical loading.

Each trajectory plotted in Figs. 4a and 4b starts with a straight line of low
or null slope. This is due to the fact that the first link breaks after some time
has passed, both because the elastic waves generated at the boundary need to
reach the initial position of the crack tip and, above all, because energy should
be accumulated in order to break the links. Note that the instant of time at
which the first link breaks increases as a larger value of the threshold elongation
is imposed.

It is important to observe that the links do not fail in order. It often happens
that a link further from the crack tip breaks before the link that is adjacent to
the crack tip. For this reason, voids appear inside the lattice. When the link
closest to the crack tip attains the threshold elongation at a later time, the voids
coalesce resulting in further crack growth. This phenomenon explains the jumps
in the crack propagation paths. Note also that the number of jumps increases
with the value of the threshold elongation. The formation and coalescence
of voids have been observed in many experimental works (e.g. Broek, 1982;
Benzerga and Leblond, 2010). This experimental feature is often neglected in
continuum models but is a distinctive feature of the lattice model presented
here.
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Figure 4: Crack lengths versus time for different threshold elongations ∆l̂t (solid black lines)

and comparison with Slepyan’s analytical model by means of the rays L̂ = v̂ t̂ + L̂0 (dashed
grey lines), where v̂ is the generic phase velocity determined from Fig. 3.

The crack tip trajectories shown in Figs. 4a and 4b are characterised both by
jumps (due to the nucleation and successive merging of voids) and by segments
between jumps, corresponding to uniform progression of the crack tip. The
slopes of these segments can be approximated well by the slopes of the dashed
grey rays L̂ = v̂ t̂ + L̂0 plotted in Figs. 4a and 4b (these are identical to those
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reported in Fig. 3). This implies that the speed of uniform crack propagation
can be predicted by one of the phase velocities derived from the analytical
model described in Section 3.2. Moreover, excluding the initial time needed to
accumulate the energy necessary to break links, the analytical phase velocities
can be used to estimate the average speeds of the crack tip. In fact, from Figs.
4a and 4b it can be seen that the average speed of each path is similar to the
slope of the ray labelled with the same letter.

It is apparent that the smaller the threshold elongation, the larger the av-
erage speed is, as expected. However, the highest speed in the lattice, given by
the inclination angle of ray 1, cannot be exceeded. This consideration is very
important, because it implies that the microstructure can be designed such that
it can limit the speed of crack propagation.

4. Temperature and inertia contributions to crack propagation

In this section, the contributions of temperature and inertia to crack growth
are analysed in detail. The conditions for the arrest of crack propagation are
also investigated. The maximum length that may be attained by the crack will
be denoted as “critical crack length”.

In order to determine the temperature and inertia effects, two different prob-
lems are considered. In the first, inertia is taken into account in the equation
of motion (8a) of each particle of the lattice. This case, which corresponds to
the real lattice, will be referred to as the “inertial case”. In the second problem,
inertia is excluded from the formulation by assuming that the left-hand side
term of Eq. (8a) vanishes. This case will be thus named “non-inertial case”.
It is worth observing that the assumption of negligible inertia can be plausibly
adopted to describe many physical problems. For instance, when the tempera-
ture on the boundary varies smoothly, dynamic effects (such as the generation
of elastic waves) can be ignored and, consequently, inertia can be disregarded
(see, for instance, Jones (2005, 2006)).

In this section, the initial length of the crack is taken as L̂0 = 4, smaller
than the value chosen in Section 3. This choice has been made in order to give
a better description of the temperature effects on crack propagation, which are
relevant near the boundary. For the same reason, an applied temperature with
a lower fundamental frequency is considered. In fact, it will be shown that
the size of the region where temperature effects are important increases as the
fundamental frequency of the applied temperature decreases.

4.1. Temperature effects

The temperature effects are separated from the inertial effects by assuming
that the mass at each node is zero (non-inertial case). Accordingly, the elon-
gations of the links depend exclusively on the spatial temperature distribution
across the lattice. This temperature distribution can be approximated by the
steady-state solution of the thermal problem in the equivalent continuum, given
by Eq. (A.5) in the appendix. Eq. (A.5) shows that the temperature depends
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only on the coordinate x1. The maximum and minimum values of the tempera-
ture in the steady-state regime are plotted in normalised axes in Fig. 5, where
the inset figures show how the temperature changes with time at fixed values of
x̂1.
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Figure 5: Normalised temperature field T̂ (x̂1/Λ) in the steady-state regime, obtained through
Eq. (A.5). In the insets, the time distribution of the temperature is shown at different positions
x̂1/Λ.

From Fig. 5 it is apparent that there exists a region, extending from the
boundary into the lattice, where temperature oscillations are significant. This
region will be defined as the “region of influence”. Beyond this region, the
temperature is constant (T̂

(
x̂1, t̂

)
= T̂c) and equal to the average value of the

boundary temperature in the period θ̂. It is very important to observe that the
length of the region of influence increases with the thermal diffusivity of the
medium and decreases with the frequency of the boundary temperature.

If the threshold elongation is attained at a temperature with an absolute
value higher than the absolute value of the constant temperature T̂c (consider
that the boundary temperature is assumed to be negative in the numerical cal-
culations), the crack stops propagating, reaching its critical length. The critical

crack length L̂∗ is evaluated for different values of the threshold elongation ∆l̂t
and of the temperature fundamental radian frequency ˆ̄ω using Comsol Multi-
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physics R© to simulate the crack propagation process. The numerical results are
shown with dots in Fig. 6. They are given for three temperature frequencies
and for five threshold elongations1. It can be seen that, for a fixed value of the
threshold elongation, the critical crack length decreases with the temperature
frequency (a similar trend was observed by Jones (1999) between the maximum
fluctuation of the SIF and the temperature frequency in a continuum exposed
to thermal striping); on the other hand, for a given temperature frequency,
the larger the threshold elongation, the smaller the critical crack length is, as
expected on physical ground.

Finally, it should be pointed out that the critical crack length in the non-
inertial case is independent of the initial length of the crack (provided that this
is less than the critical one), since it depends only on the spatial temperature
distribution across the lattice.

0.002 0.003 0.004 0.005 0.006 0.007
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10
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16

18

Figure 6: Dependence of the critical crack length L̂∗ on the threshold elongation ∆l̂t of
the links and on the fundamental radian frequency ˆ̄ω of the boundary temperature, in the
non-inertial case.

1Note that the lines connecting the dots are plotted only to join the results for a given
frequency. In this way, the trend of the critical crack length at a specific frequency can be
seen more clearly.
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4.2. Inertial effects
The effects of inertia are evaluated by comparing the time-histories of two

different links in the inertial case with those obtained in the non-inertial case.
This comparison is shown in Fig. 7, where the black curves are calculated
without considering inertia, while the grey curves are determined by taking
inertia into account. The top figures correspond to an intact lattice, while the
bottom figures refer to a lattice with a non-propagating crack of length L̂0 = 4.
The fundamental radian frequency of the applied temperature is ˆ̄ω = π/32.

Fig. 7 shows that inertia amplifies the elongations of the links. In addition,
the figure reveals that the presence of the crack amplifies the elongations of the
links, especially near the crack tip (in fact, this amplification tends to disappear
in the links far from the crack tip, as can be seen by comparing Fig. 7b with
Fig. 7d).

From Fig. 7 it can be seen that the elongations of the links obtained in
the non-inertial case decrease with the distance from the boundary. This is a
consequence of the fact that the amplitude of the temperature oscillations in
the region of influence decays along the x̂1 axis (see Fig. 5).

For the inertial case, the elastic waves generated at the boundary due to the
rapid changes in temperature travel through the lattice. The frequency content
of the elastic waves shown in Fig. 7 is identical to the frequency content of the
temperature pulses applied on the boundary, which consists of the fundamen-
tal frequency (equal to ˆ̄ω = π/32 in these calculations) and to its multiples.
The wave components having a frequency within the pass-band (identified by
the dispersion curves plotted in Fig. 3) propagate without attenuation. On
the contrary, the wave components characterised by a frequency belonging to
the stop-band decay exponentially. The Fast Fourier Transforms of the elastic
waves represented in Figs. 7a-7d reveal that the frequencies of the harmonic
components of these waves lie in the pass-band. Therefore, the wave compo-
nents propagate without attenuation, but with different velocities, due to the
dispersive properties of the lattice. This implies that the maximum elongation
can vary in the x̂1 direction.

The variation of the amplitude of the elastic waves with x̂1, induced by the
attenuation of the non-propagating waves and the dispersion of the propagating
ones, is a characteristic property of the lattice, that cannot be observed in a
continuum. In fact, in a continuum the elastic waves propagate with the same
amplitude, because this medium is non-dispersive (see, for example, Zhelezina
et al. (2006)).

Elastic waves are generated not only at the boundary, but also at points
where links break. Fig. 8 shows how, in the inertial case, the elongations of two
different links are increased as a consequence of the breakage of the link closest
to the crack tip (here denoted as “first link”). Therefore, the elongations of the
links are increased not only by the elastic waves produced by the temperature
pulses at the boundary, but also by the waves created by the ruptures of the
links. Actually, the waves generated by the breakages of the links do not always
amplify the elongations of other links, in fact they may reduce these elongations
(this depends on the position of the link and on the instant of time considered).
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Figure 7: Time-histories of the elongations of two links in an intact lattice ((a) and (b)) and

in a lattice with a non-propagating crack of length L̂0 = 4 ((c) and (d)). Figures (a) and (c)
correspond to the inclined link located at 4 ≤ x̂1 ≤ 4.5, which is adjacent to the crack tip
in the cracked lattice, while figures (b) and (d) refer to a further inclined link, situated at
12 ≤ x̂1 ≤ 12.5.

4.3. Critical crack length

The aim of this section is to compare the crack propagation paths determined
in the inertial and non-inertial cases. This is accomplished using the numerical
model of Section 2.3. For the following calculations, it is assumed that the
fundamental radian frequency of the applied temperature is ˆ̄ω = π/32 and that

the threshold elongation is ∆l̂t = 0.005.
The crack tip trajectories for both non-inertial and inertial cases are plotted

in Fig. 9. The crosses in the two diagrams indicate the positions of the crack tip
when the crack stops propagating. In both situations, the crack length tends to
a finite value, which depends on the threshold elongation and on the frequency
and amplitude of the temperature pulses applied on the boundary.
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Figure 8: Time-histories of the elongations of two links, obtained in the inertial case, relative
to a lattice with an initial crack of length L̂0 = 4, for the cases when rupture of any link is
disregarded (black lines) and when the first link breaks (grey lines). Figure (a) refers to a link
close to the crack tip (6 ≤ x̂1 ≤ 6.5), while figure (b) corresponds to a link further away from
the crack tip (12 ≤ x̂1 ≤ 12.5).
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Figure 9: Crack tip trajectories in the non-inertial case (black line) and in the inertial case

(grey line). For both diagrams, ˆ̄ω = π/32 and ∆l̂t = 0.005.
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In the non-inertial case, the crack propagation is arrested because the max-
imum temperature, and hence the maximum elongation induced by thermal
expansion, decreases with x̂1 (see Fig. 5). Accordingly, crack growth stops
when the maximum elongation of any link is lower than the threshold elonga-
tion, which is reached at a temperature higher than T̂c.

In the inertial case, the crack stops propagating because the chosen value of
the threshold elongation is larger than the maximum amplitude of the elastic
waves, but smaller than the value necessary to initiate crack propagation (see
Fig. 7). In addition, the amplification of the elongations near the crack tip
caused by the presence of the crack decreases as the crack tip advances more
deeply in the lattice.

There are three main differences between the two crack tip trajectories shown
in Fig. 9. First, the critical crack length for the inertial case is larger than for the
non-inertial case because of the dynamic amplification of the elongations caused
by inertial effects, as shown in Section 4.2. Second, it is found by detailed
examination of the numerical calculations that in the inertial case the links
break both in tension and in compression, while in the non-inertial case they
break only in tension (this is because in compression the threshold elongation
is never attained in the non-inertial case). Third, in the inertial case voids can
be generated and later they can merge with the crack, while in the non-inertial
case the link closest to the crack tip always breaks before the others.

In conclusion, an example has been provided, in which the crack propagation
in the lattice - induced by periodic thermal excitations - is arrested.

5. Concluding remarks

Crack propagation in a homogeneous elastic triangular lattice, excited by
periodic thermal shocks, has been investigated. Since the steep thermal gra-
dients applied on the boundary of the lattice generate elastic waves, inertial
effects need to be included in the formulation of the thermoelastic problem. A
numerical model has been developed to analyse how an existing crack in the
lattice advances.

It has been found that the crack tip does not move uniformly in the lattice.
This is a consequence of the nonlinearity of the problem. However, the average
speed of crack propagation can be assessed using an analytical model, which
assumes that the crack propagates in a straight line with constant speed. This
analytical model also provides an estimate of the maximum speed at which crack
can advance through the lattice. The numerical model has also proved to be
capable of predicting the formation and coalescence of voids inside the lattice.

Another interesting result is that crack propagation may be arrested, both if
inertia is included or neglected. In the non-inertial case, the crack stops growing
because the temperature effects are significant only in a certain region, adjacent
to the boundary. In the inertial case, the crack advances further in the lattice
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due to the amplification of the links’ elongations caused by inertia.

Acknowledgements
G. Carta gratefully acknowledges the financial support of the Engineering and
Physical Sciences Research Council (EPSRC) under the grant EP/H018239/1.
M. Brun acknowledges the support of the EU FP7, grant PIEF-GA-2011-302357.

References
Benzerga, A.A., Leblond, J.-B., 2010. Ductile fracture by void growth to coa-

lescence. Adv. Appl. Mech. 44, 169-305.

Broek, D., 1982. Elementary engineering fracture mechanics, Martinus Nijhoff
Publishers, Boston.

Bueckner, H.F., 1973. Field singularities and related integral expressions in
mechanics of fracture, in: Sih, G.C. (Ed.), Methods of analysis of solutions
of crack problems, Vol. 1, Noordhoff International Publishing, Leyden.

Carslaw, H.S., Jaeger, J.C., 1959. Conduction of heat in solids, Oxford Univer-
sity Press, Oxford.

Colquitt, D.J., Nieves, M.J., Jones, I.S., Movchan, N.V., Movchan, A.B., 2012.
Trapping of a crack advancing through an elastic lattice. Int. J. Eng. Sci.
61, 129-141.

Danilovskaya, V.I., 1950. Thermal stresses in an elastic half-space arising after
a sudden heating of its boundary. Prikl. Mat. Mech. 14(3), 316-318.

Fineberg, J., Marder, M., 1999. Instability in dynamic fracture. Phys. Rep.
313, 1-108.

Gibiansky, E., Maz’ya, V., Movchan, A., 2005. Three-scale asymptotics for
a diffusion problem coupled with the wave equation. Appl. Anal. 84(6),
585-600.

Jones, I.S., 1999. The application of a displacement controlled weight function
for a single edge cracked plate to thermal fatigue damage assessment. Eng.
Fract. Mech. 62, 249-266.

Jones, I.S., 2005. Impulse response model of thermal striping for hollow cylin-
drical geometries. Theor. Appl. Fract. Mech. 43, 77-88.

Jones, I.S., 2006. Thermal striping fatigue damage in multiple edge-cracked
geometries. Fat. Fract. Eng. Mater. Struct. 29, 123-134.

Jones, I.S., Lewis, M.W.J., 1994. A frequency response method for calculating
stress intensity factors due to thermal striping loads. Fat. Fract. Eng. Mater.
Struct. 17(6), 709-720.

Jones, I.S., Lewis, M.W.J., 1996. An impulse response model for the prediction
of thermal striping damage. Eng. Fract. Mech. 55(5), 795-812.

19



Marder, M., Gross, S., 1995. Origin of crack-tip instabilities. J. Mech. Phys.
Solids 43(1), 1-48.

Movchan, A.B., Jones, I.S., 2006. Asymptotic and numerical study of a surface
breaking crack subject to a transient thermal loading. Acta. Mech. Sin. 22,
22-27.

Nieves, M.J., Movchan, A.B., Jones, I.S., 2011. Asymptotic study of a thermoe-
lastic problem in a semi-infinite body containing a surface-breaking crack and
small perforations. Quart. J. Mech. Appl. Math. 64(3), 349-369.

Nieves, M.J., Movchan, A.B., Jones, I.S., 2012. Analytical model of thermal
striping for a micro-cracked solid. Int. J. Solids Struct. 49, 1189-1194.

Nieves, M.J., Movchan, A.B., Jones, I.S., Mishuris, G.S., 2013. Propagation of
Slepyan’s crack in a non-uniform elastic lattice. J. Mech. Phys. Solids, DOI:
10.1016/j.jmps.2012.12.006.

Slepyan, L.I., 2001. Feeding and dissipative waves in fracture and phase transi-
tion. I. Some 1D structures and a square-cell lattice. J. Mech. Phys. Solids
49, 469-511.

Slepyan, L.I., 2001. Feeding and dissipative waves in fracture and phase transi-
tion. II. Phase-transition waves. J. Mech. Phys. Solids 49, 513-550.

Slepyan, L.I., 2001. Feeding and dissipative waves in fracture and phase transi-
tion. III. Triangular-cell lattice. J. Mech. Phys. Solids 49, 2839-2875.

Zhelezina, E., Jones, I.S., Movchan, A.B., 2006. Singular perturbation analysis
of dynamic fields in a thermoelastic solid with a small surface-breaking crack.
Acta. Mech. Sin. 22, 449-454.

AppendixA. Heat conduction problems in the lattice and in the equiv-
alent continuum

In this appendix the heat conduction problems in a continuum and in a
triangular lattice, both under the boundary temperature (5), are solved. Firstly,
the full analytical solution (which includes both the transient and steady-state
regimes) for the continuum is provided, which is then applied to the special case
of steady-state conditions. Secondly, the solution in the continuum is compared
with the corresponding solution in the homogenised lattice.
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AppendixA.1. Solution of the heat conduction problem in the continuum

The heat conduction problem in a continuous half-space Ω = {(x1, x2) : x1 ≥ 0}
of thermal diffusivity κ∗ can be stated as follows:

κ∗
∂2T (x1, t)

∂x21
=
∂T (x1, t)

∂t
for x1 > 0, t > 0; (A.1a)

T (x1, t) = Text(t) + Tref for x1 = 0, t > 0; (A.1b)

T (x1, t)→ Tref for x1 →∞, t > 0; (A.1c)

T (x1, t) = Tref for x1 ≥ 0, t = 0. (A.1d)

In the formulae above, Text represents the variation of temperature, applied on
the boundary, with respect to the ambient temperature Tref . In this paper, it
is assumed for simplicity that Tref = 0. Moreover, with respect to the elastic
problem in the lattice described in Section 2.1, it is assumed that Tref is equal
to the stress-free temperature of the body.

The initial boundary value problem defined by Eqs. (A.1) remains valid also
for a continuum with a crack, if the crack is assumed to be perfectly thermally-
conducting. It is worth noticing that the temperature T is independent of the
coordinate x2, as the external temperature Text is assumed to be uniform along
the x2 axis.

For the particular boundary temperature specified by Eq. (5), the tem-
perature field T (x1, t) in the continuum is given by Eq. (6). The normalised
temperature field T (x1/

√
κ∗τ , t/τ)/T0 is plotted in Fig. A.1. Fig. A.1 shows

that the temperature decays fast in space and, in addition, that the steady-state
regime is reached after few cycles.

AppendixA.2. Steady-state solution of the heat conduction problem in the con-
tinuum

For a time-harmonic temperature of radian frequency ω̃ and amplitude T̃0
applied on the boundary of a semi-infinite continuum Ω = {(x1, x2) : x1 ≥ 0} of
thermal diffusivity κ∗, the heat conduction problem is:

κ∗
d2T̃ (x1)

dx21
= i ω̃ T̃ (x1) for x1 > 0; (A.2a)

T̃ (x1) = T̃0 for x1 = 0; (A.2b)

T̃ (x1)→ 0 for x1 →∞. (A.2c)

The solution of this problem is given by (see, for example, Carslaw and Jaegar
(1959))

T̃ (x1) = T̃0 e−
√
ω̃/2κ∗(1+i)x1 . (A.3)

The steady-state solution of the thermal problem (A.1) can be obtained
by decomposing the boundary temperature in Fourier series and by applying
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Figure A.1: Normalised temperature distribution in a semi-infinite continuum under the
boundary temperature (5) (with θ = 4 τ).

Fourier analysis with the help of Eqs. (A.2) and (A.3). The Fourier series of
the boundary temperature (5) is given by

Text(t) =

∞∑
n=−∞

iT0
2nπ

(
e−inωτ − 1

)
einωt, (A.4)

where ω = 2π/θ is the fundamental radian frequency of the boundary temper-
ature. The solution in the steady-state regime is thus found by linear superpo-
sition:

T (x1, t) =

∞∑
n=−∞

iT0
2nπ

(
e−inωτ − 1

)
e−

√
|nω|
2κ∗ [1+sgn(n)i]x1einωt

=
T0τ

θ
+
T0
π

∞∑
n=1

e−
√

nω
2κ∗ x1

n

×
{

sin

[
nω(t− τ) +

√
nω

2κ∗
x1

]
+ sin

[
nωt−

√
nω

2κ∗
x1

]}
,

(A.5)

where sgn(·) is the sign function.
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AppendixA.3. Solution of the heat conduction problem in the lattice

The heat conduction problem in the semi-infinite lattice depicted in Fig. 1a
is solved numerically. To this aim, the semi-infinite lattice is approximated by a
finite lattice of width B and height H, the horizontal and the right boundaries
of which are assumed to be adiabatic (see Fig. 1b).

For convenience, the nodes of the lattice are grouped into the following sets:

• interior domain : Γ =

{
p : x1(p) > 0,−(n2 + 1)

√
3

2
l < x2(p) < n2

√
3

2
l

}
; (A.6a)

• left boundary : γl =

{
p : x1(p) = 0,−(n2 + 1)

√
3

2
l ≤ x2(p) ≤ n2

√
3

2
l

}
; (A.6b)

• right boundary : γr =

{
p : x1(p) = B,−(n2 + 1)

√
3

2
l ≤ x2(p) ≤ n2

√
3

2
l

}
; (A.6c)

• top boundary : γt =

{
p : 0 < x1(p) < B, x2(p) = n2

√
3

2
l

}
; (A.6d)

• bottom boundary : γb =

{
p : 0 < x1(p) < B, x2(p) = −(n2 + 1)

√
3

2
l

}
; (A.6e)

• near the crack : γc =

{
p : 0 ≤ x1(p) ≤ L0, x2(p) = 0,−

√
3

2
l

}
. (A.6f)

In the equations above, n2 represents the number of rows above and below the
crack.

The thermal problem in the lattice (in which the top, bottom and right
boundaries are considered to be adiabatic, the temperature (5) is applied on the
left boundary and the crack is assumed to be perfectly thermally-conducting)
can be stated as follows:

∂T (p, t)

∂t
=
κ

l2

N(p)∑
n=1

T (qn, t)−N(p)T (p, t)

 for p ∈ Γ, t > 0; (A.7a)

T (p, t) = Text(t) + Tref for p ∈ γl, t > 0; (A.7b)

T (p, t) =
1

N(p)

N(p)∑
n=1

T (qn, t) for p ∈ γr ∪ γt ∪ γb, t > 0; (A.7c)

T (p, t) = Tref for ∀p, t = 0. (A.7d)

Also for the lattice, it is assumed that Tref = 0.
The thermal problem defined by Eqs. (A.7) is solved by making use of the

Finite Difference Method. Convergence studies indicate that a suitable time step
is 0.02τ . It is found that the temperature distribution does not vary significantly
in the x2 direction (more precisely, the maximum difference between the values
of temperature at any two points with the same x1 and different x2 values is
less than 1% of T0). Consequently, this problem can be considered as one-
dimensional, as in Eqs. (A.1).

The spatial profiles of the temperature in the lattice at two different times
are shown with dots in Fig. A.2. The dots represent the values obtained at the
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nodal points of the lattice. The solid grey lines plotted in the same figure indi-
cate instead the temperature profiles of the equivalent continuum, obtained from
Eq. (6). In order to compare the solutions relative to the lattice and the con-
tinuum, the properties of the continuum should correspond to the homogenised
properties of the lattice. For this reason, the thermal diffusivity κ of the lattice
links has been taken as κ = κ∗/

√
3, where κ∗ is the thermal diffusivity of the

continuum.
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Figure A.2: Spatial temperature profiles of the lattice (dots) and of the equivalent continuum
(solid grey lines) at two different times (with l/

√
κ∗τ = 1, B = 80 l, n2 = 10, θ = 4 τ).

From Fig. A.2 it is apparent that there is a very good correspondence
between the solutions of the heat conduction problems in the lattice and in
the equivalent continuum. This observation justifies the use of Eq. (6) in the
numerical simulation of the thermoelastic problem for the lattice (see Section
2.3).
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List of figures captions

Figure 1: (a) Semi-infinite triangular lattice with a finite edge crack of length
L0. (b) Schematic drawing of the finite lattice modelled in the numerical
simulations, which approximates the semi-infinite lattice in (a). Adiabatic
boundary conditions and Perfectly Matched Layers (PMLs) are introduced
in the model. Γ is the domain of width B and height H, while γl, γr, γt, γb
and γc are the left, right, top, bottom and crack boundaries, respectively.

Figure 2: Time variation of the temperature imposed on the boundary x1 = 0
of the lattice (with θ = 4 τ).

Figure 3: Dispersion curves for the infinite homogeneous triangular lattice with
a semi-infinite crack, constructed according to Eqs. (12). At the fundamen-
tal radian frequency ˆ̄ω (indicated by the horizontal black line), waves can
propagate with phase velocities given by the slopes of the grey rays.

Figure 4: Crack lengths versus time for different threshold elongations ∆l̂t (solid
black curves) and comparison with Slepyan’s analytical model by means of
the rays L̂ = v̂ t̂ + L̂0 (dashed grey curves), where v̂ is the generic phase
velocity determined from Fig. 3.

Figure 5: Normalised temperature field T̂ (x̂1/Λ) in the steady-state regime,
obtained through Eq. (A.5). In the insets, the time distribution of the
temperature is shown at different positions x̂1/Λ.

Figure 6: Dependence of the critical crack length L̂∗ on the threshold elongation
∆l̂t of the links and on the fundamental radian frequency ˆ̄ω of the boundary
temperature, in the non-inertial case.

Figure 7: Time-histories of the elongations of two links in an intact lattice ((a)
and (b)) and in a lattice with a non-propagating crack of length L̂0 = 4
((c) and (d)). Figures (a) and (c) correspond to the inclined link located at
4 ≤ x̂1 ≤ 4.5, which is adjacent to the crack tip in the cracked lattice, while
figures (b) and (d) refer to a further inclined link, situated at 12 ≤ x̂1 ≤ 12.5.

Figure 8: Time-histories of the elongations of two links, obtained in the inertial
case, relative to a lattice with an initial crack of length L̂0 = 4, for the
cases when rupture of any link is disregarded (black lines) and when the first
link breaks (grey lines). Figure (a) refers to a link close to the crack tip
(6 ≤ x̂1 ≤ 6.5), while figure (b) corresponds to a link further away from the
crack tip (12 ≤ x̂1 ≤ 12.5).

Figure 9: Crack tip trajectories in the non-inertial case (black line) and in the

inertial case (grey line). For both diagrams, ˆ̄ω = π/32 and ∆l̂t = 0.005.

Figure A.1: Normalised temperature distribution in a semi-infinite continuum
under the boundary temperature (5) (with θ = 4 τ).

Figure A.2: Spatial temperature profiles of the lattice (dots) and of the equiv-
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alent continuum (solid grey lines) at two different times (with l/
√
κ∗τ = 1,

B = 80 l, n2 = 10, θ = 4 τ).
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